Diffusers 文件
UNetMotionModel
並獲得增強的文件體驗
開始使用
UNetMotionModel
UNet 模型最初由 Ronneberger 等人提出,用於生物醫學影像分割,但它也常用於 🤗 Diffusers,因為它輸出的影像大小與輸入相同。它是擴散系統最重要的元件之一,因為它促進了實際的擴散過程。在 🤗 Diffusers 中有幾種 UNet 模型的變體,具體取決於其維度數量以及是否是條件模型。這是一個 2D UNet 模型。
論文摘要如下:
人們普遍認為,成功訓練深度網路需要數千個帶註釋的訓練樣本。在本文中,我們提出了一種網路和訓練策略,它強烈依賴於資料增強,以更有效地利用可用的帶註釋樣本。該架構包括一個收縮路徑用於捕獲上下文,以及一個對稱的擴充套件路徑,可實現精確的定位。我們證明,這種網路可以透過極少的影像進行端到端訓練,並在 ISBI 挑戰賽中超越了先前最好的方法(滑動視窗卷積網路),用於電子顯微鏡堆疊中神經元結構的分割。使用在透射光顯微鏡影像(相襯和 DIC)上訓練的相同網路,我們在 2015 年 ISBI 細胞追蹤挑戰賽的這些類別中以大幅優勢獲勝。此外,該網路速度很快。在最近的 GPU 上分割 512x512 影像所需時間不到一秒。完整的實現(基於 Caffe)和訓練好的網路可在 http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net 獲取。
UNetMotionModel
class diffusers.UNetMotionModel
< 源 >( sample_size: typing.Optional[int] = None in_channels: int = 4 out_channels: int = 4 down_block_types: typing.Tuple[str, ...] = ('CrossAttnDownBlockMotion', 'CrossAttnDownBlockMotion', 'CrossAttnDownBlockMotion', 'DownBlockMotion') up_block_types: typing.Tuple[str, ...] = ('UpBlockMotion', 'CrossAttnUpBlockMotion', 'CrossAttnUpBlockMotion', 'CrossAttnUpBlockMotion') block_out_channels: typing.Tuple[int, ...] = (320, 640, 1280, 1280) layers_per_block: typing.Union[int, typing.Tuple[int]] = 2 downsample_padding: int = 1 mid_block_scale_factor: float = 1 act_fn: str = 'silu' norm_num_groups: int = 32 norm_eps: float = 1e-05 cross_attention_dim: int = 1280 transformer_layers_per_block: typing.Union[int, typing.Tuple[int], typing.Tuple[typing.Tuple]] = 1 reverse_transformer_layers_per_block: typing.Union[int, typing.Tuple[int], typing.Tuple[typing.Tuple], NoneType] = None temporal_transformer_layers_per_block: typing.Union[int, typing.Tuple[int], typing.Tuple[typing.Tuple]] = 1 reverse_temporal_transformer_layers_per_block: typing.Union[int, typing.Tuple[int], typing.Tuple[typing.Tuple], NoneType] = None transformer_layers_per_mid_block: typing.Union[int, typing.Tuple[int], NoneType] = None temporal_transformer_layers_per_mid_block: typing.Union[int, typing.Tuple[int], NoneType] = 1 use_linear_projection: bool = False num_attention_heads: typing.Union[int, typing.Tuple[int, ...]] = 8 motion_max_seq_length: int = 32 motion_num_attention_heads: typing.Union[int, typing.Tuple[int, ...]] = 8 reverse_motion_num_attention_heads: typing.Union[int, typing.Tuple[int, ...], typing.Tuple[typing.Tuple[int, ...], ...], NoneType] = None use_motion_mid_block: bool = True mid_block_layers: int = 1 encoder_hid_dim: typing.Optional[int] = None encoder_hid_dim_type: typing.Optional[str] = None addition_embed_type: typing.Optional[str] = None addition_time_embed_dim: typing.Optional[int] = None projection_class_embeddings_input_dim: typing.Optional[int] = None time_cond_proj_dim: typing.Optional[int] = None )
一個經過修改的條件 2D UNet 模型,它接受一個帶噪聲的樣本、條件狀態和一個時間步長,並返回一個樣本形狀的輸出。
此模型繼承自 ModelMixin。有關所有模型實現的通用方法(如下載或儲存),請參閱超類文件。
停用 FreeU 機制。
enable_freeu
< 源 >( s1: float s2: float b1: float b2: float )
啟用來自 https://huggingface.co/papers/2309.11497 的 FreeU 機制。
縮放因子後面的字尾表示它們正在應用的階段塊。
請參閱官方倉庫,瞭解適用於 Stable Diffusion v1、v2 和 Stable Diffusion XL 等不同管道的已知良好值組合。
forward
< 源 >( sample: Tensor timestep: typing.Union[torch.Tensor, float, int] encoder_hidden_states: Tensor timestep_cond: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None cross_attention_kwargs: typing.Optional[typing.Dict[str, typing.Any]] = None added_cond_kwargs: typing.Optional[typing.Dict[str, torch.Tensor]] = None down_block_additional_residuals: typing.Optional[typing.Tuple[torch.Tensor]] = None mid_block_additional_residual: typing.Optional[torch.Tensor] = None return_dict: bool = True ) → UNetMotionOutput
或 tuple
引數
- sample (
torch.Tensor
) — 形狀為(batch, num_frames, channel, height, width)
的帶噪聲輸入張量。 - timestep (
torch.Tensor
或float
或int
) — 去噪輸入的時間步數。 - encoder_hidden_states (
torch.Tensor
) — 形狀為(batch, sequence_length, feature_dim)
的編碼器隱藏狀態。 - timestep_cond — (
torch.Tensor
, 可選, 預設為None
): 時間步長的條件嵌入。如果提供,嵌入將與透過self.time_embedding
層傳遞的樣本相加,以獲得時間步長嵌入。 - attention_mask (
torch.Tensor
, 可選, 預設為None
) — 形狀為(batch, key_tokens)
的注意力掩碼應用於encoder_hidden_states
。如果為1
,則保留掩碼,否則如果為0
,則丟棄。掩碼將轉換為偏差,這會向對應於“丟棄”token 的注意力分數新增大的負值。 - cross_attention_kwargs (
dict
, 可選) — 一個 kwargs 字典,如果指定,將傳遞給self.processor
中定義的AttentionProcessor
,如 diffusers.models.attention_processor 所述。 - down_block_additional_residuals — (
tuple
oftorch.Tensor
, 可選): 一個張量元組,如果指定,則新增到下層 unet 塊的殘差中。 - mid_block_additional_residual — (
torch.Tensor
, 可選): 一個張量,如果指定,則新增到中間 unet 塊的殘差中。 - return_dict (
bool
, 可選, 預設為True
) — 是否返回UNetMotionOutput
而不是普通元組。
返回
UNetMotionOutput
或 tuple
如果 return_dict
為 True,則返回 UNetMotionOutput
;否則,返回一個 tuple
,其中第一個元素是樣本張量。
UNetMotionModel
前向方法。
凍結僅 UNet2DConditionModel 的權重,並解凍運動模組以進行微調。
設定注意力處理器
< 源 >( processor: typing.Union[diffusers.models.attention_processor.AttnProcessor, diffusers.models.attention_processor.CustomDiffusionAttnProcessor, diffusers.models.attention_processor.AttnAddedKVProcessor, diffusers.models.attention_processor.AttnAddedKVProcessor2_0, diffusers.models.attention_processor.JointAttnProcessor2_0, diffusers.models.attention_processor.PAGJointAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGJointAttnProcessor2_0, diffusers.models.attention_processor.FusedJointAttnProcessor2_0, diffusers.models.attention_processor.AllegroAttnProcessor2_0, diffusers.models.attention_processor.AuraFlowAttnProcessor2_0, diffusers.models.attention_processor.FusedAuraFlowAttnProcessor2_0, diffusers.models.attention_processor.FluxAttnProcessor2_0, diffusers.models.attention_processor.FluxAttnProcessor2_0_NPU, diffusers.models.attention_processor.FusedFluxAttnProcessor2_0, diffusers.models.attention_processor.FusedFluxAttnProcessor2_0_NPU, diffusers.models.attention_processor.CogVideoXAttnProcessor2_0, diffusers.models.attention_processor.FusedCogVideoXAttnProcessor2_0, diffusers.models.attention_processor.XFormersAttnAddedKVProcessor, diffusers.models.attention_processor.XFormersAttnProcessor, diffusers.models.attention_processor.XLAFlashAttnProcessor2_0, diffusers.models.attention_processor.AttnProcessorNPU, diffusers.models.attention_processor.AttnProcessor2_0, diffusers.models.attention_processor.MochiVaeAttnProcessor2_0, diffusers.models.attention_processor.MochiAttnProcessor2_0, diffusers.models.attention_processor.StableAudioAttnProcessor2_0, diffusers.models.attention_processor.HunyuanAttnProcessor2_0, diffusers.models.attention_processor.FusedHunyuanAttnProcessor2_0, diffusers.models.attention_processor.PAGHunyuanAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGHunyuanAttnProcessor2_0, diffusers.models.attention_processor.LuminaAttnProcessor2_0, diffusers.models.attention_processor.FusedAttnProcessor2_0, diffusers.models.attention_processor.CustomDiffusionXFormersAttnProcessor, diffusers.models.attention_processor.CustomDiffusionAttnProcessor2_0, diffusers.models.attention_processor.SlicedAttnProcessor, diffusers.models.attention_processor.SlicedAttnAddedKVProcessor, diffusers.models.attention_processor.SanaLinearAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGSanaLinearAttnProcessor2_0, diffusers.models.attention_processor.PAGIdentitySanaLinearAttnProcessor2_0, diffusers.models.attention_processor.SanaMultiscaleLinearAttention, diffusers.models.attention_processor.SanaMultiscaleAttnProcessor2_0, diffusers.models.attention_processor.SanaMultiscaleAttentionProjection, diffusers.models.attention_processor.IPAdapterAttnProcessor, diffusers.models.attention_processor.IPAdapterAttnProcessor2_0, diffusers.models.attention_processor.IPAdapterXFormersAttnProcessor, diffusers.models.attention_processor.SD3IPAdapterJointAttnProcessor2_0, diffusers.models.attention_processor.PAGIdentitySelfAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGIdentitySelfAttnProcessor2_0, diffusers.models.attention_processor.LoRAAttnProcessor, diffusers.models.attention_processor.LoRAAttnProcessor2_0, diffusers.models.attention_processor.LoRAXFormersAttnProcessor, diffusers.models.attention_processor.LoRAAttnAddedKVProcessor, typing.Dict[str, typing.Union[diffusers.models.attention_processor.AttnProcessor, diffusers.models.attention_processor.CustomDiffusionAttnProcessor, diffusers.models.attention_processor.AttnAddedKVProcessor, diffusers.models.attention_processor.AttnAddedKVProcessor2_0, diffusers.models.attention_processor.JointAttnProcessor2_0, diffusers.models.attention_processor.PAGJointAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGJointAttnProcessor2_0, diffusers.models.attention_processor.FusedJointAttnProcessor2_0, diffusers.models.attention_processor.AllegroAttnProcessor2_0, diffusers.models.attention_processor.AuraFlowAttnProcessor2_0, diffusers.models.attention_processor.FusedAuraFlowAttnProcessor2_0, diffusers.models.attention_processor.FluxAttnProcessor2_0, diffusers.models.attention_processor.FluxAttnProcessor2_0_NPU, diffusers.models.attention_processor.FusedFluxAttnProcessor2_0, diffusers.models.attention_processor.FusedFluxAttnProcessor2_0_NPU, diffusers.models.attention_processor.CogVideoXAttnProcessor2_0, diffusers.models.attention_processor.FusedCogVideoXAttnProcessor2_0, diffusers.models.attention_processor.XFormersAttnAddedKVProcessor, diffusers.models.attention_processor.XFormersAttnProcessor, diffusers.models.attention_processor.XLAFlashAttnProcessor2_0, diffusers.models.attention_processor.AttnProcessorNPU, diffusers.models.attention_processor.AttnProcessor2_0, diffusers.models.attention_processor.MochiVaeAttnProcessor2_0, diffusers.models.attention_processor.MochiAttnProcessor2_0, diffusers.models.attention_processor.StableAudioAttnProcessor2_0, diffusers.models.attention_processor.HunyuanAttnProcessor2_0, diffusers.models.attention_processor.FusedHunyuanAttnProcessor2_0, diffusers.models.attention_processor.PAGHunyuanAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGHunyuanAttnProcessor2_0, diffusers.models.attention_processor.LuminaAttnProcessor2_0, diffusers.models.attention_processor.FusedAttnProcessor2_0, diffusers.models.attention_processor.CustomDiffusionXFormersAttnProcessor, diffusers.models.attention_processor.CustomDiffusionAttnProcessor2_0, diffusers.models.attention_processor.SlicedAttnProcessor, diffusers.models.attention_processor.SlicedAttnAddedKVProcessor, diffusers.models.attention_processor.SanaLinearAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGSanaLinearAttnProcessor2_0, diffusers.models.attention_processor.PAGIdentitySanaLinearAttnProcessor2_0, diffusers.models.attention_processor.SanaMultiscaleLinearAttention, diffusers.models.attention_processor.SanaMultiscaleAttnProcessor2_0, diffusers.models.attention_processor.SanaMultiscaleAttentionProjection, diffusers.models.attention_processor.IPAdapterAttnProcessor, diffusers.models.attention_processor.IPAdapterAttnProcessor2_0, diffusers.models.attention_processor.IPAdapterXFormersAttnProcessor, diffusers.models.attention_processor.SD3IPAdapterJointAttnProcessor2_0, diffusers.models.attention_processor.PAGIdentitySelfAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGIdentitySelfAttnProcessor2_0, diffusers.models.attention_processor.LoRAAttnProcessor, diffusers.models.attention_processor.LoRAAttnProcessor2_0, diffusers.models.attention_processor.LoRAXFormersAttnProcessor, diffusers.models.attention_processor.LoRAAttnAddedKVProcessor]]] )
設定用於計算注意力的注意力處理器。
停用自定義注意力處理器並設定預設注意力實現。
UNet3DConditionOutput
class diffusers.models.unets.unet_3d_condition.UNet3DConditionOutput
< 源 >( sample: Tensor )
UNet3DConditionModel
的輸出。