Optimum 文件

GaudiConfig

您正在檢視的是需要從原始碼安裝。如果您想透過 pip 進行常規安裝,請檢視最新的穩定版本 (v1.27.0)。
Hugging Face's logo
加入 Hugging Face 社群

並獲得增強的文件體驗

開始使用

GaudiConfig

要為特定工作負載定義配置,可以使用 GaudiConfig 類。

以下是每個配置引數的描述

此類的引數值可以從外部 JSON 檔案設定。

您可以在 Hugging Face Hub 上的 Intel Gaudi 模型倉庫中找到 Gaudi 配置的示例。例如,對於 BERT Large,我們有

{
  "use_fused_adam": true,
  "use_fused_clip_norm": true,
  "use_torch_autocast": true
}

更高階的配置檔案 適用於 Stable Diffusion 2

{
  "use_torch_autocast": true,
  "use_fused_adam": true,
  "use_fused_clip_norm": true,
  "autocast_bf16_ops": [
    "_convolution.deprecated",
    "_convolution",
    "conv1d",
    "conv2d",
    "conv3d",
    "conv_tbc",
    "conv_transpose1d",
    "conv_transpose2d.input",
    "conv_transpose3d.input",
    "convolution",
    "prelu",
    "addmm",
    "addmv",
    "addr",
    "matmul",
    "einsum",
    "mm",
    "mv",
    "silu",
    "linear",
    "addbmm",
    "baddbmm",
    "bmm",
    "chain_matmul",
    "linalg_multi_dot",
    "layer_norm",
    "group_norm"
  ],
  "autocast_fp32_ops": [
    "acos",
    "asin",
    "cosh",
    "erfinv",
    "exp",
    "expm1",
    "log",
    "log10",
    "log2",
    "log1p",
    "reciprocal",
    "rsqrt",
    "sinh",
    "tan",
    "pow.Tensor_Scalar",
    "pow.Tensor_Tensor",
    "pow.Scalar",
    "softplus",
    "frobenius_norm",
    "frobenius_norm.dim",
    "nuclear_norm",
    "nuclear_norm.dim",
    "cosine_similarity",
    "poisson_nll_loss",
    "cosine_embedding_loss",
    "nll_loss",
    "nll_loss2d",
    "hinge_embedding_loss",
    "kl_div",
    "l1_loss",
    "smooth_l1_loss",
    "huber_loss",
    "mse_loss",
    "margin_ranking_loss",
    "multilabel_margin_loss",
    "soft_margin_loss",
    "triplet_margin_loss",
    "multi_margin_loss",
    "binary_cross_entropy_with_logits",
    "dist",
    "pdist",
    "cdist",
    "renorm",
    "logsumexp"
  ]
}

要在您的指令碼中例項化 Gaudi 配置,您可以執行以下操作

from optimum.habana import GaudiConfig

gaudi_config = GaudiConfig.from_pretrained(
    gaudi_config_name,
    cache_dir=model_args.cache_dir,
    revision=model_args.model_revision,
    token=model_args.token,
)

並透過 gaudi_config 引數將其傳遞給訓練器。

GaudiConfig

class optimum.habana.GaudiConfig

< >

( **kwargs )

< > 在 GitHub 上更新

© . This site is unofficial and not affiliated with Hugging Face, Inc.