Diffusers 文件
HiDreamImageTransformer2DModel
並獲得增強的文件體驗
開始使用
HiDreamImageTransformer2DModel
來自 HiDream-I1 的用於影像類資料的 Transformer 模型。
該模型可以透過以下程式碼片段載入。
from diffusers import HiDreamImageTransformer2DModel
transformer = HiDreamImageTransformer2DModel.from_pretrained("HiDream-ai/HiDream-I1-Full", subfolder="transformer", torch_dtype=torch.bfloat16)
為 HiDream-I1 載入 GGUF 量化檢查點
可以使用 ~FromOriginalModelMixin.from_single_file
載入 HiDreamImageTransformer2DModel
的 GGUF 檢查點。
import torch
from diffusers import GGUFQuantizationConfig, HiDreamImageTransformer2DModel
ckpt_path = "https://huggingface.co/city96/HiDream-I1-Dev-gguf/blob/main/hidream-i1-dev-Q2_K.gguf"
transformer = HiDreamImageTransformer2DModel.from_single_file(
ckpt_path,
quantization_config=GGUFQuantizationConfig(compute_dtype=torch.bfloat16),
torch_dtype=torch.bfloat16
)
HiDreamImageTransformer2DModel
class diffusers.HiDreamImageTransformer2DModel
< 源 >( patch_size: typing.Optional[int] = None in_channels: int = 64 out_channels: typing.Optional[int] = None num_layers: int = 16 num_single_layers: int = 32 attention_head_dim: int = 128 num_attention_heads: int = 20 caption_channels: typing.List[int] = None text_emb_dim: int = 2048 num_routed_experts: int = 4 num_activated_experts: int = 2 axes_dims_rope: typing.Tuple[int, int] = (32, 32) max_resolution: typing.Tuple[int, int] = (128, 128) llama_layers: typing.List[int] = None force_inference_output: bool = False )
Transformer2DModelOutput
class diffusers.models.modeling_outputs.Transformer2DModelOutput
< 源 >( sample: torch.Tensor )
引數
- sample (形狀為
(batch_size, num_channels, height, width)
的torch.Tensor
或當 Transformer2DModel 為離散時,形狀為(batch size, num_vector_embeds - 1, num_latent_pixels)
) — 在encoder_hidden_states
輸入條件下輸出的隱藏狀態。如果是離散的,則返回未去噪的潛在畫素的機率分佈。
Transformer2DModel 的輸出。