Transformers 文件
SmolLM3
並獲得增強的文件體驗
開始使用
SmolLM3
SmolLM3 是一種完全開放的緊湊型語言模型,旨在高效部署的同時保持強大的效能。它採用帶有分組查詢注意力 (GQA) 的 Transformer 解碼器架構,以減少 kv 快取,並且沒有 RoPE,從而提高了長上下文任務的效能。它使用多階段訓練方法,在高質量的公共資料集上進行訓練,涵蓋網路、程式碼和數學領域。該模型是多語言的,支援非常大的上下文長度。指令變體針對推理和工具使用進行了最佳化。
點選右側邊欄中的 SmolLM3 模型,檢視更多將 SmolLM3 應用於不同語言任務的示例。
以下示例演示瞭如何使用 Pipeline、AutoModel 以及透過命令列使用指令調優模型生成文字。
import torch
from transformers import pipeline
pipe = pipeline(
task="text-generation",
model="HuggingFaceTB/SmolLM3-3B",
torch_dtype=torch.bfloat16,
device_map=0
)
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Tell me about yourself."},
]
outputs = pipe(messages, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"][-1]['content'])
量化透過以較低精度表示權重來減少大型模型的記憶體負擔。有關更多可用量化後端,請參閱量化概述。
以下示例使用 bitsandbytes 將權重量化為 4 位。
# pip install -U flash-attn --no-build-isolation
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
)
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM3-3B")
model = AutoModelForCausalLM.from_pretrained(
"HuggingFaceTB/SmolLM3-3B",
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config,
attn_implementation="flash_attention_2"
)
inputs = tokenizer("Gravity is the force", return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
注意事項
- 請確保您的 Transformers 庫版本是最新的。SmolLM3 需要 Transformers >=4.53.0 才能獲得全面支援。
SmolLM3Config
class transformers.SmolLM3Config
< 來源 >( vocab_size = 128256 hidden_size = 2048 intermediate_size = 11008 num_hidden_layers = 36 num_attention_heads = 16 num_key_value_heads = 4 hidden_act = 'silu' max_position_embeddings = 32768 initializer_range = 0.02 rms_norm_eps = 1e-06 use_cache = True pad_token_id = 128004 bos_token_id = 128000 eos_token_id = 128001 rope_theta = 2000000.0 rope_scaling = None use_sliding_window = False sliding_window = None no_rope_layers = None no_rope_layer_interval = 4 layer_types = None attention_bias = False attention_dropout = 0.0 **kwargs )
引數
- vocab_size (
int
, 可選, 預設為 128256) — SmolLM3 模型的詞彙量大小。定義了呼叫 SmolLM3Model 時可由inputs_ids
表示的不同 token 的數量。 - hidden_size (
int
, 可選, 預設為 2048) — 隱藏表示的維度。 - intermediate_size (
int
, 可選, 預設為 11008) — MLP 表示的維度。 - num_hidden_layers (
int
, 可選, 預設為 36) — Transformer 編碼器中的隱藏層數量。 - num_attention_heads (
int
, 可選, 預設為 16) — Transformer 編碼器中每個注意力層的注意力頭數量。 - num_key_value_heads (
int
, 可選, 預設為 4) — 用於實現分組查詢注意力(Grouped Query Attention)的 key_value 頭數量。如果num_key_value_heads=num_attention_heads
,模型將使用多頭注意力(MHA);如果num_key_value_heads=1
,模型將使用多查詢注意力(MQA),否則使用 GQA。將多頭檢查點轉換為 GQA 檢查點時,每個分組的 key 和 value 頭應透過對其分組中的所有原始頭進行均值池化來構建。有關更多詳細資訊,請參閱 這篇論文。如果未指定,預設為16
。 - hidden_act (
str
或function
, 可選, 預設為"silu"
) — 解碼器中的非線性啟用函式(函式或字串)。 - max_position_embeddings (
int
, 可選, 預設為 32768) — 此模型可能使用的最大序列長度。 - initializer_range (
float
, 可選, 預設為 0.02) — 用於初始化所有權重矩陣的 truncated_normal_initializer 的標準差。 - rms_norm_eps (
float
, 可選, 預設為 1e-06) — RMS 歸一化層使用的 epsilon 值。 - use_cache (
bool
, 可選, 預設為True
) — 模型是否應返回最後一個 key/values 注意力(並非所有模型都使用)。僅當config.is_decoder=True
時相關。 - pad_token_id (
int
, 可選, 預設為 128004) — 填充 token 的 id。 - bos_token_id (
int
, 可選, 預設為 128000) — 句子起始 token 的 id。 - eos_token_id (
int
, 可選, 預設為 128001) — 句子結束 token 的 id。 - rope_theta (
float
, 可選, 預設為 2000000.0) — RoPE 嵌入的基本週期。 - rope_scaling (
Dict
, 可選) — 包含 RoPE 嵌入縮放配置的字典。注意:如果您應用新的 RoPE 型別並期望模型在更長的max_position_embeddings
上工作,我們建議您相應地更新此值。預期內容:rope_type
(str
): 要使用的 RoPE 子變體。可以是 ['default', 'linear', 'dynamic', 'yarn', 'longrope', 'llama3'] 之一,其中 'default' 是原始 RoPE 實現。factor
(float
, 可選): 除 'default' 外的所有 RoPE 型別均使用。應用於 RoPE 嵌入的縮放因子。在大多數縮放型別中,因子 x 將使模型能夠處理長度為 x * 原始最大預訓練長度的序列。original_max_position_embeddings
(int
, 可選): 與 'dynamic'、'longrope' 和 'llama3' 一起使用。預訓練期間使用的原始最大位置嵌入。attention_factor
(float
, 可選): 與 'yarn' 和 'longrope' 一起使用。應用於注意力計算的縮放因子。如果未指定,預設為實現推薦的值,使用factor
欄位推斷建議值。beta_fast
(float
, 可選): 僅與 'yarn' 一起使用。線上性斜坡函式中設定外推(僅)邊界的引數。如果未指定,預設為 32。beta_slow
(float
, 可選): 僅與 'yarn' 一起使用。線上性斜坡函式中設定插值(僅)邊界的引數。如果未指定,預設為 1。short_factor
(List[float]
, 可選): 僅與 'longrope' 一起使用。應用於短上下文(<original_max_position_embeddings
)的縮放因子。必須是長度與隱藏大小除以注意力頭數再除以 2 相同的數字列表。long_factor
(List[float]
, 可選): 僅與 'longrope' 一起使用。應用於長上下文(<original_max_position_embeddings
)的縮放因子。必須是長度與隱藏大小除以注意力頭數再除以 2 相同的數字列表。low_freq_factor
(float
, 可選): 僅與 'llama3' 一起使用。應用於 RoPE 低頻分量的縮放因子。high_freq_factor
(float
, 可選): 僅與 'llama3' 一起使用。應用於 RoPE 高頻分量的縮放因子。 - use_sliding_window (
bool
, 可選, 預設為False
) — 是否使用滑動視窗注意力。 - sliding_window (
int
, 可選) — 滑動視窗注意力 (SWA) 的視窗大小。如果未指定,預設為None
。 - no_rope_layers (
List[int]
, 可選) — 列表,長度至少與模型層數相同。索引位置上的1
表示對應層將使用 RoPE,而0
表示它是 NoPE 層。 - no_rope_layer_interval (
int
, 可選, 預設為 4) — 如果no_rope_layers
為None
,則將每no_rope_layer_interval
層建立一個 NoPE 層。 - layer_types (
list
, 可選) — 每層的注意力模式。根據滑動視窗和 NoPE 設定自動計算。 - attention_bias (
bool
, 可選, 預設為False
) — 在自注意力期間,是否在查詢、鍵、值和輸出投影層中使用偏置。 - attention_dropout (
float
, 可選, 預設為 0.0) — 注意力機率的 dropout 比率。
這是一個配置類,用於儲存 SmolLM3Model 的配置。它用於根據指定的引數例項化 SmolLM3 模型,定義模型架構。使用預設值例項化配置將生成與 SmolLM3 3B 類似的配置。例如 HuggingFaceTB/SmolLM3-3B
配置物件繼承自 PretrainedConfig,可用於控制模型輸出。有關更多資訊,請參閱 PretrainedConfig 的文件。
>>> from transformers import SmolLM3Model, SmolLM3Config
>>> # Initializing a SmolLM3 style configuration
>>> configuration = SmolLM3Config()
>>> # Initializing a model from the SmolLM3 style configuration
>>> model = SmolLM3Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
SmolLM3Model
class transformers.SmolLM3Model
< 來源 >( config: SmolLM3Config )
引數
- config (SmolLM3Config) — 包含模型所有引數的模型配置類。用配置檔案初始化並不會載入與模型相關的權重,只加載配置。要載入模型權重,請檢視 from_pretrained() 方法。
裸 SmolLM3 模型,輸出原始隱藏狀態,頂部沒有任何特定頭部。
此模型繼承自 PreTrainedModel。請檢視超類文件,瞭解庫為所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭部等)。
此模型也是 PyTorch torch.nn.Module 的子類。將其作為常規 PyTorch 模組使用,並參考 PyTorch 文件中與通用用法和行為相關的所有事項。
forward
< 來源 >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None **flash_attn_kwargs: typing_extensions.Unpack[transformers.modeling_flash_attention_utils.FlashAttentionKwargs] ) → transformers.modeling_outputs.BaseModelOutputWithPast 或 tuple(torch.FloatTensor)
引數
- input_ids (
torch.LongTensor
, 形狀為(batch_size, sequence_length)
, 可選) — 詞彙表中輸入序列 token 的索引。預設情況下會忽略填充。可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參見 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
, 形狀為(batch_size, sequence_length)
, 可選) — 用於避免對填充 token 索引執行注意力的掩碼。掩碼值選擇在[0, 1]
中:- 1 表示**未被掩碼**的 token,
- 0 表示**被掩碼**的 token。
- position_ids (
torch.LongTensor
, 形狀為(batch_size, sequence_length)
, 可選) — 每個輸入序列 token 在位置嵌入中的位置索引。選擇範圍為[0, config.n_positions - 1]
。 - past_key_values (
~cache_utils.Cache
, 可選) — 預先計算的隱藏狀態(自注意力塊和交叉注意力塊中的鍵和值),可用於加速順序解碼。這通常包括模型在解碼上一階段返回的past_key_values
,當use_cache=True
或config.use_cache=True
時。允許兩種格式:
- Cache 例項,詳見我們的 kv cache 指南;
- 長度為
config.n_layers
的tuple(torch.FloatTensor)
元組,每個元組包含兩個形狀為(batch_size, num_heads, sequence_length, embed_size_per_head)
的張量)。這也被稱為傳統快取格式。
模型將輸出與輸入相同的快取格式。如果沒有傳入
past_key_values
,將返回傳統快取格式。如果使用了
past_key_values
,使用者可以選擇只輸入形狀為(batch_size, 1)
的最後一個input_ids
(那些沒有將其過去的鍵值狀態提供給此模型的),而不是所有形狀為(batch_size, sequence_length)
的input_ids
。 - inputs_embeds (
torch.FloatTensor
,形狀為(batch_size, sequence_length, hidden_size)
,可選) — 可選地,你可以直接傳入嵌入表示,而不是傳入input_ids
。如果你想對如何將input_ids
索引轉換為關聯向量有更多的控制,而不是使用模型內部的嵌入查詢矩陣,這將非常有用。 - use_cache (
bool
, 可選) — 如果設定為True
,將返回past_key_values
鍵值狀態,可用於加速解碼(參見past_key_values
)。 - output_attentions (
bool
, 可選) — 是否返回所有注意力層的注意力張量。更多詳情請參閱返回張量中的attentions
。 - output_hidden_states (
bool
, 可選) — 是否返回所有層的隱藏狀態。更多詳情請參閱返回張量中的hidden_states
。 - cache_position (
torch.LongTensor
,形狀為(sequence_length)
,可選) — 序列中輸入序列 token 位置的索引。與position_ids
不同,此張量不受填充影響。它用於在正確位置更新快取並推斷完整的序列長度。
返回
transformers.modeling_outputs.BaseModelOutputWithPast 或 tuple(torch.FloatTensor)
一個 transformers.modeling_outputs.BaseModelOutputWithPast 或 torch.FloatTensor
的元組(如果傳入 return_dict=False
或當 config.return_dict=False
時),根據配置(SmolLM3Config)和輸入包含各種元素。
-
last_hidden_state (
torch.FloatTensor
, 形狀為(batch_size, sequence_length, hidden_size)
) — 模型最後一層輸出的隱藏狀態序列。如果使用了
past_key_values
,則只輸出形狀為(batch_size, 1, hidden_size)
的序列的最後一個隱藏狀態。 -
past_key_values (
Cache
, 可選, 當傳入use_cache=True
或當config.use_cache=True
時返回) — 這是一個 Cache 例項。更多詳情請參閱我們的 kv cache 指南。包含預先計算的隱藏狀態(自注意力塊中的鍵和值,以及如果
config.is_encoder_decoder=True
則可選地包含交叉注意力塊中的鍵和值),可用於(參見past_key_values
輸入)加速順序解碼。 -
hidden_states (
tuple(torch.FloatTensor)
, 可選, 當傳入output_hidden_states=True
或當config.output_hidden_states=True
時返回) —torch.FloatTensor
的元組(一個用於嵌入層的輸出,如果模型有嵌入層,+ 每個層的輸出一個),形狀為(batch_size, sequence_length, hidden_size)
。模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。
-
attentions (
tuple(torch.FloatTensor)
, 可選, 當傳入output_attentions=True
或當config.output_attentions=True
時返回) —torch.FloatTensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
SmolLM3Model 的前向方法,覆蓋了 __call__
特殊方法。
儘管前向傳播的實現需要在該函式中定義,但之後應該呼叫 Module
例項,而不是直接呼叫此函式,因為前者負責執行預處理和後處理步驟,而後者則默默地忽略它們。
SmolLM3ForCausalLM
class transformers.SmolLM3ForCausalLM
< source >( config )
引數
- config (SmolLM3ForCausalLM) — 包含模型所有引數的模型配置類。使用配置檔案初始化並不會載入與模型相關的權重,僅載入配置。請檢視 from_pretrained() 方法來載入模型權重。
用於因果語言建模的 Smollm3 模型。
此模型繼承自 PreTrainedModel。請檢視超類文件,瞭解庫為所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭部等)。
此模型也是 PyTorch torch.nn.Module 的子類。將其作為常規 PyTorch 模組使用,並參考 PyTorch 文件中與通用用法和行為相關的所有事項。
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None logits_to_keep: typing.Union[int, torch.Tensor] = 0 **kwargs: typing_extensions.Unpack[transformers.models.smollm3.modeling_smollm3.KwargsForCausalLM] ) → transformers.modeling_outputs.CausalLMOutputWithPast 或 tuple(torch.FloatTensor)
引數
- input_ids (
torch.LongTensor
,形狀為(batch_size, sequence_length)
,可選) — 詞彙表中輸入序列 token 的索引。預設情況下會忽略填充。可以使用 AutoTokenizer 獲取索引。有關詳情,請參見 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形狀為(batch_size, sequence_length)
,可選) — 用於避免在填充 token 索引上執行注意力的掩碼。掩碼值選擇在[0, 1]
之間:- 1 表示未被掩蓋的 token,
- 0 表示被掩蓋的 token。
- position_ids (
torch.LongTensor
,形狀為(batch_size, sequence_length)
,可選) — 每個輸入序列 token 在位置嵌入中的位置索引。選擇範圍為[0, config.n_positions - 1]
。 - past_key_values (
~cache_utils.Cache
, 可選) — 預先計算的隱藏狀態(自注意力塊和交叉注意力塊中的鍵和值),可用於加速順序解碼。這通常包括模型在解碼上一階段返回的past_key_values
,當use_cache=True
或config.use_cache=True
時。允許兩種格式:
- Cache 例項,詳見我們的 kv cache 指南;
- 長度為
config.n_layers
的tuple(torch.FloatTensor)
元組,每個元組包含兩個形狀為(batch_size, num_heads, sequence_length, embed_size_per_head)
的張量)。這也被稱為傳統快取格式。
模型將輸出與輸入相同的快取格式。如果沒有傳入
past_key_values
,將返回傳統快取格式。如果使用了
past_key_values
,使用者可以選擇只輸入形狀為(batch_size, 1)
的最後一個input_ids
(那些沒有將其過去的鍵值狀態提供給此模型的),而不是所有形狀為(batch_size, sequence_length)
的input_ids
。 - inputs_embeds (
torch.FloatTensor
,形狀為(batch_size, sequence_length, hidden_size)
,可選) — 可選地,你可以直接傳入嵌入表示,而不是傳入input_ids
。如果你想對如何將input_ids
索引轉換為關聯向量有更多的控制,而不是使用模型內部的嵌入查詢矩陣,這將非常有用。 - labels (
torch.LongTensor
,形狀為(batch_size, sequence_length)
,可選) — 用於計算掩碼語言建模損失的標籤。索引應在[0, ..., config.vocab_size]
或 -100 之間(參見input_ids
文件字串)。索引設定為-100
的 token 將被忽略(掩碼),損失僅針對標籤在[0, ..., config.vocab_size]
中的 token 計算。 - use_cache (
bool
, 可選) — 如果設定為True
,將返回past_key_values
鍵值狀態,可用於加速解碼(參見past_key_values
)。 - output_attentions (
bool
, 可選) — 是否返回所有注意力層的注意力張量。更多詳情請參閱返回張量中的attentions
。 - output_hidden_states (
bool
, 可選) — 是否返回所有層的隱藏狀態。更多詳情請參閱返回張量中的hidden_states
。 - cache_position (
torch.LongTensor
,形狀為(sequence_length)
,可選) — 序列中輸入序列 token 位置的索引。與position_ids
不同,此張量不受填充影響。它用於在正確位置更新快取並推斷完整的序列長度。 - logits_to_keep (
Union[int, torch.Tensor]
, 預設為0
) — 如果是int
型別,則計算最後logits_to_keep
個 token 的 logits。如果為0
,則計算所有input_ids
的 logits(特殊情況)。生成時只需要最後一個 token 的 logits,只計算該 token 的 logits 可以節省記憶體,這對於長序列或大詞彙量來說非常重要。如果是torch.Tensor
型別,則必須是一維的,對應於要在序列長度維度中保留的索引。這在使用打包張量格式(批次和序列長度的單個維度)時很有用。
返回
transformers.modeling_outputs.CausalLMOutputWithPast 或 tuple(torch.FloatTensor)
一個 transformers.modeling_outputs.CausalLMOutputWithPast 或 torch.FloatTensor
的元組(如果傳入 return_dict=False
或當 config.return_dict=False
時),根據配置(SmolLM3Config)和輸入包含各種元素。
-
loss (
torch.FloatTensor
形狀為(1,)
,可選,當提供labels
時返回) — 語言建模損失(用於下一個 token 預測)。 -
logits (形狀為
(batch_size, sequence_length, config.vocab_size)
的torch.FloatTensor
) — 語言建模頭部的預測分數(SoftMax 之前的每個詞彙標記的分數)。 -
past_key_values (
Cache
, 可選, 當傳入use_cache=True
或當config.use_cache=True
時返回) — 這是一個 Cache 例項。更多詳情請參閱我們的 kv cache 指南。包含預計算的隱藏狀態(自注意力塊中的鍵和值),可用於(參見
past_key_values
輸入)加速順序解碼。 -
hidden_states (
tuple(torch.FloatTensor)
, 可選, 當傳入output_hidden_states=True
或當config.output_hidden_states=True
時返回) —torch.FloatTensor
的元組(一個用於嵌入層的輸出,如果模型有嵌入層,+ 每個層的輸出一個),形狀為(batch_size, sequence_length, hidden_size)
。模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。
-
attentions (
tuple(torch.FloatTensor)
, 可選, 當傳入output_attentions=True
或當config.output_attentions=True
時返回) —torch.FloatTensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
SmolLM3ForCausalLM 的前向方法,覆蓋了 __call__
特殊方法。
儘管前向傳播的實現需要在該函式中定義,但之後應該呼叫 Module
例項,而不是直接呼叫此函式,因為前者負責執行預處理和後處理步驟,而後者則默默地忽略它們。
示例
>>> from transformers import AutoTokenizer, SmolLM3ForCausalLM
>>> model = SmolLM3ForCausalLM.from_pretrained("meta-smollm3/SmolLM3-2-7b-hf")
>>> tokenizer = AutoTokenizer.from_pretrained("meta-smollm3/SmolLM3-2-7b-hf")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
SmolLM3ForSequenceClassification
class transformers.SmolLM3ForSequenceClassification
< source >( config )
引數
- config (SmolLM3ForSequenceClassification) — 包含模型所有引數的模型配置類。使用配置檔案初始化並不會載入與模型相關的權重,僅載入配置。請檢視 from_pretrained() 方法來載入模型權重。
SmolLM3 模型 Transformer,頂部帶有一個序列分類頭(線性層)。
SmolLM3ForSequenceClassification 使用最後一個 token 進行分類,與其他因果模型(如 GPT-2)相同。
由於它對最後一個 token 進行分類,因此需要知道最後一個 token 的位置。如果配置中定義了 pad_token_id
,它會在每一行中找到不是填充 token 的最後一個 token。如果沒有定義 pad_token_id
,它會簡單地取批處理中每一行的最後一個值。由於在傳入 inputs_embeds
而不是 input_ids
時無法猜測填充 token,它會執行相同的操作(取批處理中每一行的最後一個值)。
此模型繼承自 PreTrainedModel。請檢視超類文件,瞭解庫為所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭部等)。
此模型也是 PyTorch torch.nn.Module 的子類。將其作為常規 PyTorch 模組使用,並參考 PyTorch 文件中與通用用法和行為相關的所有事項。
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None ) → transformers.modeling_outputs.SequenceClassifierOutputWithPast
或 tuple(torch.FloatTensor)
引數
- input_ids (
torch.LongTensor
,形狀為(batch_size, sequence_length)
,可選) — 詞彙表中輸入序列 token 的索引。預設情況下會忽略填充。可以使用 AutoTokenizer 獲取索引。有關詳情,請參見 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形狀為(batch_size, sequence_length)
,可選) — 用於避免在填充 token 索引上執行注意力的掩碼。掩碼值選擇在[0, 1]
之間:- 1 表示未被掩蓋的 token,
- 0 表示被掩蓋的 token。
- position_ids (
torch.LongTensor
,形狀為(batch_size, sequence_length)
,可選) — 每個輸入序列 token 在位置嵌入中的位置索引。選擇範圍為[0, config.n_positions - 1]
。 - past_key_values (
~cache_utils.Cache
, 可選) — 預先計算的隱藏狀態(自注意力塊和交叉注意力塊中的鍵和值),可用於加速順序解碼。這通常包括模型在解碼上一階段返回的past_key_values
,當use_cache=True
或config.use_cache=True
時。允許兩種格式:
- Cache 例項,詳見我們的 kv cache 指南;
- 長度為
config.n_layers
的tuple(torch.FloatTensor)
元組,每個元組包含兩個形狀為(batch_size, num_heads, sequence_length, embed_size_per_head)
的張量)。這也被稱為傳統快取格式。
模型將輸出與輸入相同的快取格式。如果沒有傳入
past_key_values
,將返回傳統快取格式。如果使用了
past_key_values
,使用者可以選擇只輸入形狀為(batch_size, 1)
的最後一個input_ids
(那些沒有將其過去的鍵值狀態提供給此模型的),而不是所有形狀為(batch_size, sequence_length)
的input_ids
。 - inputs_embeds (
torch.FloatTensor
,形狀為(batch_size, sequence_length, hidden_size)
,可選) — 可選地,你可以直接傳入嵌入表示,而不是傳入input_ids
。如果你想對如何將input_ids
索引轉換為關聯向量有更多的控制,而不是使用模型內部的嵌入查詢矩陣,這將非常有用。 - labels (
torch.LongTensor
,形狀為(batch_size,)
,可選) — 用於計算序列分類/迴歸損失的標籤。索引應在[0, ..., config.num_labels - 1]
之間。如果config.num_labels == 1
,則計算迴歸損失(均方損失);如果config.num_labels > 1
,則計算分類損失(交叉熵損失)。 - use_cache (
bool
, 可選) — 如果設定為True
,將返回past_key_values
鍵值狀態,可用於加速解碼(參見past_key_values
)。 - output_attentions (
bool
, 可選) — 是否返回所有注意力層的注意力張量。更多詳情請參閱返回張量中的attentions
。 - output_hidden_states (
bool
, 可選) — 是否返回所有層的隱藏狀態。更多詳情請參閱返回張量中的hidden_states
。
返回
transformers.modeling_outputs.SequenceClassifierOutputWithPast
或 tuple(torch.FloatTensor)
一個 transformers.modeling_outputs.SequenceClassifierOutputWithPast
或 torch.FloatTensor
的元組(如果傳入 return_dict=False
或當 config.return_dict=False
時),根據配置(SmolLM3Config)和輸入包含各種元素。
-
loss (形狀為
(1,)
的torch.FloatTensor
,可選,當提供labels
時返回) — 分類損失(如果 config.num_labels==1,則為迴歸損失)。 -
logits (形狀為
(batch_size, config.num_labels)
的torch.FloatTensor
) — 分類(如果 config.num_labels==1,則為迴歸)分數(SoftMax 之前)。 -
past_key_values (
Cache
, 可選, 當傳入use_cache=True
或當config.use_cache=True
時返回) — 這是一個 Cache 例項。更多詳情請參閱我們的 kv cache 指南。包含預計算的隱藏狀態(自注意力塊中的鍵和值),可用於(參見
past_key_values
輸入)加速順序解碼。 -
hidden_states (
tuple(torch.FloatTensor)
, 可選, 當傳入output_hidden_states=True
或當config.output_hidden_states=True
時返回) —torch.FloatTensor
的元組(一個用於嵌入層的輸出,如果模型有嵌入層,+ 每個層的輸出一個),形狀為(batch_size, sequence_length, hidden_size)
。模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。
-
attentions (
tuple(torch.FloatTensor)
, 可選, 當傳入output_attentions=True
或當config.output_attentions=True
時返回) —torch.FloatTensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
SmolLM3ForSequenceClassification 的前向方法,覆蓋了 __call__
特殊方法。
儘管前向傳播的實現需要在該函式中定義,但之後應該呼叫 Module
例項,而不是直接呼叫此函式,因為前者負責執行預處理和後處理步驟,而後者則默默地忽略它們。
單標籤分類示例
>>> import torch
>>> from transformers import AutoTokenizer, SmolLM3ForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM3-3B")
>>> model = SmolLM3ForSequenceClassification.from_pretrained("HuggingFaceTB/SmolLM3-3B")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_id = logits.argmax().item()
>>> model.config.id2label[predicted_class_id]
...
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = SmolLM3ForSequenceClassification.from_pretrained("HuggingFaceTB/SmolLM3-3B", num_labels=num_labels)
>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...
多標籤分類示例
>>> import torch
>>> from transformers import AutoTokenizer, SmolLM3ForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM3-3B")
>>> model = SmolLM3ForSequenceClassification.from_pretrained("HuggingFaceTB/SmolLM3-3B", problem_type="multi_label_classification")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = SmolLM3ForSequenceClassification.from_pretrained(
... "HuggingFaceTB/SmolLM3-3B", num_labels=num_labels, problem_type="multi_label_classification"
... )
>>> labels = torch.sum(
... torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss
SmolLM3ForTokenClassification
class transformers.SmolLM3ForTokenClassification
< source >( config )
引數
- config (SmolLM3ForTokenClassification) — 包含模型所有引數的模型配置類。使用配置檔案初始化並不會載入與模型相關的權重,僅載入配置。請檢視 from_pretrained() 方法來載入模型權重。
Smollm3 Transformer,頂部帶有一個 token 分類頭(在隱藏狀態輸出頂部的一個線性層),例如用於命名實體識別(NER)任務。
此模型繼承自 PreTrainedModel。請檢視超類文件,瞭解庫為所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭部等)。
此模型也是 PyTorch torch.nn.Module 的子類。將其作為常規 PyTorch 模組使用,並參考 PyTorch 文件中與通用用法和行為相關的所有事項。
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None ) → transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
引數
- input_ids (
torch.LongTensor
,形狀為(batch_size, sequence_length)
,可選) — 詞彙表中輸入序列 token 的索引。預設情況下會忽略填充。可以使用 AutoTokenizer 獲取索引。有關詳情,請參見 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形狀為(batch_size, sequence_length)
,可選) — 用於避免在填充 token 索引上執行注意力的掩碼。掩碼值選擇在[0, 1]
之間:- 1 表示未被掩蓋的 token,
- 0 表示被掩蓋的 token。
- position_ids (
torch.LongTensor
形狀為(batch_size, sequence_length)
,可選) — 每個輸入序列的詞元在位置嵌入中的位置索引。選擇範圍為[0, config.n_positions - 1]
。 - past_key_values (
~cache_utils.Cache
,可選) — 預先計算的隱藏狀態(自注意力塊和交叉注意力塊中的鍵和值),可用於加速順序解碼。這通常包括模型在解碼上一階段返回的past_key_values
,當use_cache=True
或config.use_cache=True
時。允許兩種格式:
- 一個 Cache 例項,請參閱我們的 kv cache 指南;
- 一個長度為
config.n_layers
的tuple(torch.FloatTensor)
元組,每個元組包含 2 個形狀為(batch_size, num_heads, sequence_length, embed_size_per_head)
的張量)。這也被稱為傳統快取格式。
模型將輸出與輸入相同的快取格式。如果沒有傳入
past_key_values
,將返回傳統快取格式。如果使用
past_key_values
,使用者可以選擇只輸入形狀為(batch_size, 1)
的最後一個input_ids
(那些沒有將其過去鍵值狀態提供給此模型的輸入),而不是形狀為(batch_size, sequence_length)
的所有input_ids
。 - inputs_embeds (
torch.FloatTensor
形狀為(batch_size, sequence_length, hidden_size)
,可選) — 另外,除了傳入input_ids
,你也可以選擇直接傳入嵌入表示。如果你想更精細地控制如何將input_ids
索引轉換為相關向量,而不是模型內部的嵌入查詢矩陣,這會很有用。 - labels (
torch.LongTensor
形狀為(batch_size,)
,可選) — 用於計算序列分類/迴歸損失的標籤。索引應在[0, ..., config.num_labels - 1]
範圍內。如果config.num_labels == 1
,則計算迴歸損失(均方損失),如果config.num_labels > 1
,則計算分類損失(交叉熵)。 - use_cache (
bool
, 可選) — 如果設定為True
,則返回past_key_values
鍵值狀態,可用於加速解碼(參見past_key_values
)。 - output_attentions (
bool
, 可選) — 是否返回所有注意力層的注意力張量。更多詳情請參閱返回張量中的attentions
。 - output_hidden_states (
bool
, 可選) — 是否返回所有層的隱藏狀態。更多詳情請參閱返回張量中的hidden_states
。
返回
transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
一個 transformers.modeling_outputs.TokenClassifierOutput 或一個 torch.FloatTensor
元組(如果傳入 return_dict=False
或 config.return_dict=False
),包含根據配置(SmolLM3Config)和輸入的不同元素。
-
loss (形狀為
(1,)
的torch.FloatTensor
,可選,當提供labels
時返回) — 分類損失。 -
logits (形狀為
(batch_size, sequence_length, config.num_labels)
的torch.FloatTensor
) — 分類分數(SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
, 可選, 當傳入output_hidden_states=True
或當config.output_hidden_states=True
時返回) —torch.FloatTensor
的元組(一個用於嵌入層的輸出,如果模型有嵌入層,+ 每個層的輸出一個),形狀為(batch_size, sequence_length, hidden_size)
。模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。
-
attentions (
tuple(torch.FloatTensor)
, 可選, 當傳入output_attentions=True
或當config.output_attentions=True
時返回) —torch.FloatTensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
SmolLM3ForTokenClassification 的 forward 方法,重寫了 __call__
特殊方法。
儘管前向傳播的實現需要在該函式中定義,但之後應該呼叫 Module
例項,而不是直接呼叫此函式,因為前者負責執行預處理和後處理步驟,而後者則默默地忽略它們。
示例
>>> from transformers import AutoTokenizer, SmolLM3ForTokenClassification
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM3-3B")
>>> model = SmolLM3ForTokenClassification.from_pretrained("HuggingFaceTB/SmolLM3-3B")
>>> inputs = tokenizer(
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_token_class_ids = logits.argmax(-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> predicted_tokens_classes
...
>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...
SmolLM3ForQuestionAnswering
class transformers.SmolLM3ForQuestionAnswering
< source >( config )
引數
- config (SmolLM3ForQuestionAnswering) — 包含模型所有引數的模型配置類。使用配置檔案初始化不會載入與模型相關的權重,只加載配置。請檢視 from_pretrained() 方法來載入模型權重。
Smollm3 轉換器,頂部帶有一個 span 分類頭,用於像 SQuAD 這樣的抽取式問答任務(在隱藏狀態輸出之上有一個線性層來計算 span start logits
和 span end logits
)。
此模型繼承自 PreTrainedModel。請檢視超類文件,瞭解庫為所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭部等)。
此模型也是 PyTorch torch.nn.Module 的子類。將其作為常規 PyTorch 模組使用,並參考 PyTorch 文件中與通用用法和行為相關的所有事項。
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None start_positions: typing.Optional[torch.LongTensor] = None end_positions: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None **kwargs ) → transformers.modeling_outputs.QuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)
引數
- input_ids (
torch.LongTensor
形狀為(batch_size, sequence_length)
,可選) — 輸入序列詞元在詞彙表中的索引。預設情況下將忽略填充。索引可以使用 AutoTokenizer 獲取。詳情請參閱 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
形狀為(batch_size, sequence_length)
,可選) — 掩碼,用於避免對填充詞元索引執行注意力。掩碼值選擇範圍為[0, 1]
:- 1 表示未被掩碼的詞元,
- 0 表示被掩碼的詞元。
- position_ids (
torch.LongTensor
形狀為(batch_size, sequence_length)
,可選) — 每個輸入序列的詞元在位置嵌入中的位置索引。選擇範圍為[0, config.n_positions - 1]
。 - past_key_values (
~cache_utils.Cache
,可選) — 預先計算的隱藏狀態(自注意力塊和交叉注意力塊中的鍵和值),可用於加速順序解碼。這通常包括模型在解碼上一階段返回的past_key_values
,當use_cache=True
或config.use_cache=True
時。允許兩種格式:
- 一個 Cache 例項,請參閱我們的 kv cache 指南;
- 一個長度為
config.n_layers
的tuple(torch.FloatTensor)
元組,每個元組包含 2 個形狀為(batch_size, num_heads, sequence_length, embed_size_per_head)
的張量)。這也被稱為傳統快取格式。
模型將輸出與輸入相同的快取格式。如果沒有傳入
past_key_values
,將返回傳統快取格式。如果使用
past_key_values
,使用者可以選擇只輸入形狀為(batch_size, 1)
的最後一個input_ids
(那些沒有將其過去鍵值狀態提供給此模型的輸入),而不是形狀為(batch_size, sequence_length)
的所有input_ids
。 - inputs_embeds (
torch.FloatTensor
形狀為(batch_size, sequence_length, hidden_size)
,可選) — 另外,除了傳入input_ids
,你也可以選擇直接傳入嵌入表示。如果你想更精細地控制如何將input_ids
索引轉換為相關向量,而不是模型內部的嵌入查詢矩陣,這會很有用。 - start_positions (
torch.LongTensor
形狀為(batch_size,)
,可選) — 用於計算詞元分類損失的標記範圍起始位置(索引)的標籤。位置被限制在序列長度(sequence_length
)內。序列外的位置不計入損失計算。 - end_positions (
torch.LongTensor
形狀為(batch_size,)
,可選) — 用於計算詞元分類損失的標記範圍結束位置(索引)的標籤。位置被限制在序列長度(sequence_length
)內。序列外的位置不計入損失計算。 - output_attentions (
bool
, 可選) — 是否返回所有注意力層的注意力張量。更多詳情請參閱返回張量中的attentions
。 - output_hidden_states (
bool
, 可選) — 是否返回所有層的隱藏狀態。更多詳情請參閱返回張量中的hidden_states
。
返回
transformers.modeling_outputs.QuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)
一個 transformers.modeling_outputs.QuestionAnsweringModelOutput 或一個 torch.FloatTensor
元組(如果傳入 return_dict=False
或 config.return_dict=False
),包含根據配置(SmolLM3Config)和輸入的不同元素。
-
loss (
torch.FloatTensor
of shape(1,)
, 可選, 當提供labels
時返回) — 總範圍提取損失是起始位置和結束位置的交叉熵之和。 -
start_logits (
torch.FloatTensor
of shape(batch_size, sequence_length)
) — 範圍起始分數(SoftMax 之前)。 -
end_logits (
torch.FloatTensor
of shape(batch_size, sequence_length)
) — 範圍結束分數(SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
, 可選, 當傳入output_hidden_states=True
或當config.output_hidden_states=True
時返回) —torch.FloatTensor
的元組(一個用於嵌入層的輸出,如果模型有嵌入層,+ 每個層的輸出一個),形狀為(batch_size, sequence_length, hidden_size)
。模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。
-
attentions (
tuple(torch.FloatTensor)
, 可選, 當傳入output_attentions=True
或當config.output_attentions=True
時返回) —torch.FloatTensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
SmolLM3ForQuestionAnswering 的 forward 方法,重寫了 __call__
特殊方法。
儘管前向傳播的實現需要在該函式中定義,但之後應該呼叫 Module
例項,而不是直接呼叫此函式,因為前者負責執行預處理和後處理步驟,而後者則默默地忽略它們。
示例
>>> from transformers import AutoTokenizer, SmolLM3ForQuestionAnswering
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM3-3B")
>>> model = SmolLM3ForQuestionAnswering.from_pretrained("HuggingFaceTB/SmolLM3-3B")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> tokenizer.decode(predict_answer_tokens, skip_special_tokens=True)
...
>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])
>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss
>>> round(loss.item(), 2)
...