Diffusers 文件
HunyuanVideoTransformer3D模型
並獲得增強的文件體驗
開始使用
HunyuanVideoTransformer3D模型
騰訊在 HunyuanVideo: A Systematic Framework For Large Video Generative Models 中介紹了用於3D影片類資料的擴散Transformer模型。
該模型可以透過以下程式碼片段載入。
from diffusers import HunyuanVideoTransformer3DModel
transformer = HunyuanVideoTransformer3DModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder="transformer", torch_dtype=torch.bfloat16)
HunyuanVideoTransformer3D模型
類 diffusers.HunyuanVideoTransformer3DModel
< 原始碼 >( in_channels: int = 16 out_channels: int = 16 num_attention_heads: int = 24 attention_head_dim: int = 128 num_layers: int = 20 num_single_layers: int = 40 num_refiner_layers: int = 2 mlp_ratio: float = 4.0 patch_size: int = 2 patch_size_t: int = 1 qk_norm: str = 'rms_norm' guidance_embeds: bool = True text_embed_dim: int = 4096 pooled_projection_dim: int = 768 rope_theta: float = 256.0 rope_axes_dim: typing.Tuple[int] = (16, 56, 56) image_condition_type: typing.Optional[str] = None )
引數
- in_channels (
int
, 預設為16
) — 輸入中的通道數量。 - out_channels (
int
, 預設為16
) — 輸出中的通道數量。 - num_attention_heads (
int
, 預設為24
) — 多頭注意力中使用的頭數量。 - attention_head_dim (
int
, 預設為128
) — 每個頭中的通道數量。 - num_layers (
int
, 預設為20
) — 雙流塊的層數。 - num_single_layers (
int
, 預設為40
) — 單流塊的層數。 - num_refiner_layers (
int
, 預設為2
) — 精煉器塊的層數。 - mlp_ratio (
float
, 預設為4.0
) — 前饋網路中隱藏層大小與輸入大小的比率。 - patch_size (
int
, 預設為2
) — 補丁嵌入層中使用的空間補丁大小。 - patch_size_t (
int
, 預設為1
) — 補丁嵌入層中使用的時間補丁大小。 - qk_norm (
str
, 預設為rms_norm
) — 注意力層中查詢和鍵投影使用的歸一化方式。 - guidance_embeds (
bool
, 預設為True
) — 是否在模型中使用指導嵌入。 - text_embed_dim (
int
, 預設為4096
) — 文字編碼器中文字嵌入的輸入維度。 - pooled_projection_dim (
int
, 預設為768
) — 文字嵌入池化投影的維度。 - rope_theta (
float
, 預設為256.0
) — RoPE 層中使用的 theta 值。 - rope_axes_dim (
Tuple[int]
, 預設為(16, 56, 56)
) — RoPE 層中使用的軸維度。 - image_condition_type (
str
, 可選, 預設為None
) — 使用的影像條件型別。如果為None
,則不使用影像條件。如果為latent_concat
,則影像與潛在流連線。如果為token_replace
,則影像用於替換潛在流中的第一幀標記並應用條件。
用於 HunyuanVideo 中的影片類資料的 Transformer 模型。
設定注意力處理器
< 原始碼 >( processor: typing.Union[diffusers.models.attention_processor.AttnProcessor, diffusers.models.attention_processor.CustomDiffusionAttnProcessor, diffusers.models.attention_processor.AttnAddedKVProcessor, diffusers.models.attention_processor.AttnAddedKVProcessor2_0, diffusers.models.attention_processor.JointAttnProcessor2_0, diffusers.models.attention_processor.PAGJointAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGJointAttnProcessor2_0, diffusers.models.attention_processor.FusedJointAttnProcessor2_0, diffusers.models.attention_processor.AllegroAttnProcessor2_0, diffusers.models.attention_processor.AuraFlowAttnProcessor2_0, diffusers.models.attention_processor.FusedAuraFlowAttnProcessor2_0, diffusers.models.attention_processor.FluxAttnProcessor2_0, diffusers.models.attention_processor.FluxAttnProcessor2_0_NPU, diffusers.models.attention_processor.FusedFluxAttnProcessor2_0, diffusers.models.attention_processor.FusedFluxAttnProcessor2_0_NPU, diffusers.models.attention_processor.CogVideoXAttnProcessor2_0, diffusers.models.attention_processor.FusedCogVideoXAttnProcessor2_0, diffusers.models.attention_processor.XFormersAttnAddedKVProcessor, diffusers.models.attention_processor.XFormersAttnProcessor, diffusers.models.attention_processor.XLAFlashAttnProcessor2_0, diffusers.models.attention_processor.AttnProcessorNPU, diffusers.models.attention_processor.AttnProcessor2_0, diffusers.models.attention_processor.MochiVaeAttnProcessor2_0, diffusers.models.attention_processor.MochiAttnProcessor2_0, diffusers.models.attention_processor.StableAudioAttnProcessor2_0, diffusers.models.attention_processor.HunyuanAttnProcessor2_0, diffusers.models.attention_processor.FusedHunyuanAttnProcessor2_0, diffusers.models.attention_processor.PAGHunyuanAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGHunyuanAttnProcessor2_0, diffusers.models.attention_processor.LuminaAttnProcessor2_0, diffusers.models.attention_processor.FusedAttnProcessor2_0, diffusers.models.attention_processor.CustomDiffusionXFormersAttnProcessor, diffusers.models.attention_processor.CustomDiffusionAttnProcessor2_0, diffusers.models.attention_processor.SlicedAttnProcessor, diffusers.models.attention_processor.SlicedAttnAddedKVProcessor, diffusers.models.attention_processor.SanaLinearAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGSanaLinearAttnProcessor2_0, diffusers.models.attention_processor.PAGIdentitySanaLinearAttnProcessor2_0, diffusers.models.attention_processor.SanaMultiscaleLinearAttention, diffusers.models.attention_processor.SanaMultiscaleAttnProcessor2_0, diffusers.models.attention_processor.SanaMultiscaleAttentionProjection, diffusers.models.attention_processor.IPAdapterAttnProcessor, diffusers.models.attention_processor.IPAdapterAttnProcessor2_0, diffusers.models.attention_processor.IPAdapterXFormersAttnProcessor, diffusers.models.attention_processor.SD3IPAdapterJointAttnProcessor2_0, diffusers.models.attention_processor.PAGIdentitySelfAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGIdentitySelfAttnProcessor2_0, diffusers.models.attention_processor.LoRAAttnProcessor, diffusers.models.attention_processor.LoRAAttnProcessor2_0, diffusers.models.attention_processor.LoRAXFormersAttnProcessor, diffusers.models.attention_processor.LoRAAttnAddedKVProcessor, typing.Dict[str, typing.Union[diffusers.models.attention_processor.AttnProcessor, diffusers.models.attention_processor.CustomDiffusionAttnProcessor, diffusers.models.attention_processor.AttnAddedKVProcessor, diffusers.models.attention_processor.AttnAddedKVProcessor2_0, diffusers.models.attention_processor.JointAttnProcessor2_0, diffusers.models.attention_processor.PAGJointAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGJointAttnProcessor2_0, diffusers.models.attention_processor.FusedJointAttnProcessor2_0, diffusers.models.attention_processor.AllegroAttnProcessor2_0, diffusers.models.attention_processor.AuraFlowAttnProcessor2_0, diffusers.models.attention_processor.FusedAuraFlowAttnProcessor2_0, diffusers.models.attention_processor.FluxAttnProcessor2_0, diffusers.models.attention_processor.FluxAttnProcessor2_0_NPU, diffusers.models.attention_processor.FusedFluxAttnProcessor2_0, diffusers.models.attention_processor.FusedFluxAttnProcessor2_0_NPU, diffusers.models.attention_processor.CogVideoXAttnProcessor2_0, diffusers.models.attention_processor.FusedCogVideoXAttnProcessor2_0, diffusers.models.attention_processor.XFormersAttnAddedKVProcessor, diffusers.models.attention_processor.XFormersAttnProcessor, diffusers.models.attention_processor.XLAFlashAttnProcessor2_0, diffusers.models.attention_processor.AttnProcessorNPU, diffusers.models.attention_processor.AttnProcessor2_0, diffusers.models.attention_processor.MochiVaeAttnProcessor2_0, diffusers.models.attention_processor.MochiAttnProcessor2_0, diffusers.models.attention_processor.StableAudioAttnProcessor2_0, diffusers.models.attention_processor.HunyuanAttnProcessor2_0, diffusers.models.attention_processor.FusedHunyuanAttnProcessor2_0, diffusers.models.attention_processor.PAGHunyuanAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGHunyuanAttnProcessor2_0, diffusers.models.attention_processor.LuminaAttnProcessor2_0, diffusers.models.attention_processor.FusedAttnProcessor2_0, diffusers.models.attention_processor.CustomDiffusionXFormersAttnProcessor, diffusers.models.attention_processor.CustomDiffusionAttnProcessor2_0, diffusers.models.attention_processor.SlicedAttnProcessor, diffusers.models.attention_processor.SlicedAttnAddedKVProcessor, diffusers.models.attention_processor.SanaLinearAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGSanaLinearAttnProcessor2_0, diffusers.models.attention_processor.PAGIdentitySanaLinearAttnProcessor2_0, diffusers.models.attention_processor.SanaMultiscaleLinearAttention, diffusers.models.attention_processor.SanaMultiscaleAttnProcessor2_0, diffusers.models.attention_processor.SanaMultiscaleAttentionProjection, diffusers.models.attention_processor.IPAdapterAttnProcessor, diffusers.models.attention_processor.IPAdapterAttnProcessor2_0, diffusers.models.attention_processor.IPAdapterXFormersAttnProcessor, diffusers.models.attention_processor.SD3IPAdapterJointAttnProcessor2_0, diffusers.models.attention_processor.PAGIdentitySelfAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGIdentitySelfAttnProcessor2_0, diffusers.models.attention_processor.LoRAAttnProcessor, diffusers.models.attention_processor.LoRAAttnProcessor2_0, diffusers.models.attention_processor.LoRAXFormersAttnProcessor, diffusers.models.attention_processor.LoRAAttnAddedKVProcessor]]] )
設定用於計算注意力的注意力處理器。
Transformer2DModelOutput
類 diffusers.models.modeling_outputs.Transformer2DModelOutput
< 原始碼 >( sample: torch.Tensor )
引數
- sample (
torch.Tensor
,形狀為(batch_size, num_channels, height, width)
或(batch size, num_vector_embeds - 1, num_latent_pixels)
如果 Transformer2DModel 是離散的) — 在encoder_hidden_states
輸入條件下輸出的隱藏狀態。如果是離散的,則返回未去噪潛在畫素的機率分佈。
Transformer2DModel 的輸出。