Transformers 文件

SmolLM3

Hugging Face's logo
加入 Hugging Face 社群

並獲得增強的文件體驗

開始使用

PyTorch FlashAttention SDPA

SmolLM3

SmolLM3 是一種完全開放的緊湊型語言模型,旨在高效部署的同時保持強大的效能。它採用帶有分組查詢注意力 (GQA) 的 Transformer 解碼器架構,以減少 kv 快取,並且沒有 RoPE,從而提高了長上下文任務的效能。它使用多階段訓練方法,在高質量的公共資料集上進行訓練,涵蓋網路、程式碼和數學領域。該模型是多語言的,支援非常大的上下文長度。指令變體針對推理和工具使用進行了最佳化。

點選右側邊欄中的 SmolLM3 模型,檢視更多將 SmolLM3 應用於不同語言任務的示例。

以下示例演示瞭如何使用 PipelineAutoModel 以及透過命令列使用指令調優模型生成文字。

流水線
自動模型
Transformers CLI
import torch
from transformers import pipeline

pipe = pipeline(
    task="text-generation",
    model="HuggingFaceTB/SmolLM3-3B",
    torch_dtype=torch.bfloat16,
    device_map=0
)

messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "Tell me about yourself."},
]
outputs = pipe(messages, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"][-1]['content'])

量化透過以較低精度表示權重來減少大型模型的記憶體負擔。有關更多可用量化後端,請參閱量化概述。

以下示例使用 bitsandbytes 將權重量化為 4 位。

# pip install -U flash-attn --no-build-isolation
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig

quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.bfloat16,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_use_double_quant=True,
)

tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM3-3B")
model = AutoModelForCausalLM.from_pretrained(
    "HuggingFaceTB/SmolLM3-3B",
    torch_dtype=torch.bfloat16,
    device_map="auto",
    quantization_config=quantization_config,
    attn_implementation="flash_attention_2"
)

inputs = tokenizer("Gravity is the force", return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

注意事項

  • 請確保您的 Transformers 庫版本是最新的。SmolLM3 需要 Transformers >=4.53.0 才能獲得全面支援。

SmolLM3Config

class transformers.SmolLM3Config

< >

( vocab_size = 128256 hidden_size = 2048 intermediate_size = 11008 num_hidden_layers = 36 num_attention_heads = 16 num_key_value_heads = 4 hidden_act = 'silu' max_position_embeddings = 32768 initializer_range = 0.02 rms_norm_eps = 1e-06 use_cache = True pad_token_id = 128004 bos_token_id = 128000 eos_token_id = 128001 rope_theta = 2000000.0 rope_scaling = None use_sliding_window = False sliding_window = None no_rope_layers = None no_rope_layer_interval = 4 layer_types = None attention_bias = False attention_dropout = 0.0 **kwargs )

引數

  • vocab_size (int, 可選, 預設為 128256) — SmolLM3 模型的詞彙量大小。定義了呼叫 SmolLM3Model 時可由 inputs_ids 表示的不同 token 的數量。
  • hidden_size (int, 可選, 預設為 2048) — 隱藏表示的維度。
  • intermediate_size (int, 可選, 預設為 11008) — MLP 表示的維度。
  • num_hidden_layers (int, 可選, 預設為 36) — Transformer 編碼器中的隱藏層數量。
  • num_attention_heads (int, 可選, 預設為 16) — Transformer 編碼器中每個注意力層的注意力頭數量。
  • num_key_value_heads (int, 可選, 預設為 4) — 用於實現分組查詢注意力(Grouped Query Attention)的 key_value 頭數量。如果 num_key_value_heads=num_attention_heads,模型將使用多頭注意力(MHA);如果 num_key_value_heads=1,模型將使用多查詢注意力(MQA),否則使用 GQA。將多頭檢查點轉換為 GQA 檢查點時,每個分組的 key 和 value 頭應透過對其分組中的所有原始頭進行均值池化來構建。有關更多詳細資訊,請參閱 這篇論文。如果未指定,預設為 16
  • hidden_act (strfunction, 可選, 預設為 "silu") — 解碼器中的非線性啟用函式(函式或字串)。
  • max_position_embeddings (int, 可選, 預設為 32768) — 此模型可能使用的最大序列長度。
  • initializer_range (float, 可選, 預設為 0.02) — 用於初始化所有權重矩陣的 truncated_normal_initializer 的標準差。
  • rms_norm_eps (float, 可選, 預設為 1e-06) — RMS 歸一化層使用的 epsilon 值。
  • use_cache (bool, 可選, 預設為 True) — 模型是否應返回最後一個 key/values 注意力(並非所有模型都使用)。僅當 config.is_decoder=True 時相關。
  • pad_token_id (int, 可選, 預設為 128004) — 填充 token 的 id。
  • bos_token_id (int, 可選, 預設為 128000) — 句子起始 token 的 id。
  • eos_token_id (int, 可選, 預設為 128001) — 句子結束 token 的 id。
  • rope_theta (float, 可選, 預設為 2000000.0) — RoPE 嵌入的基本週期。
  • rope_scaling (Dict, 可選) — 包含 RoPE 嵌入縮放配置的字典。注意:如果您應用新的 RoPE 型別並期望模型在更長的 max_position_embeddings 上工作,我們建議您相應地更新此值。預期內容:rope_type (str): 要使用的 RoPE 子變體。可以是 ['default', 'linear', 'dynamic', 'yarn', 'longrope', 'llama3'] 之一,其中 'default' 是原始 RoPE 實現。factor (float, 可選): 除 'default' 外的所有 RoPE 型別均使用。應用於 RoPE 嵌入的縮放因子。在大多數縮放型別中,因子 x 將使模型能夠處理長度為 x * 原始最大預訓練長度的序列。original_max_position_embeddings (int, 可選): 與 'dynamic'、'longrope' 和 'llama3' 一起使用。預訓練期間使用的原始最大位置嵌入。attention_factor (float, 可選): 與 'yarn' 和 'longrope' 一起使用。應用於注意力計算的縮放因子。如果未指定,預設為實現推薦的值,使用 factor 欄位推斷建議值。beta_fast (float, 可選): 僅與 'yarn' 一起使用。線上性斜坡函式中設定外推(僅)邊界的引數。如果未指定,預設為 32。beta_slow (float, 可選): 僅與 'yarn' 一起使用。線上性斜坡函式中設定插值(僅)邊界的引數。如果未指定,預設為 1。short_factor (List[float], 可選): 僅與 'longrope' 一起使用。應用於短上下文(< original_max_position_embeddings)的縮放因子。必須是長度與隱藏大小除以注意力頭數再除以 2 相同的數字列表。long_factor (List[float], 可選): 僅與 'longrope' 一起使用。應用於長上下文(< original_max_position_embeddings)的縮放因子。必須是長度與隱藏大小除以注意力頭數再除以 2 相同的數字列表。low_freq_factor (float, 可選): 僅與 'llama3' 一起使用。應用於 RoPE 低頻分量的縮放因子。high_freq_factor (float, 可選): 僅與 'llama3' 一起使用。應用於 RoPE 高頻分量的縮放因子。
  • use_sliding_window (bool, 可選, 預設為 False) — 是否使用滑動視窗注意力。
  • sliding_window (int, 可選) — 滑動視窗注意力 (SWA) 的視窗大小。如果未指定,預設為 None
  • no_rope_layers (List[int], 可選) — 列表,長度至少與模型層數相同。索引位置上的 1 表示對應層將使用 RoPE,而 0 表示它是 NoPE 層。
  • no_rope_layer_interval (int, 可選, 預設為 4) — 如果 no_rope_layersNone,則將每 no_rope_layer_interval 層建立一個 NoPE 層。
  • layer_types (list, 可選) — 每層的注意力模式。根據滑動視窗和 NoPE 設定自動計算。
  • attention_bias (bool, 可選, 預設為 False) — 在自注意力期間,是否在查詢、鍵、值和輸出投影層中使用偏置。
  • attention_dropout (float, 可選, 預設為 0.0) — 注意力機率的 dropout 比率。

這是一個配置類,用於儲存 SmolLM3Model 的配置。它用於根據指定的引數例項化 SmolLM3 模型,定義模型架構。使用預設值例項化配置將生成與 SmolLM3 3B 類似的配置。例如 HuggingFaceTB/SmolLM3-3B

配置物件繼承自 PretrainedConfig,可用於控制模型輸出。有關更多資訊,請參閱 PretrainedConfig 的文件。

>>> from transformers import SmolLM3Model, SmolLM3Config

>>> # Initializing a SmolLM3 style configuration
>>> configuration = SmolLM3Config()

>>> # Initializing a model from the SmolLM3 style configuration
>>> model = SmolLM3Model(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

SmolLM3Model

class transformers.SmolLM3Model

< >

( config: SmolLM3Config )

引數

  • config (SmolLM3Config) — 包含模型所有引數的模型配置類。用配置檔案初始化並不會載入與模型相關的權重,只加載配置。要載入模型權重,請檢視 from_pretrained() 方法。

裸 SmolLM3 模型,輸出原始隱藏狀態,頂部沒有任何特定頭部。

此模型繼承自 PreTrainedModel。請檢視超類文件,瞭解庫為所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭部等)。

此模型也是 PyTorch torch.nn.Module 的子類。將其作為常規 PyTorch 模組使用,並參考 PyTorch 文件中與通用用法和行為相關的所有事項。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None **flash_attn_kwargs: typing_extensions.Unpack[transformers.modeling_flash_attention_utils.FlashAttentionKwargs] ) transformers.modeling_outputs.BaseModelOutputWithPasttuple(torch.FloatTensor)

引數

  • input_ids (torch.LongTensor, 形狀為 (batch_size, sequence_length), 可選) — 詞彙表中輸入序列 token 的索引。預設情況下會忽略填充。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參見 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (torch.Tensor, 形狀為 (batch_size, sequence_length), 可選) — 用於避免對填充 token 索引執行注意力的掩碼。掩碼值選擇在 [0, 1] 中:

    • 1 表示**未被掩碼**的 token,
    • 0 表示**被掩碼**的 token。

    什麼是注意力掩碼?

  • position_ids (torch.LongTensor, 形狀為 (batch_size, sequence_length), 可選) — 每個輸入序列 token 在位置嵌入中的位置索引。選擇範圍為 [0, config.n_positions - 1]

    什麼是位置 ID?

  • past_key_values (~cache_utils.Cache, 可選) — 預先計算的隱藏狀態(自注意力塊和交叉注意力塊中的鍵和值),可用於加速順序解碼。這通常包括模型在解碼上一階段返回的 past_key_values,當 use_cache=Trueconfig.use_cache=True 時。

    允許兩種格式:

    • Cache 例項,詳見我們的 kv cache 指南
    • 長度為 config.n_layerstuple(torch.FloatTensor) 元組,每個元組包含兩個形狀為 (batch_size, num_heads, sequence_length, embed_size_per_head) 的張量)。這也被稱為傳統快取格式。

    模型將輸出與輸入相同的快取格式。如果沒有傳入 past_key_values,將返回傳統快取格式。

    如果使用了 past_key_values,使用者可以選擇只輸入形狀為 (batch_size, 1) 的最後一個 input_ids(那些沒有將其過去的鍵值狀態提供給此模型的),而不是所有形狀為 (batch_size, sequence_length)input_ids

  • inputs_embeds (torch.FloatTensor,形狀為 (batch_size, sequence_length, hidden_size)可選) — 可選地,你可以直接傳入嵌入表示,而不是傳入 input_ids。如果你想對如何將 input_ids 索引轉換為關聯向量有更多的控制,而不是使用模型內部的嵌入查詢矩陣,這將非常有用。
  • use_cache (bool, 可選) — 如果設定為 True,將返回 past_key_values 鍵值狀態,可用於加速解碼(參見 past_key_values)。
  • output_attentions (bool, 可選) — 是否返回所有注意力層的注意力張量。更多詳情請參閱返回張量中的 attentions
  • output_hidden_states (bool, 可選) — 是否返回所有層的隱藏狀態。更多詳情請參閱返回張量中的 hidden_states
  • cache_position (torch.LongTensor,形狀為 (sequence_length)可選) — 序列中輸入序列 token 位置的索引。與 position_ids 不同,此張量不受填充影響。它用於在正確位置更新快取並推斷完整的序列長度。

返回

transformers.modeling_outputs.BaseModelOutputWithPasttuple(torch.FloatTensor)

一個 transformers.modeling_outputs.BaseModelOutputWithPasttorch.FloatTensor 的元組(如果傳入 return_dict=False 或當 config.return_dict=False 時),根據配置(SmolLM3Config)和輸入包含各種元素。

  • last_hidden_state (torch.FloatTensor, 形狀為 (batch_size, sequence_length, hidden_size)) — 模型最後一層輸出的隱藏狀態序列。

    如果使用了 past_key_values,則只輸出形狀為 (batch_size, 1, hidden_size) 的序列的最後一個隱藏狀態。

  • past_key_values (Cache, 可選, 當傳入 use_cache=True 或當 config.use_cache=True 時返回) — 這是一個 Cache 例項。更多詳情請參閱我們的 kv cache 指南

    包含預先計算的隱藏狀態(自注意力塊中的鍵和值,以及如果 config.is_encoder_decoder=True 則可選地包含交叉注意力塊中的鍵和值),可用於(參見 past_key_values 輸入)加速順序解碼。

  • hidden_states (tuple(torch.FloatTensor), 可選, 當傳入 output_hidden_states=True 或當 config.output_hidden_states=True 時返回) — torch.FloatTensor 的元組(一個用於嵌入層的輸出,如果模型有嵌入層,+ 每個層的輸出一個),形狀為 (batch_size, sequence_length, hidden_size)

    模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。

  • attentions (tuple(torch.FloatTensor), 可選, 當傳入 output_attentions=True 或當 config.output_attentions=True 時返回) — torch.FloatTensor 的元組(每層一個),形狀為 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

SmolLM3Model 的前向方法,覆蓋了 __call__ 特殊方法。

儘管前向傳播的實現需要在該函式中定義,但之後應該呼叫 Module 例項,而不是直接呼叫此函式,因為前者負責執行預處理和後處理步驟,而後者則默默地忽略它們。

SmolLM3ForCausalLM

class transformers.SmolLM3ForCausalLM

< >

( config )

引數

  • config (SmolLM3ForCausalLM) — 包含模型所有引數的模型配置類。使用配置檔案初始化並不會載入與模型相關的權重,僅載入配置。請檢視 from_pretrained() 方法來載入模型權重。

用於因果語言建模的 Smollm3 模型。

此模型繼承自 PreTrainedModel。請檢視超類文件,瞭解庫為所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭部等)。

此模型也是 PyTorch torch.nn.Module 的子類。將其作為常規 PyTorch 模組使用,並參考 PyTorch 文件中與通用用法和行為相關的所有事項。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None logits_to_keep: typing.Union[int, torch.Tensor] = 0 **kwargs: typing_extensions.Unpack[transformers.models.smollm3.modeling_smollm3.KwargsForCausalLM] ) transformers.modeling_outputs.CausalLMOutputWithPasttuple(torch.FloatTensor)

引數

  • input_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 詞彙表中輸入序列 token 的索引。預設情況下會忽略填充。

    可以使用 AutoTokenizer 獲取索引。有關詳情,請參見 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (torch.Tensor,形狀為 (batch_size, sequence_length)可選) — 用於避免在填充 token 索引上執行注意力的掩碼。掩碼值選擇在 [0, 1] 之間:

    • 1 表示未被掩蓋的 token,
    • 0 表示被掩蓋的 token。

    什麼是注意力掩碼?

  • position_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 每個輸入序列 token 在位置嵌入中的位置索引。選擇範圍為 [0, config.n_positions - 1]

    什麼是位置 ID?

  • past_key_values (~cache_utils.Cache, 可選) — 預先計算的隱藏狀態(自注意力塊和交叉注意力塊中的鍵和值),可用於加速順序解碼。這通常包括模型在解碼上一階段返回的 past_key_values,當 use_cache=Trueconfig.use_cache=True 時。

    允許兩種格式:

    • Cache 例項,詳見我們的 kv cache 指南
    • 長度為 config.n_layerstuple(torch.FloatTensor) 元組,每個元組包含兩個形狀為 (batch_size, num_heads, sequence_length, embed_size_per_head) 的張量)。這也被稱為傳統快取格式。

    模型將輸出與輸入相同的快取格式。如果沒有傳入 past_key_values,將返回傳統快取格式。

    如果使用了 past_key_values,使用者可以選擇只輸入形狀為 (batch_size, 1) 的最後一個 input_ids(那些沒有將其過去的鍵值狀態提供給此模型的),而不是所有形狀為 (batch_size, sequence_length)input_ids

  • inputs_embeds (torch.FloatTensor,形狀為 (batch_size, sequence_length, hidden_size)可選) — 可選地,你可以直接傳入嵌入表示,而不是傳入 input_ids。如果你想對如何將 input_ids 索引轉換為關聯向量有更多的控制,而不是使用模型內部的嵌入查詢矩陣,這將非常有用。
  • labels (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 用於計算掩碼語言建模損失的標籤。索引應在 [0, ..., config.vocab_size] 或 -100 之間(參見 input_ids 文件字串)。索引設定為 -100 的 token 將被忽略(掩碼),損失僅針對標籤在 [0, ..., config.vocab_size] 中的 token 計算。
  • use_cache (bool, 可選) — 如果設定為 True,將返回 past_key_values 鍵值狀態,可用於加速解碼(參見 past_key_values)。
  • output_attentions (bool, 可選) — 是否返回所有注意力層的注意力張量。更多詳情請參閱返回張量中的 attentions
  • output_hidden_states (bool, 可選) — 是否返回所有層的隱藏狀態。更多詳情請參閱返回張量中的 hidden_states
  • cache_position (torch.LongTensor,形狀為 (sequence_length)可選) — 序列中輸入序列 token 位置的索引。與 position_ids 不同,此張量不受填充影響。它用於在正確位置更新快取並推斷完整的序列長度。
  • logits_to_keep (Union[int, torch.Tensor], 預設為 0) — 如果是 int 型別,則計算最後 logits_to_keep 個 token 的 logits。如果為 0,則計算所有 input_ids 的 logits(特殊情況)。生成時只需要最後一個 token 的 logits,只計算該 token 的 logits 可以節省記憶體,這對於長序列或大詞彙量來說非常重要。如果是 torch.Tensor 型別,則必須是一維的,對應於要在序列長度維度中保留的索引。這在使用打包張量格式(批次和序列長度的單個維度)時很有用。

返回

transformers.modeling_outputs.CausalLMOutputWithPasttuple(torch.FloatTensor)

一個 transformers.modeling_outputs.CausalLMOutputWithPasttorch.FloatTensor 的元組(如果傳入 return_dict=False 或當 config.return_dict=False 時),根據配置(SmolLM3Config)和輸入包含各種元素。

  • loss (torch.FloatTensor 形狀為 (1,)可選,當提供 labels 時返回) — 語言建模損失(用於下一個 token 預測)。

  • logits (形狀為 (batch_size, sequence_length, config.vocab_size)torch.FloatTensor) — 語言建模頭部的預測分數(SoftMax 之前的每個詞彙標記的分數)。

  • past_key_values (Cache, 可選, 當傳入 use_cache=True 或當 config.use_cache=True 時返回) — 這是一個 Cache 例項。更多詳情請參閱我們的 kv cache 指南

    包含預計算的隱藏狀態(自注意力塊中的鍵和值),可用於(參見 past_key_values 輸入)加速順序解碼。

  • hidden_states (tuple(torch.FloatTensor), 可選, 當傳入 output_hidden_states=True 或當 config.output_hidden_states=True 時返回) — torch.FloatTensor 的元組(一個用於嵌入層的輸出,如果模型有嵌入層,+ 每個層的輸出一個),形狀為 (batch_size, sequence_length, hidden_size)

    模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。

  • attentions (tuple(torch.FloatTensor), 可選, 當傳入 output_attentions=True 或當 config.output_attentions=True 時返回) — torch.FloatTensor 的元組(每層一個),形狀為 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

SmolLM3ForCausalLM 的前向方法,覆蓋了 __call__ 特殊方法。

儘管前向傳播的實現需要在該函式中定義,但之後應該呼叫 Module 例項,而不是直接呼叫此函式,因為前者負責執行預處理和後處理步驟,而後者則默默地忽略它們。

示例

>>> from transformers import AutoTokenizer, SmolLM3ForCausalLM

>>> model = SmolLM3ForCausalLM.from_pretrained("meta-smollm3/SmolLM3-2-7b-hf")
>>> tokenizer = AutoTokenizer.from_pretrained("meta-smollm3/SmolLM3-2-7b-hf")

>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")

>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."

SmolLM3ForSequenceClassification

class transformers.SmolLM3ForSequenceClassification

< >

( config )

引數

SmolLM3 模型 Transformer,頂部帶有一個序列分類頭(線性層)。

SmolLM3ForSequenceClassification 使用最後一個 token 進行分類,與其他因果模型(如 GPT-2)相同。

由於它對最後一個 token 進行分類,因此需要知道最後一個 token 的位置。如果配置中定義了 pad_token_id,它會在每一行中找到不是填充 token 的最後一個 token。如果沒有定義 pad_token_id,它會簡單地取批處理中每一行的最後一個值。由於在傳入 inputs_embeds 而不是 input_ids 時無法猜測填充 token,它會執行相同的操作(取批處理中每一行的最後一個值)。

此模型繼承自 PreTrainedModel。請檢視超類文件,瞭解庫為所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭部等)。

此模型也是 PyTorch torch.nn.Module 的子類。將其作為常規 PyTorch 模組使用,並參考 PyTorch 文件中與通用用法和行為相關的所有事項。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None ) transformers.modeling_outputs.SequenceClassifierOutputWithPasttuple(torch.FloatTensor)

引數

  • input_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 詞彙表中輸入序列 token 的索引。預設情況下會忽略填充。

    可以使用 AutoTokenizer 獲取索引。有關詳情,請參見 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (torch.Tensor,形狀為 (batch_size, sequence_length)可選) — 用於避免在填充 token 索引上執行注意力的掩碼。掩碼值選擇在 [0, 1] 之間:

    • 1 表示未被掩蓋的 token,
    • 0 表示被掩蓋的 token。

    什麼是注意力掩碼?

  • position_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 每個輸入序列 token 在位置嵌入中的位置索引。選擇範圍為 [0, config.n_positions - 1]

    什麼是位置 ID?

  • past_key_values (~cache_utils.Cache, 可選) — 預先計算的隱藏狀態(自注意力塊和交叉注意力塊中的鍵和值),可用於加速順序解碼。這通常包括模型在解碼上一階段返回的 past_key_values,當 use_cache=Trueconfig.use_cache=True 時。

    允許兩種格式:

    • Cache 例項,詳見我們的 kv cache 指南
    • 長度為 config.n_layerstuple(torch.FloatTensor) 元組,每個元組包含兩個形狀為 (batch_size, num_heads, sequence_length, embed_size_per_head) 的張量)。這也被稱為傳統快取格式。

    模型將輸出與輸入相同的快取格式。如果沒有傳入 past_key_values,將返回傳統快取格式。

    如果使用了 past_key_values,使用者可以選擇只輸入形狀為 (batch_size, 1) 的最後一個 input_ids(那些沒有將其過去的鍵值狀態提供給此模型的),而不是所有形狀為 (batch_size, sequence_length)input_ids

  • inputs_embeds (torch.FloatTensor,形狀為 (batch_size, sequence_length, hidden_size)可選) — 可選地,你可以直接傳入嵌入表示,而不是傳入 input_ids。如果你想對如何將 input_ids 索引轉換為關聯向量有更多的控制,而不是使用模型內部的嵌入查詢矩陣,這將非常有用。
  • labels (torch.LongTensor,形狀為 (batch_size,)可選) — 用於計算序列分類/迴歸損失的標籤。索引應在 [0, ..., config.num_labels - 1] 之間。如果 config.num_labels == 1,則計算迴歸損失(均方損失);如果 config.num_labels > 1,則計算分類損失(交叉熵損失)。
  • use_cache (bool, 可選) — 如果設定為 True,將返回 past_key_values 鍵值狀態,可用於加速解碼(參見 past_key_values)。
  • output_attentions (bool, 可選) — 是否返回所有注意力層的注意力張量。更多詳情請參閱返回張量中的 attentions
  • output_hidden_states (bool, 可選) — 是否返回所有層的隱藏狀態。更多詳情請參閱返回張量中的 hidden_states

返回

transformers.modeling_outputs.SequenceClassifierOutputWithPasttuple(torch.FloatTensor)

一個 transformers.modeling_outputs.SequenceClassifierOutputWithPasttorch.FloatTensor 的元組(如果傳入 return_dict=False 或當 config.return_dict=False 時),根據配置(SmolLM3Config)和輸入包含各種元素。

  • loss (形狀為 (1,)torch.FloatTensor可選,當提供 labels 時返回) — 分類損失(如果 config.num_labels==1,則為迴歸損失)。

  • logits (形狀為 (batch_size, config.num_labels)torch.FloatTensor) — 分類(如果 config.num_labels==1,則為迴歸)分數(SoftMax 之前)。

  • past_key_values (Cache, 可選, 當傳入 use_cache=True 或當 config.use_cache=True 時返回) — 這是一個 Cache 例項。更多詳情請參閱我們的 kv cache 指南

    包含預計算的隱藏狀態(自注意力塊中的鍵和值),可用於(參見 past_key_values 輸入)加速順序解碼。

  • hidden_states (tuple(torch.FloatTensor), 可選, 當傳入 output_hidden_states=True 或當 config.output_hidden_states=True 時返回) — torch.FloatTensor 的元組(一個用於嵌入層的輸出,如果模型有嵌入層,+ 每個層的輸出一個),形狀為 (batch_size, sequence_length, hidden_size)

    模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。

  • attentions (tuple(torch.FloatTensor), 可選, 當傳入 output_attentions=True 或當 config.output_attentions=True 時返回) — torch.FloatTensor 的元組(每層一個),形狀為 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

SmolLM3ForSequenceClassification 的前向方法,覆蓋了 __call__ 特殊方法。

儘管前向傳播的實現需要在該函式中定義,但之後應該呼叫 Module 例項,而不是直接呼叫此函式,因為前者負責執行預處理和後處理步驟,而後者則默默地忽略它們。

單標籤分類示例

>>> import torch
>>> from transformers import AutoTokenizer, SmolLM3ForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM3-3B")
>>> model = SmolLM3ForSequenceClassification.from_pretrained("HuggingFaceTB/SmolLM3-3B")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_id = logits.argmax().item()
>>> model.config.id2label[predicted_class_id]
...

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = SmolLM3ForSequenceClassification.from_pretrained("HuggingFaceTB/SmolLM3-3B", num_labels=num_labels)

>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...

多標籤分類示例

>>> import torch
>>> from transformers import AutoTokenizer, SmolLM3ForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM3-3B")
>>> model = SmolLM3ForSequenceClassification.from_pretrained("HuggingFaceTB/SmolLM3-3B", problem_type="multi_label_classification")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = SmolLM3ForSequenceClassification.from_pretrained(
...     "HuggingFaceTB/SmolLM3-3B", num_labels=num_labels, problem_type="multi_label_classification"
... )

>>> labels = torch.sum(
...     torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss

SmolLM3ForTokenClassification

class transformers.SmolLM3ForTokenClassification

< >

( config )

引數

  • config (SmolLM3ForTokenClassification) — 包含模型所有引數的模型配置類。使用配置檔案初始化並不會載入與模型相關的權重,僅載入配置。請檢視 from_pretrained() 方法來載入模型權重。

Smollm3 Transformer,頂部帶有一個 token 分類頭(在隱藏狀態輸出頂部的一個線性層),例如用於命名實體識別(NER)任務。

此模型繼承自 PreTrainedModel。請檢視超類文件,瞭解庫為所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭部等)。

此模型也是 PyTorch torch.nn.Module 的子類。將其作為常規 PyTorch 模組使用,並參考 PyTorch 文件中與通用用法和行為相關的所有事項。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None ) transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

引數

  • input_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 詞彙表中輸入序列 token 的索引。預設情況下會忽略填充。

    可以使用 AutoTokenizer 獲取索引。有關詳情,請參見 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (torch.Tensor,形狀為 (batch_size, sequence_length)可選) — 用於避免在填充 token 索引上執行注意力的掩碼。掩碼值選擇在 [0, 1] 之間:

    • 1 表示未被掩蓋的 token,
    • 0 表示被掩蓋的 token。

    什麼是注意力掩碼?

  • position_ids (torch.LongTensor 形狀為 (batch_size, sequence_length)可選) — 每個輸入序列的詞元在位置嵌入中的位置索引。選擇範圍為 [0, config.n_positions - 1]

    什麼是位置ID?

  • past_key_values (~cache_utils.Cache可選) — 預先計算的隱藏狀態(自注意力塊和交叉注意力塊中的鍵和值),可用於加速順序解碼。這通常包括模型在解碼上一階段返回的 past_key_values,當 use_cache=Trueconfig.use_cache=True 時。

    允許兩種格式:

    • 一個 Cache 例項,請參閱我們的 kv cache 指南
    • 一個長度為 config.n_layerstuple(torch.FloatTensor) 元組,每個元組包含 2 個形狀為 (batch_size, num_heads, sequence_length, embed_size_per_head) 的張量)。這也被稱為傳統快取格式。

    模型將輸出與輸入相同的快取格式。如果沒有傳入 past_key_values,將返回傳統快取格式。

    如果使用 past_key_values,使用者可以選擇只輸入形狀為 (batch_size, 1) 的最後一個 input_ids(那些沒有將其過去鍵值狀態提供給此模型的輸入),而不是形狀為 (batch_size, sequence_length) 的所有 input_ids

  • inputs_embeds (torch.FloatTensor 形狀為 (batch_size, sequence_length, hidden_size)可選) — 另外,除了傳入 input_ids,你也可以選擇直接傳入嵌入表示。如果你想更精細地控制如何將 input_ids 索引轉換為相關向量,而不是模型內部的嵌入查詢矩陣,這會很有用。
  • labels (torch.LongTensor 形狀為 (batch_size,)可選) — 用於計算序列分類/迴歸損失的標籤。索引應在 [0, ..., config.num_labels - 1] 範圍內。如果 config.num_labels == 1,則計算迴歸損失(均方損失),如果 config.num_labels > 1,則計算分類損失(交叉熵)。
  • use_cache (bool, 可選) — 如果設定為 True,則返回 past_key_values 鍵值狀態,可用於加速解碼(參見 past_key_values)。
  • output_attentions (bool, 可選) — 是否返回所有注意力層的注意力張量。更多詳情請參閱返回張量中的 attentions
  • output_hidden_states (bool, 可選) — 是否返回所有層的隱藏狀態。更多詳情請參閱返回張量中的 hidden_states

返回

transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

一個 transformers.modeling_outputs.TokenClassifierOutput 或一個 torch.FloatTensor 元組(如果傳入 return_dict=Falseconfig.return_dict=False),包含根據配置(SmolLM3Config)和輸入的不同元素。

  • loss (形狀為 (1,)torch.FloatTensor可選,當提供 labels 時返回) — 分類損失。

  • logits (形狀為 (batch_size, sequence_length, config.num_labels)torch.FloatTensor) — 分類分數(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor), 可選, 當傳入 output_hidden_states=True 或當 config.output_hidden_states=True 時返回) — torch.FloatTensor 的元組(一個用於嵌入層的輸出,如果模型有嵌入層,+ 每個層的輸出一個),形狀為 (batch_size, sequence_length, hidden_size)

    模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。

  • attentions (tuple(torch.FloatTensor), 可選, 當傳入 output_attentions=True 或當 config.output_attentions=True 時返回) — torch.FloatTensor 的元組(每層一個),形狀為 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

SmolLM3ForTokenClassification 的 forward 方法,重寫了 __call__ 特殊方法。

儘管前向傳播的實現需要在該函式中定義,但之後應該呼叫 Module 例項,而不是直接呼叫此函式,因為前者負責執行預處理和後處理步驟,而後者則默默地忽略它們。

示例

>>> from transformers import AutoTokenizer, SmolLM3ForTokenClassification
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM3-3B")
>>> model = SmolLM3ForTokenClassification.from_pretrained("HuggingFaceTB/SmolLM3-3B")

>>> inputs = tokenizer(
...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_token_class_ids = logits.argmax(-1)

>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> predicted_tokens_classes
...

>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...

SmolLM3ForQuestionAnswering

class transformers.SmolLM3ForQuestionAnswering

< >

( config )

引數

  • config (SmolLM3ForQuestionAnswering) — 包含模型所有引數的模型配置類。使用配置檔案初始化不會載入與模型相關的權重,只加載配置。請檢視 from_pretrained() 方法來載入模型權重。

Smollm3 轉換器,頂部帶有一個 span 分類頭,用於像 SQuAD 這樣的抽取式問答任務(在隱藏狀態輸出之上有一個線性層來計算 span start logitsspan end logits)。

此模型繼承自 PreTrainedModel。請檢視超類文件,瞭解庫為所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭部等)。

此模型也是 PyTorch torch.nn.Module 的子類。將其作為常規 PyTorch 模組使用,並參考 PyTorch 文件中與通用用法和行為相關的所有事項。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None start_positions: typing.Optional[torch.LongTensor] = None end_positions: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None **kwargs ) transformers.modeling_outputs.QuestionAnsweringModelOutputtuple(torch.FloatTensor)

引數

  • input_ids (torch.LongTensor 形狀為 (batch_size, sequence_length)可選) — 輸入序列詞元在詞彙表中的索引。預設情況下將忽略填充。

    索引可以使用 AutoTokenizer 獲取。詳情請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入ID?

  • attention_mask (torch.Tensor 形狀為 (batch_size, sequence_length)可選) — 掩碼,用於避免對填充詞元索引執行注意力。掩碼值選擇範圍為 [0, 1]

    • 1 表示未被掩碼的詞元,
    • 0 表示被掩碼的詞元。

    什麼是注意力掩碼?

  • position_ids (torch.LongTensor 形狀為 (batch_size, sequence_length)可選) — 每個輸入序列的詞元在位置嵌入中的位置索引。選擇範圍為 [0, config.n_positions - 1]

    什麼是位置ID?

  • past_key_values (~cache_utils.Cache可選) — 預先計算的隱藏狀態(自注意力塊和交叉注意力塊中的鍵和值),可用於加速順序解碼。這通常包括模型在解碼上一階段返回的 past_key_values,當 use_cache=Trueconfig.use_cache=True 時。

    允許兩種格式:

    • 一個 Cache 例項,請參閱我們的 kv cache 指南
    • 一個長度為 config.n_layerstuple(torch.FloatTensor) 元組,每個元組包含 2 個形狀為 (batch_size, num_heads, sequence_length, embed_size_per_head) 的張量)。這也被稱為傳統快取格式。

    模型將輸出與輸入相同的快取格式。如果沒有傳入 past_key_values,將返回傳統快取格式。

    如果使用 past_key_values,使用者可以選擇只輸入形狀為 (batch_size, 1) 的最後一個 input_ids(那些沒有將其過去鍵值狀態提供給此模型的輸入),而不是形狀為 (batch_size, sequence_length) 的所有 input_ids

  • inputs_embeds (torch.FloatTensor 形狀為 (batch_size, sequence_length, hidden_size)可選) — 另外,除了傳入 input_ids,你也可以選擇直接傳入嵌入表示。如果你想更精細地控制如何將 input_ids 索引轉換為相關向量,而不是模型內部的嵌入查詢矩陣,這會很有用。
  • start_positions (torch.LongTensor 形狀為 (batch_size,)可選) — 用於計算詞元分類損失的標記範圍起始位置(索引)的標籤。位置被限制在序列長度(sequence_length)內。序列外的位置不計入損失計算。
  • end_positions (torch.LongTensor 形狀為 (batch_size,)可選) — 用於計算詞元分類損失的標記範圍結束位置(索引)的標籤。位置被限制在序列長度(sequence_length)內。序列外的位置不計入損失計算。
  • output_attentions (bool, 可選) — 是否返回所有注意力層的注意力張量。更多詳情請參閱返回張量中的 attentions
  • output_hidden_states (bool, 可選) — 是否返回所有層的隱藏狀態。更多詳情請參閱返回張量中的 hidden_states

返回

transformers.modeling_outputs.QuestionAnsweringModelOutputtuple(torch.FloatTensor)

一個 transformers.modeling_outputs.QuestionAnsweringModelOutput 或一個 torch.FloatTensor 元組(如果傳入 return_dict=Falseconfig.return_dict=False),包含根據配置(SmolLM3Config)和輸入的不同元素。

  • loss (torch.FloatTensor of shape (1,), 可選, 當提供 labels 時返回) — 總範圍提取損失是起始位置和結束位置的交叉熵之和。

  • start_logits (torch.FloatTensor of shape (batch_size, sequence_length)) — 範圍起始分數(SoftMax 之前)。

  • end_logits (torch.FloatTensor of shape (batch_size, sequence_length)) — 範圍結束分數(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor), 可選, 當傳入 output_hidden_states=True 或當 config.output_hidden_states=True 時返回) — torch.FloatTensor 的元組(一個用於嵌入層的輸出,如果模型有嵌入層,+ 每個層的輸出一個),形狀為 (batch_size, sequence_length, hidden_size)

    模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。

  • attentions (tuple(torch.FloatTensor), 可選, 當傳入 output_attentions=True 或當 config.output_attentions=True 時返回) — torch.FloatTensor 的元組(每層一個),形狀為 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

SmolLM3ForQuestionAnswering 的 forward 方法,重寫了 __call__ 特殊方法。

儘管前向傳播的實現需要在該函式中定義,但之後應該呼叫 Module 例項,而不是直接呼叫此函式,因為前者負責執行預處理和後處理步驟,而後者則默默地忽略它們。

示例

>>> from transformers import AutoTokenizer, SmolLM3ForQuestionAnswering
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM3-3B")
>>> model = SmolLM3ForQuestionAnswering.from_pretrained("HuggingFaceTB/SmolLM3-3B")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()

>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> tokenizer.decode(predict_answer_tokens, skip_special_tokens=True)
...

>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])

>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss
>>> round(loss.item(), 2)
...
< > 在 GitHub 上更新

© . This site is unofficial and not affiliated with Hugging Face, Inc.