Diffusers 文件

CogVideoXTransformer3D模型

Hugging Face's logo
加入 Hugging Face 社群

並獲得增強的文件體驗

開始使用

CogVideoXTransformer3D模型

清華大學和智譜AI在CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer中介紹了來自CogVideoX的用於3D資料的擴散Transformer模型。

該模型可以透過以下程式碼片段載入。

from diffusers import CogVideoXTransformer3DModel

transformer = CogVideoXTransformer3DModel.from_pretrained("THUDM/CogVideoX-2b", subfolder="transformer", torch_dtype=torch.float16).to("cuda")

CogVideoXTransformer3D模型

class diffusers.CogVideoXTransformer3DModel

< >

( num_attention_heads: int = 30 attention_head_dim: int = 64 in_channels: int = 16 out_channels: typing.Optional[int] = 16 flip_sin_to_cos: bool = True freq_shift: int = 0 time_embed_dim: int = 512 ofs_embed_dim: typing.Optional[int] = None text_embed_dim: int = 4096 num_layers: int = 30 dropout: float = 0.0 attention_bias: bool = True sample_width: int = 90 sample_height: int = 60 sample_frames: int = 49 patch_size: int = 2 patch_size_t: typing.Optional[int] = None temporal_compression_ratio: int = 4 max_text_seq_length: int = 226 activation_fn: str = 'gelu-approximate' timestep_activation_fn: str = 'silu' norm_elementwise_affine: bool = True norm_eps: float = 1e-05 spatial_interpolation_scale: float = 1.875 temporal_interpolation_scale: float = 1.0 use_rotary_positional_embeddings: bool = False use_learned_positional_embeddings: bool = False patch_bias: bool = True )

引數

  • num_attention_heads (int, defaults to 30) — 用於多頭注意力機制的頭數。
  • attention_head_dim (int, defaults to 64) — 每個注意力頭中的通道數。
  • in_channels (int, defaults to 16) — 輸入中的通道數。
  • out_channels (int, 可選, defaults to 16) — 輸出中的通道數。
  • flip_sin_to_cos (bool, defaults to True) — 是否在時間嵌入中將sin翻轉為cos。
  • time_embed_dim (int, defaults to 512) — 時間步嵌入的輸出維度。
  • ofs_embed_dim (int, defaults to 512) — CogVideoX-5b-I2B 1.5版中使用的“ofs”嵌入的輸出維度。
  • text_embed_dim (int, defaults to 4096) — 文字編碼器中文字嵌入的輸入維度。
  • num_layers (int, defaults to 30) — 要使用的Transformer塊層數。
  • dropout (float, defaults to 0.0) — 要使用的dropout機率。
  • attention_bias (bool, defaults to True) — 是否在注意力投影層中使用偏置。
  • sample_width (int, defaults to 90) — 輸入潛在的寬度。
  • sample_height (int, defaults to 60) — 輸入潛在的高度。
  • sample_frames (int, defaults to 49) — 輸入潛在的幀數。請注意,此引數最初錯誤地初始化為49而非13,因為CogVideoX在預設和推薦設定下一次性處理13個潛在幀,但為確保向後相容性,無法更改為正確的值。要建立具有K個潛在幀的Transformer,此處應傳遞的正確值為:((K - 1) * temporal_compression_ratio + 1)。
  • patch_size (int, defaults to 2) — 補丁嵌入層中使用的補丁大小。
  • temporal_compression_ratio (int, defaults to 4) — 跨時間維度的壓縮比。請參閱sample_frames的文件。
  • max_text_seq_length (int, defaults to 226) — 輸入文字嵌入的最大序列長度。
  • activation_fn (str, defaults to "gelu-approximate") — 前饋網路中使用的啟用函式。
  • timestep_activation_fn (str, defaults to "silu") — 生成時間步嵌入時使用的啟用函式。
  • norm_elementwise_affine (bool, defaults to True) — 是否在歸一化層中使用逐元素仿射。
  • norm_eps (float, defaults to 1e-5) — 歸一化層中使用的epsilon值。
  • spatial_interpolation_scale (float, defaults to 1.875) — 在3D位置嵌入中應用於空間維度的縮放因子。
  • temporal_interpolation_scale (float, defaults to 1.0) — 在3D位置嵌入中應用於時間維度的縮放因子。

CogVideoX中用於影片類資料的Transformer模型。

融合 qkv 投影

< >

( )

啟用融合 QKV 投影。對於自注意力模組,所有投影矩陣(即查詢、鍵、值)都將融合。對於交叉注意力模組,鍵和值投影矩陣將融合。

此 API 是 🧪 實驗性的。

設定注意力處理器

< >

( processor: typing.Union[diffusers.models.attention_processor.AttnProcessor, diffusers.models.attention_processor.CustomDiffusionAttnProcessor, diffusers.models.attention_processor.AttnAddedKVProcessor, diffusers.models.attention_processor.AttnAddedKVProcessor2_0, diffusers.models.attention_processor.JointAttnProcessor2_0, diffusers.models.attention_processor.PAGJointAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGJointAttnProcessor2_0, diffusers.models.attention_processor.FusedJointAttnProcessor2_0, diffusers.models.attention_processor.AllegroAttnProcessor2_0, diffusers.models.attention_processor.AuraFlowAttnProcessor2_0, diffusers.models.attention_processor.FusedAuraFlowAttnProcessor2_0, diffusers.models.attention_processor.FluxAttnProcessor2_0, diffusers.models.attention_processor.FluxAttnProcessor2_0_NPU, diffusers.models.attention_processor.FusedFluxAttnProcessor2_0, diffusers.models.attention_processor.FusedFluxAttnProcessor2_0_NPU, diffusers.models.attention_processor.CogVideoXAttnProcessor2_0, diffusers.models.attention_processor.FusedCogVideoXAttnProcessor2_0, diffusers.models.attention_processor.XFormersAttnAddedKVProcessor, diffusers.models.attention_processor.XFormersAttnProcessor, diffusers.models.attention_processor.XLAFlashAttnProcessor2_0, diffusers.models.attention_processor.AttnProcessorNPU, diffusers.models.attention_processor.AttnProcessor2_0, diffusers.models.attention_processor.MochiVaeAttnProcessor2_0, diffusers.models.attention_processor.MochiAttnProcessor2_0, diffusers.models.attention_processor.StableAudioAttnProcessor2_0, diffusers.models.attention_processor.HunyuanAttnProcessor2_0, diffusers.models.attention_processor.FusedHunyuanAttnProcessor2_0, diffusers.models.attention_processor.PAGHunyuanAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGHunyuanAttnProcessor2_0, diffusers.models.attention_processor.LuminaAttnProcessor2_0, diffusers.models.attention_processor.FusedAttnProcessor2_0, diffusers.models.attention_processor.CustomDiffusionXFormersAttnProcessor, diffusers.models.attention_processor.CustomDiffusionAttnProcessor2_0, diffusers.models.attention_processor.SlicedAttnProcessor, diffusers.models.attention_processor.SlicedAttnAddedKVProcessor, diffusers.models.attention_processor.SanaLinearAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGSanaLinearAttnProcessor2_0, diffusers.models.attention_processor.PAGIdentitySanaLinearAttnProcessor2_0, diffusers.models.attention_processor.SanaMultiscaleLinearAttention, diffusers.models.attention_processor.SanaMultiscaleAttnProcessor2_0, diffusers.models.attention_processor.SanaMultiscaleAttentionProjection, diffusers.models.attention_processor.IPAdapterAttnProcessor, diffusers.models.attention_processor.IPAdapterAttnProcessor2_0, diffusers.models.attention_processor.IPAdapterXFormersAttnProcessor, diffusers.models.attention_processor.SD3IPAdapterJointAttnProcessor2_0, diffusers.models.attention_processor.PAGIdentitySelfAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGIdentitySelfAttnProcessor2_0, diffusers.models.attention_processor.LoRAAttnProcessor, diffusers.models.attention_processor.LoRAAttnProcessor2_0, diffusers.models.attention_processor.LoRAXFormersAttnProcessor, diffusers.models.attention_processor.LoRAAttnAddedKVProcessor, typing.Dict[str, typing.Union[diffusers.models.attention_processor.AttnProcessor, diffusers.models.attention_processor.CustomDiffusionAttnProcessor, diffusers.models.attention_processor.AttnAddedKVProcessor, diffusers.models.attention_processor.AttnAddedKVProcessor2_0, diffusers.models.attention_processor.JointAttnProcessor2_0, diffusers.models.attention_processor.PAGJointAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGJointAttnProcessor2_0, diffusers.models.attention_processor.FusedJointAttnProcessor2_0, diffusers.models.attention_processor.AllegroAttnProcessor2_0, diffusers.models.attention_processor.AuraFlowAttnProcessor2_0, diffusers.models.attention_processor.FusedAuraFlowAttnProcessor2_0, diffusers.models.attention_processor.FluxAttnProcessor2_0, diffusers.models.attention_processor.FluxAttnProcessor2_0_NPU, diffusers.models.attention_processor.FusedFluxAttnProcessor2_0, diffusers.models.attention_processor.FusedFluxAttnProcessor2_0_NPU, diffusers.models.attention_processor.CogVideoXAttnProcessor2_0, diffusers.models.attention_processor.FusedCogVideoXAttnProcessor2_0, diffusers.models.attention_processor.XFormersAttnAddedKVProcessor, diffusers.models.attention_processor.XFormersAttnProcessor, diffusers.models.attention_processor.XLAFlashAttnProcessor2_0, diffusers.models.attention_processor.AttnProcessorNPU, diffusers.models.attention_processor.AttnProcessor2_0, diffusers.models.attention_processor.MochiVaeAttnProcessor2_0, diffusers.models.attention_processor.MochiAttnProcessor2_0, diffusers.models.attention_processor.StableAudioAttnProcessor2_0, diffusers.models.attention_processor.HunyuanAttnProcessor2_0, diffusers.models.attention_processor.FusedHunyuanAttnProcessor2_0, diffusers.models.attention_processor.PAGHunyuanAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGHunyuanAttnProcessor2_0, diffusers.models.attention_processor.LuminaAttnProcessor2_0, diffusers.models.attention_processor.FusedAttnProcessor2_0, diffusers.models.attention_processor.CustomDiffusionXFormersAttnProcessor, diffusers.models.attention_processor.CustomDiffusionAttnProcessor2_0, diffusers.models.attention_processor.SlicedAttnProcessor, diffusers.models.attention_processor.SlicedAttnAddedKVProcessor, diffusers.models.attention_processor.SanaLinearAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGSanaLinearAttnProcessor2_0, diffusers.models.attention_processor.PAGIdentitySanaLinearAttnProcessor2_0, diffusers.models.attention_processor.SanaMultiscaleLinearAttention, diffusers.models.attention_processor.SanaMultiscaleAttnProcessor2_0, diffusers.models.attention_processor.SanaMultiscaleAttentionProjection, diffusers.models.attention_processor.IPAdapterAttnProcessor, diffusers.models.attention_processor.IPAdapterAttnProcessor2_0, diffusers.models.attention_processor.IPAdapterXFormersAttnProcessor, diffusers.models.attention_processor.SD3IPAdapterJointAttnProcessor2_0, diffusers.models.attention_processor.PAGIdentitySelfAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGIdentitySelfAttnProcessor2_0, diffusers.models.attention_processor.LoRAAttnProcessor, diffusers.models.attention_processor.LoRAAttnProcessor2_0, diffusers.models.attention_processor.LoRAXFormersAttnProcessor, diffusers.models.attention_processor.LoRAAttnAddedKVProcessor]]] )

引數

  • processor (AttentionProcessor的字典或僅AttentionProcessor) — 例項化處理器類或處理器類字典,將設定為所有Attention層的處理器。

    如果processor是一個字典,則鍵需要定義到相應交叉注意力處理器的路徑。在設定可訓練注意力處理器時,強烈建議這樣做。

設定用於計算注意力的注意力處理器。

unfuse_qkv_projections

< >

( )

如果啟用了,則停用融合的 QKV 投影。

此 API 是 🧪 實驗性的。

Transformer2DModelOutput

class diffusers.models.modeling_outputs.Transformer2DModelOutput

< >

( sample: torch.Tensor )

引數

  • sample (torch.Tensor, 形狀為(batch_size, num_channels, height, width);如果Transformer2DModel是離散的,則為(batch size, num_vector_embeds - 1, num_latent_pixels)) — 在encoder_hidden_states輸入條件下輸出的隱藏狀態。如果是離散的,則返回未去噪的潛在畫素的機率分佈。

Transformer2DModel 的輸出。

< > 在 GitHub 上更新

© . This site is unofficial and not affiliated with Hugging Face, Inc.