timm 文件
模型摘要
加入 Hugging Face 社群
並獲得增強的文件體驗
開始使用
模型摘要
所包含的模型架構來源於多種來源。來源包括論文、我重寫/改編的原始實現(“參考程式碼”)以及我直接使用的 PyTorch 實現(“程式碼”),列表如下。
大多數包含的模型都有預訓練權重。這些權重要麼是
- 來自其原始來源
- 我自己從不同框架(例如 Tensorflow 模型)的原始實現中移植的
- 使用隨附的訓練指令碼從頭開始訓練的
預訓練權重的驗證結果在這裡
在 paperswithcode 上可以找到 `timm` 中模型的更令人興奮的檢視(附帶漂亮的圖片)。
Big Transfer ResNetV2 (BiT)
- 實現:resnetv2.py
- 論文:
Big Transfer (BiT): General Visual Representation Learning
- https://arxiv.org/abs/1912.11370 - 參考程式碼:https://github.com/google-research/big_transfer
跨階段部分網路
- 實現:cspnet.py
- 論文:
CSPNet: A New Backbone that can Enhance Learning Capability of CNN
- https://arxiv.org/abs/1911.11929 - 參考實現:https://github.com/WongKinYiu/CrossStagePartialNetworks
DenseNet
- 實現:densenet.py
- 論文:
Densely Connected Convolutional Networks
- https://arxiv.org/abs/1608.06993 - 程式碼:https://github.com/pytorch/vision/tree/master/torchvision/models
DLA
- 實現:dla.py
- 論文:
Deep Layer Aggregation
- https://arxiv.org/abs/1707.06484 - 程式碼:https://github.com/ucbdrive/dla
雙路徑網路
- 實現:dpn.py
- 論文:
Dual Path Networks
- https://arxiv.org/abs/1707.01629 - 我的 PyTorch 程式碼:https://github.com/rwightman/pytorch-dpn-pretrained
- 參考程式碼:https://github.com/cypw/DPNs
GPU-高效網路
- 實現:byobnet.py
- 論文:
Neural Architecture Design for GPU-Efficient Networks
- https://arxiv.org/abs/2006.14090 - 參考程式碼:https://github.com/idstcv/GPU-Efficient-Networks
HRNet
- 實現:hrnet.py
- 論文:
Deep High-Resolution Representation Learning for Visual Recognition
- https://arxiv.org/abs/1908.07919 - 程式碼:https://github.com/HRNet/HRNet-Image-Classification
Inception-V3
- 實現:inception_v3.py
- 論文:
Rethinking the Inception Architecture for Computer Vision
- https://arxiv.org/abs/1512.00567 - 程式碼:https://github.com/pytorch/vision/tree/master/torchvision/models
Inception-V4
- 實現:inception_v4.py
- 論文:
Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning
- https://arxiv.org/abs/1602.07261 - 程式碼:https://github.com/Cadene/pretrained-models.pytorch
- 參考程式碼:https://github.com/tensorflow/models/tree/master/research/slim/nets
Inception-ResNet-V2
- 實現:inception_resnet_v2.py
- 論文:
Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning
- https://arxiv.org/abs/1602.07261 - 程式碼:https://github.com/Cadene/pretrained-models.pytorch
- 參考程式碼:https://github.com/tensorflow/models/tree/master/research/slim/nets
NASNet-A
- 實現:nasnet.py
- 論文:
Learning Transferable Architectures for Scalable Image Recognition
- https://arxiv.org/abs/1707.07012 - 程式碼:https://github.com/Cadene/pretrained-models.pytorch
- 參考程式碼:https://github.com/tensorflow/models/tree/master/research/slim/nets/nasnet
PNasNet-5
- 實現:pnasnet.py
- 論文:
Progressive Neural Architecture Search
- https://arxiv.org/abs/1712.00559 - 程式碼:https://github.com/Cadene/pretrained-models.pytorch
- 參考程式碼:https://github.com/tensorflow/models/tree/master/research/slim/nets/nasnet
EfficientNet
- 實現:efficientnet.py
- 論文
- EfficientNet NoisyStudent (B0-B7, L2) - https://arxiv.org/abs/1911.04252
- EfficientNet AdvProp (B0-B8) - https://arxiv.org/abs/1911.09665
- EfficientNet (B0-B7) - https://arxiv.org/abs/1905.11946
- EfficientNet-EdgeTPU (S, M, L) - https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html
- MixNet - https://arxiv.org/abs/1907.09595
- MNASNet B1, A1 (Squeeze-Excite) 和 Small - https://arxiv.org/abs/1807.11626
- MobileNet-V2 - https://arxiv.org/abs/1801.04381
- FBNet-C - https://arxiv.org/abs/1812.03443
- Single-Path NAS - https://arxiv.org/abs/1904.02877
- 我的 PyTorch 程式碼:https://github.com/rwightman/gen-efficientnet-pytorch
- 參考程式碼:https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
MobileNet-V3
- 實現:mobilenetv3.py
- 論文:
Searching for MobileNetV3
- https://arxiv.org/abs/1905.02244 - 參考程式碼:https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet
RegNet
- 實現:regnet.py
- 論文:
Designing Network Design Spaces
- https://arxiv.org/abs/2003.13678 - 參考程式碼:https://github.com/facebookresearch/pycls/blob/master/pycls/models/regnet.py
RepVGG
- 實現:byobnet.py
- 論文:
Making VGG-style ConvNets Great Again
- https://arxiv.org/abs/2101.03697 - 參考程式碼:https://github.com/DingXiaoH/RepVGG
ResNet, ResNeXt
實現:resnet.py
ResNet (V1B)
- 論文:
Deep Residual Learning for Image Recognition
- https://arxiv.org/abs/1512.03385 - 程式碼:https://github.com/pytorch/vision/tree/master/torchvision/models
- 論文:
ResNeXt
- 論文:
Aggregated Residual Transformations for Deep Neural Networks
- https://arxiv.org/abs/1611.05431 - 程式碼:https://github.com/pytorch/vision/tree/master/torchvision/models
- 論文:
“Bag of Tricks” / Gluon C, D, E, S ResNet 變體
- 論文:
Bag of Tricks for Image Classification with CNNs
- https://arxiv.org/abs/1812.01187 - 程式碼:https://github.com/dmlc/gluon-cv/blob/master/gluoncv/model_zoo/resnetv1b.py
- 論文:
Instagram 預訓練 / ImageNet 調優的 ResNeXt101
- 論文:
Exploring the Limits of Weakly Supervised Pretraining
- https://arxiv.org/abs/1805.00932 - 權重:https://pytorch.org/hub/facebookresearch_WSL-Images_resnext (注意:CC BY-NC 4.0 許可證,非商業友好)
- 論文:
半監督 (SSL) / 半弱監督 (SWSL) ResNet 和 ResNeXts
- 論文:
Billion-scale semi-supervised learning for image classification
- https://arxiv.org/abs/1905.00546 - 權重:https://github.com/facebookresearch/semi-supervised-ImageNet1K-models (注意:CC BY-NC 4.0 許可證,非商業友好)
- 論文:
Squeeze-and-Excitation 網路
- 論文:
Squeeze-and-Excitation Networks
- https://arxiv.org/abs/1709.01507 - 程式碼:已新增到 ResNet 基礎版,這是未來的版本,舊的
senet.py
正在被棄用
- 論文:
ECAResNet (ECA-Net)
- 論文:
ECA-Net: Efficient Channel Attention for Deep CNN
- https://arxiv.org/abs/1910.03151v4 - 程式碼:已新增到 ResNet 基礎版,ECA 模組由 @VRandme 貢獻,參考 https://github.com/BangguWu/ECANet
- 論文:
Res2Net
- 實現:res2net.py
- 論文:
Res2Net: A New Multi-scale Backbone Architecture
- https://arxiv.org/abs/1904.01169 - 程式碼:https://github.com/gasvn/Res2Net
ResNeSt
- 實現:resnest.py
- 論文:
ResNeSt: Split-Attention Networks
- https://arxiv.org/abs/2004.08955 - 程式碼:https://github.com/zhanghang1989/ResNeSt
ReXNet
- 實現:rexnet.py
- 論文:
ReXNet: Diminishing Representational Bottleneck on CNN
- https://arxiv.org/abs/2007.00992 - 程式碼:https://github.com/clovaai/rexnet
選擇性核網路
- 實現:sknet.py
- 論文:
Selective-Kernel Networks
- https://arxiv.org/abs/1903.06586 - 程式碼:https://github.com/implus/SKNet, https://github.com/clovaai/assembled-cnn
SelecSLS
- 實現:selecsls.py
- 論文:
XNect: Real-time Multi-Person 3D Motion Capture with a Single RGB Camera
- https://arxiv.org/abs/1907.00837 - 程式碼:https://github.com/mehtadushy/SelecSLS-Pytorch
Squeeze-and-Excitation 網路
實現:senet.py 注意:我正在棄用此版本的網路,新版本是
resnet.py
的一部分論文:
Squeeze-and-Excitation Networks
- https://arxiv.org/abs/1709.01507
TResNet
- 實現:tresnet.py
- 論文:
TResNet: High Performance GPU-Dedicated Architecture
- https://arxiv.org/abs/2003.13630 - 程式碼:https://github.com/mrT23/TResNet
VGG
- 實現:vgg.py
- 論文:
Very Deep Convolutional Networks For Large-Scale Image Recognition
- https://arxiv.org/pdf/1409.1556.pdf - 參考程式碼:https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py
Vision Transformer
- 實現:vision_transformer.py
- 論文:
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
- https://arxiv.org/abs/2010.11929 - 參考程式碼和預訓練權重:https://github.com/google-research/vision_transformer
VovNet V2 和 V1
- 實現:vovnet.py
- 論文:
CenterMask : Real-Time Anchor-Free Instance Segmentation
- https://arxiv.org/abs/1911.06667 - 參考程式碼:https://github.com/youngwanLEE/vovnet-detectron2
Xception
- 實現:xception.py
- 論文:
Xception: Deep Learning with Depthwise Separable Convolutions
- https://arxiv.org/abs/1610.02357 - 程式碼:https://github.com/Cadene/pretrained-models.pytorch
Xception (修改對齊,Gluon)
- 實現:gluon_xception.py
- 論文:
Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
- https://arxiv.org/abs/1802.02611 - 參考程式碼:https://github.com/dmlc/gluon-cv/tree/master/gluoncv/model_zoo, https://github.com/jfzhang95/pytorch-deeplab-xception/
Xception (修改對齊,TF)
- 實現:aligned_xception.py
- 論文:
Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
- https://arxiv.org/abs/1802.02611 - 參考程式碼:https://github.com/tensorflow/models/tree/master/research/deeplab