Diffusers 文件
PixArtTransformer2DModel
並獲得增強的文件體驗
開始使用
PixArtTransformer2DModel
來自 PixArt-Alpha 和 PixArt-Sigma 的影像資料 Transformer 模型。
PixArtTransformer2DModel
class diffusers.PixArtTransformer2DModel
< 來源 >( num_attention_heads: int = 16 attention_head_dim: int = 72 in_channels: int = 4 out_channels: typing.Optional[int] = 8 num_layers: int = 28 dropout: float = 0.0 norm_num_groups: int = 32 cross_attention_dim: typing.Optional[int] = 1152 attention_bias: bool = True sample_size: int = 128 patch_size: int = 2 activation_fn: str = 'gelu-approximate' num_embeds_ada_norm: typing.Optional[int] = 1000 upcast_attention: bool = False norm_type: str = 'ada_norm_single' norm_elementwise_affine: bool = False norm_eps: float = 1e-06 interpolation_scale: typing.Optional[int] = None use_additional_conditions: typing.Optional[bool] = None caption_channels: typing.Optional[int] = None attention_type: typing.Optional[str] = 'default' )
引數
- num_attention_heads (int, 可選,預設為 16) — 用於多頭注意力機制的頭數。
- attention_head_dim (int, 可選,預設為 72) — 每個頭部的通道數。
- in_channels (int, 預設為 4) — 輸入通道數。
- out_channels (int, 可選) — 輸出通道數。如果輸出通道數與輸入通道數不同,請指定此引數。
- num_layers (int, 可選,預設為 28) — 要使用的 Transformer 塊層數。
- dropout (float, 可選,預設為 0.0) — Transformer 塊中要使用的 dropout 機率。
- norm_num_groups (int, 可選,預設為 32) — Transformer 塊中組歸一化的組數。
- cross_attention_dim (int, 可選) — 交叉注意力層的維度,通常與編碼器的隱藏維度匹配。
- attention_bias (bool, 可選,預設為 True) — 配置 Transformer 塊的注意力機制是否包含偏置引數。
- sample_size (int, 預設為 128) — 潛在影像的寬度。此引數在訓練期間是固定的。
- patch_size (int, 預設為 2) — 模型處理的塊大小,與處理非序列資料的架構相關。
- activation_fn (str, 可選,預設為 “gelu-approximate”) — Transformer 塊內部前饋網路中使用的啟用函式。
- num_embeds_ada_norm (int, 可選,預設為 1000) — AdaLayerNorm 的嵌入數量,在訓練期間固定,並影響推理期間的最大去噪步數。
- upcast_attention (bool, 可選,預設為 False) — 如果為 True,則向上轉換注意力機制維度以可能提高效能。
- norm_type (str, 可選,預設為 “ada_norm_zero”) — 指定使用的歸一化型別,可以是 “ada_norm_zero”。
- norm_elementwise_affine (bool, 可選,預設為 False) — 如果為 True,則在歸一化層中啟用元素級仿射引數。
- norm_eps (float, 可選,預設為 1e-6) — 新增到歸一化層分母中的小常數,以防止除以零。
- interpolation_scale (int, 可選) — 插值位置嵌入時使用的縮放因子。
- use_additional_conditions (bool, 可選) — 是否使用附加條件作為輸入。
- attention_type (str, 可選,預設為 “default”) — 使用的注意力機制型別。
- caption_channels (int, 可選,預設為 None) — 用於投影標題嵌入的通道數。
- use_linear_projection (bool, 可選,預設為 False) — 已棄用引數。將在未來版本中移除。
- num_vector_embeds (bool, 可選,預設為 False) — 已棄用引數。將在未來版本中移除。
PixArt 模型家族中引入的 2D Transformer 模型(https://huggingface.co/papers/2310.00426,https://huggingface.co/papers/2403.04692)。
forward
< 來源 >( hidden_states: Tensor encoder_hidden_states: typing.Optional[torch.Tensor] = None timestep: typing.Optional[torch.LongTensor] = None added_cond_kwargs: typing.Dict[str, torch.Tensor] = None cross_attention_kwargs: typing.Dict[str, typing.Any] = None attention_mask: typing.Optional[torch.Tensor] = None encoder_attention_mask: typing.Optional[torch.Tensor] = None return_dict: bool = True )
引數
- hidden_states (
torch.FloatTensor
,形狀為(batch_size, channel, height, width)
) — 輸入hidden_states
。 - encoder_hidden_states (
torch.FloatTensor
,形狀為(batch_size, sequence_len, embed_dims)
,可選) — 交叉注意力層的條件嵌入。如果未給定,交叉注意力預設為自注意力。 - timestep (
torch.LongTensor
, 可選) — 用於指示去噪步長。可選的 timestep 將作為嵌入應用於AdaLayerNorm
。 - added_cond_kwargs — (
Dict[str, Any]
, 可選): 用作輸入的附加條件。 - cross_attention_kwargs (
Dict[str, Any]
, 可選) — 如果指定,則將此 kwargs 字典傳遞給 diffusers.models.attention_processor 中定義的self.processor
的AttentionProcessor
。 - attention_mask (
torch.Tensor
, 可選) — 形狀為(batch, key_tokens)
的注意力掩碼應用於encoder_hidden_states
。如果為1
則保留掩碼,否則如果為0
則丟棄。掩碼將轉換為偏置,這將為對應於“丟棄”token 的注意力分數新增大的負值。 - encoder_attention_mask (
torch.Tensor
, 可選) — 應用於encoder_hidden_states
的交叉注意力掩碼。支援兩種格式:- 掩碼
(batch, sequence_length)
True = 保留,False = 丟棄。 - 偏置
(batch, 1, sequence_length)
0 = 保留,-10000 = 丟棄。
如果
ndim == 2
:將被解釋為掩碼,然後轉換為與上述格式一致的偏置。此偏置將新增到交叉注意力分數中。 - 掩碼
- return_dict (
bool
, 可選, 預設為True
) — 是否返回 UNet2DConditionOutput 而不是普通元組。
PixArtTransformer2DModel forward 方法。
設定注意力處理器
< 來源 >( processor: typing.Union[diffusers.models.attention_processor.AttnProcessor, diffusers.models.attention_processor.CustomDiffusionAttnProcessor, diffusers.models.attention_processor.AttnAddedKVProcessor, diffusers.models.attention_processor.AttnAddedKVProcessor2_0, diffusers.models.attention_processor.JointAttnProcessor2_0, diffusers.models.attention_processor.PAGJointAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGJointAttnProcessor2_0, diffusers.models.attention_processor.FusedJointAttnProcessor2_0, diffusers.models.attention_processor.AllegroAttnProcessor2_0, diffusers.models.attention_processor.AuraFlowAttnProcessor2_0, diffusers.models.attention_processor.FusedAuraFlowAttnProcessor2_0, diffusers.models.attention_processor.FluxAttnProcessor2_0, diffusers.models.attention_processor.FluxAttnProcessor2_0_NPU, diffusers.models.attention_processor.FusedFluxAttnProcessor2_0, diffusers.models.attention_processor.FusedFluxAttnProcessor2_0_NPU, diffusers.models.attention_processor.CogVideoXAttnProcessor2_0, diffusers.models.attention_processor.FusedCogVideoXAttnProcessor2_0, diffusers.models.attention_processor.XFormersAttnAddedKVProcessor, diffusers.models.attention_processor.XFormersAttnProcessor, diffusers.models.attention_processor.XLAFlashAttnProcessor2_0, diffusers.models.attention_processor.AttnProcessorNPU, diffusers.models.attention_processor.AttnProcessor2_0, diffusers.models.attention_processor.MochiVaeAttnProcessor2_0, diffusers.models.attention_processor.MochiAttnProcessor2_0, diffusers.models.attention_processor.StableAudioAttnProcessor2_0, diffusers.models.attention_processor.HunyuanAttnProcessor2_0, diffusers.models.attention_processor.FusedHunyuanAttnProcessor2_0, diffusers.models.attention_processor.PAGHunyuanAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGHunyuanAttnProcessor2_0, diffusers.models.attention_processor.LuminaAttnProcessor2_0, diffusers.models.attention_processor.FusedAttnProcessor2_0, diffusers.models.attention_processor.CustomDiffusionXFormersAttnProcessor, diffusers.models.attention_processor.CustomDiffusionAttnProcessor2_0, diffusers.models.attention_processor.SlicedAttnProcessor, diffusers.models.attention_processor.SlicedAttnAddedKVProcessor, diffusers.models.attention_processor.SanaLinearAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGSanaLinearAttnProcessor2_0, diffusers.models.attention_processor.PAGIdentitySanaLinearAttnProcessor2_0, diffusers.models.attention_processor.SanaMultiscaleLinearAttention, diffusers.models.attention_processor.SanaMultiscaleAttnProcessor2_0, diffusers.models.attention_processor.SanaMultiscaleAttentionProjection, diffusers.models.attention_processor.IPAdapterAttnProcessor, diffusers.models.attention_processor.IPAdapterAttnProcessor2_0, diffusers.models.attention_processor.IPAdapterXFormersAttnProcessor, diffusers.models.attention_processor.SD3IPAdapterJointAttnProcessor2_0, diffusers.models.attention_processor.PAGIdentitySelfAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGIdentitySelfAttnProcessor2_0, diffusers.models.attention_processor.LoRAAttnProcessor, diffusers.models.attention_processor.LoRAAttnProcessor2_0, diffusers.models.attention_processor.LoRAXFormersAttnProcessor, diffusers.models.attention_processor.LoRAAttnAddedKVProcessor, typing.Dict[str, typing.Union[diffusers.models.attention_processor.AttnProcessor, diffusers.models.attention_processor.CustomDiffusionAttnProcessor, diffusers.models.attention_processor.AttnAddedKVProcessor, diffusers.models.attention_processor.AttnAddedKVProcessor2_0, diffusers.models.attention_processor.JointAttnProcessor2_0, diffusers.models.attention_processor.PAGJointAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGJointAttnProcessor2_0, diffusers.models.attention_processor.FusedJointAttnProcessor2_0, diffusers.models.attention_processor.AllegroAttnProcessor2_0, diffusers.models.attention_processor.AuraFlowAttnProcessor2_0, diffusers.models.attention_processor.FusedAuraFlowAttnProcessor2_0, diffusers.models.attention_processor.FluxAttnProcessor2_0, diffusers.models.attention_processor.FluxAttnProcessor2_0_NPU, diffusers.models.attention_processor.FusedFluxAttnProcessor2_0, diffusers.models.attention_processor.FusedFluxAttnProcessor2_0_NPU, diffusers.models.attention_processor.CogVideoXAttnProcessor2_0, diffusers.models.attention_processor.FusedCogVideoXAttnProcessor2_0, diffusers.models.attention_processor.XFormersAttnAddedKVProcessor, diffusers.models.attention_processor.XFormersAttnProcessor, diffusers.models.attention_processor.XLAFlashAttnProcessor2_0, diffusers.models.attention_processor.AttnProcessorNPU, diffusers.models.attention_processor.AttnProcessor2_0, diffusers.models.attention_processor.MochiVaeAttnProcessor2_0, diffusers.models.attention_processor.MochiAttnProcessor2_0, diffusers.models.attention_processor.StableAudioAttnProcessor2_0, diffusers.models.attention_processor.HunyuanAttnProcessor2_0, diffusers.models.attention_processor.FusedHunyuanAttnProcessor2_0, diffusers.models.attention_processor.PAGHunyuanAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGHunyuanAttnProcessor2_0, diffusers.models.attention_processor.LuminaAttnProcessor2_0, diffusers.models.attention_processor.FusedAttnProcessor2_0, diffusers.models.attention_processor.CustomDiffusionXFormersAttnProcessor, diffusers.models.attention_processor.CustomDiffusionAttnProcessor2_0, diffusers.models.attention_processor.SlicedAttnProcessor, diffusers.models.attention_processor.SlicedAttnAddedKVProcessor, diffusers.models.attention_processor.SanaLinearAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGSanaLinearAttnProcessor2_0, diffusers.models.attention_processor.PAGIdentitySanaLinearAttnProcessor2_0, diffusers.models.attention_processor.SanaMultiscaleLinearAttention, diffusers.models.attention_processor.SanaMultiscaleAttnProcessor2_0, diffusers.models.attention_processor.SanaMultiscaleAttentionProjection, diffusers.models.attention_processor.IPAdapterAttnProcessor, diffusers.models.attention_processor.IPAdapterAttnProcessor2_0, diffusers.models.attention_processor.IPAdapterXFormersAttnProcessor, diffusers.models.attention_processor.SD3IPAdapterJointAttnProcessor2_0, diffusers.models.attention_processor.PAGIdentitySelfAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGIdentitySelfAttnProcessor2_0, diffusers.models.attention_processor.LoRAAttnProcessor, diffusers.models.attention_processor.LoRAAttnProcessor2_0, diffusers.models.attention_processor.LoRAXFormersAttnProcessor, diffusers.models.attention_processor.LoRAAttnAddedKVProcessor]]] )
設定用於計算注意力的注意力處理器。
停用自定義注意力處理器並設定預設注意力實現。
可以直接使用 AttnProcessor()
,因為 PixArt 在預設模型中不包含任何特殊的注意力處理器。