擴散模型課程文件

製作一個類條件擴散模型

Hugging Face's logo
加入 Hugging Face 社群

並獲得增強的文件體驗

開始使用

Open In Colab

製作一個類條件擴散模型

在這個 notebook 中,我們將演示一種向擴散模型新增條件資訊的方法。具體來說,我們將在 MNIST 上訓練一個類條件擴散模型,這是繼單元 1 中的“從零開始”示例之後的內容。在推理時,我們可以指定希望模型生成哪個數字。

正如本單元介紹中提到的,這只是向擴散模型新增額外條件資訊的眾多方法之一,選擇這種方法是因為它相對簡單。就像單元 1 中的“從零開始”的 notebook 一樣,這個 notebook 主要用於演示目的,如果你願意,可以安全地跳過它。

設定和資料準備

>>> %pip install -q diffusers
     |████████████████████████████████| 503 kB 7.2 MB/s 
     |████████████████████████████████| 182 kB 51.3 MB/s 
[?25h
>>> import torch
>>> import torchvision
>>> from torch import nn
>>> from torch.nn import functional as F
>>> from torch.utils.data import DataLoader
>>> from diffusers import DDPMScheduler, UNet2DModel
>>> from matplotlib import pyplot as plt
>>> from tqdm.auto import tqdm

>>> device = "mps" if torch.backends.mps.is_available() else "cuda" if torch.cuda.is_available() else "cpu"
>>> print(f"Using device: {device}")
Using device: cuda
>>> # Load the dataset
>>> dataset = torchvision.datasets.MNIST(
...     root="mnist/", train=True, download=True, transform=torchvision.transforms.ToTensor()
... )

>>> # Feed it into a dataloader (batch size 8 here just for demo)
>>> train_dataloader = DataLoader(dataset, batch_size=8, shuffle=True)

>>> # View some examples
>>> x, y = next(iter(train_dataloader))
>>> print("Input shape:", x.shape)
>>> print("Labels:", y)
>>> plt.imshow(torchvision.utils.make_grid(x)[0], cmap="Greys")
Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to mnist/MNIST/raw/train-images-idx3-ubyte.gz

建立一個類條件 UNet

我們將透過以下方式輸入類別條件:

  • 建立一個標準的 UNet2DModel,並增加一些額外的輸入通道
  • 透過嵌入層將類別標籤對映為一個形狀為 (class_emb_size) 的學習向量
  • 使用 net_input = torch.cat((x, class_cond), 1) 將此資訊作為額外通道與 UNet 的內部輸入連線起來
  • 將這個 net_input(總共有 (class_emb_size+1) 個通道)輸入到 UNet 中以獲得最終預測

在這個例子中,我將 class_emb_size 設定為 4,但這完全是隨意的,你可以探索將其設定為 1(看是否仍然有效)、10(與類別數量匹配),或者用類別標籤的簡單 one-hot 編碼直接替換學習的 nn.Embedding。

這是實現的樣子

class ClassConditionedUnet(nn.Module):
    def __init__(self, num_classes=10, class_emb_size=4):
        super().__init__()

        # The embedding layer will map the class label to a vector of size class_emb_size
        self.class_emb = nn.Embedding(num_classes, class_emb_size)

        # Self.model is an unconditional UNet with extra input channels to accept the conditioning information (the class embedding)
        self.model = UNet2DModel(
            sample_size=28,  # the target image resolution
            in_channels=1 + class_emb_size,  # Additional input channels for class cond.
            out_channels=1,  # the number of output channels
            layers_per_block=2,  # how many ResNet layers to use per UNet block
            block_out_channels=(32, 64, 64),
            down_block_types=(
                "DownBlock2D",  # a regular ResNet downsampling block
                "AttnDownBlock2D",  # a ResNet downsampling block with spatial self-attention
                "AttnDownBlock2D",
            ),
            up_block_types=(
                "AttnUpBlock2D",
                "AttnUpBlock2D",  # a ResNet upsampling block with spatial self-attention
                "UpBlock2D",  # a regular ResNet upsampling block
            ),
        )

    # Our forward method now takes the class labels as an additional argument
    def forward(self, x, t, class_labels):
        # Shape of x:
        bs, ch, w, h = x.shape

        # class conditioning in right shape to add as additional input channels
        class_cond = self.class_emb(class_labels)  # Map to embedding dimension
        class_cond = class_cond.view(bs, class_cond.shape[1], 1, 1).expand(bs, class_cond.shape[1], w, h)
        # x is shape (bs, 1, 28, 28) and class_cond is now (bs, 4, 28, 28)

        # Net input is now x and class cond concatenated together along dimension 1
        net_input = torch.cat((x, class_cond), 1)  # (bs, 5, 28, 28)

        # Feed this to the UNet alongside the timestep and return the prediction
        return self.model(net_input, t).sample  # (bs, 1, 28, 28)

如果任何形狀或變換讓你感到困惑,可以新增 print 語句來顯示相關的形狀,並檢查它們是否符合你的預期。為了讓事情更清晰,我還註釋了一些中間變數的形狀。

訓練和取樣

之前我們會做類似 prediction = unet(x, t) 的操作,現在我們會在訓練時將正確的標籤作為第三個引數加入(prediction = unet(x, t, y)),而在推理時,我們可以傳遞任何我們想要的標籤,如果一切順利,模型應該會生成匹配的影像。在這種情況下,y 是 MNIST 數字的標籤,值為 0 到 9。

訓練迴圈與單元 1 中的示例非常相似。我們現在預測的是噪聲(而不是像單元 1 中那樣預測去噪後的影像),以匹配預設的 DDPMScheduler 所期望的目標,我們用它在訓練期間新增噪聲並在推理時生成樣本。訓練需要一些時間——加快這個過程可能是一個有趣的小專案,但大多數人可能只需瀏覽程式碼(以及整個 notebook)而無需執行它,因為我們只是在闡述一個想法。

# Create a scheduler
noise_scheduler = DDPMScheduler(num_train_timesteps=1000, beta_schedule="squaredcos_cap_v2")
>>> # @markdown Training loop (10 Epochs):

>>> # Redefining the dataloader to set the batch size higher than the demo of 8
>>> train_dataloader = DataLoader(dataset, batch_size=128, shuffle=True)

>>> # How many runs through the data should we do?
>>> n_epochs = 10

>>> # Our network
>>> net = ClassConditionedUnet().to(device)

>>> # Our loss function
>>> loss_fn = nn.MSELoss()

>>> # The optimizer
>>> opt = torch.optim.Adam(net.parameters(), lr=1e-3)

>>> # Keeping a record of the losses for later viewing
>>> losses = []

>>> # The training loop
>>> for epoch in range(n_epochs):
...     for x, y in tqdm(train_dataloader):

...         # Get some data and prepare the corrupted version
...         x = x.to(device) * 2 - 1  # Data on the GPU (mapped to (-1, 1))
...         y = y.to(device)
...         noise = torch.randn_like(x)
...         timesteps = torch.randint(0, 999, (x.shape[0],)).long().to(device)
...         noisy_x = noise_scheduler.add_noise(x, noise, timesteps)

...         # Get the model prediction
...         pred = net(noisy_x, timesteps, y)  # Note that we pass in the labels y

...         # Calculate the loss
...         loss = loss_fn(pred, noise)  # How close is the output to the noise

...         # Backprop and update the params:
...         opt.zero_grad()
...         loss.backward()
...         opt.step()

...         # Store the loss for later
...         losses.append(loss.item())

...     # Print out the average of the last 100 loss values to get an idea of progress:
...     avg_loss = sum(losses[-100:]) / 100
...     print(f"Finished epoch {epoch}. Average of the last 100 loss values: {avg_loss:05f}")

>>> # View the loss curve
>>> plt.plot(losses)
Finished epoch 0. Average of the last 100 loss values: 0.052451

訓練完成後,我們可以透過輸入不同的標籤作為條件來取樣一些影像

>>> # @markdown Sampling some different digits:

>>> # Prepare random x to start from, plus some desired labels y
>>> x = torch.randn(80, 1, 28, 28).to(device)
>>> y = torch.tensor([[i] * 8 for i in range(10)]).flatten().to(device)

>>> # Sampling loop
>>> for i, t in tqdm(enumerate(noise_scheduler.timesteps)):

...     # Get model pred
...     with torch.no_grad():
...         residual = net(x, t, y)  # Again, note that we pass in our labels y

...     # Update sample with step
...     x = noise_scheduler.step(residual, t, x).prev_sample

>>> # Show the results
>>> fig, ax = plt.subplots(1, 1, figsize=(12, 12))
>>> ax.imshow(torchvision.utils.make_grid(x.detach().cpu().clip(-1, 1), nrow=8)[0], cmap="Greys")

就是這樣!我們現在可以對生成的影像進行一些控制了。

希望你喜歡這個例子。與往常一樣,歡迎在 Discord 中提問。

# Exercise (optional): Try this with FashionMNIST. Tweak the learning rate, batch size and number of epochs.
# Can you get some decent-looking fashion images with less training time than the example above?
< > 在 GitHub 上更新

© . This site is unofficial and not affiliated with Hugging Face, Inc.