Transformers 文件
Bamba
並獲得增強的文件體驗
開始使用
Bamba
Bamba 是一個擁有 90 億引數的僅解碼器語言模型,構建於 Mamba-2 架構之上。它分兩個階段進行預訓練——首先在 Dolma v1.7 資料集的 2T 詞元上進行訓練,然後在來自 FineWeb 和 Cosmopedia 的額外 200B 詞元上進行訓練。
你可以在 Bamba 合集中找到所有原始的 Bamba checkpoints。
下面的示例演示瞭如何使用 Pipeline、AutoModel 以及從命令列生成文字。
import torch
from transformers import pipeline
pipeline = pipeline(
task="text-generation",
model="ibm-ai-platform/Bamba-9B-v2",
torch_dtype=torch.bfloat16,
device=0
)
pipeline("Plants create energy through a process known as")
量化透過以較低精度表示權重來減少大型模型的記憶體負擔。有關更多可用量化後端,請參閱量化概述。
以下示例使用torchao僅將權重量化為int4。
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig
quantization_config = TorchAoConfig("int4_weight_only", group_size=128)
tokenizer = AutoTokenizer.from_pretrained("ibm-ai-platform/Bamba-9B-v2")
model = AutoModelForCausalLM.from_pretrained(
"ibm-ai-platform/Bamba-9B-v2",
quantization_config=quantization_config,
device_map="auto",
attn_implementation="sdpa"
)
inputs = tokenizer("Plants create energy through a process known as", return_tensors="pt").to("cuda")
output = model.generate(**inputs)
print(tokenizer.decode(output[0], skip_special_tokens=True))
注意事項
Bamba 支援無填充訓練,這種方式會將不同的訓練樣本連線起來,同時仍將輸入作為單獨的批次進行處理。如果樣本長度不同,它可以透過避免填充詞元帶來的不必要的計算和記憶體開銷,將推理速度顯著提升 約 2 倍(具體取決於模型和資料分佈)並減少記憶體使用。
無填充訓練需要 `flash-attn`、`mamba-ssm` 和 `causal-conv1d` 包,並且除了 `input_ids` 和 `labels` 之外,還必須向模型傳遞以下引數。
position_ids: torch.LongTensor
: 每個序列中每個詞元的位置索引。seq_idx: torch.IntTensor
: 批次中每個序列的索引。- 每個 `FlashAttentionKwargs`
cu_seq_lens_q: torch.LongTensor
: 所有查詢的累積序列長度。cu_seq_lens_k: torch.LongTensor
: 所有鍵的累積序列長度。max_length_q: int
: 批次中最長查詢的長度。max_length_k: int
: 批次中最長鍵的長度。
不應提供 `attention_mask` 輸入。DataCollatorWithFlattening 透過使用 `return_seq_idx=True` 和 `return_flash_attn_kwargs=True` 來以程式設計方式生成上述附加引數集。有關更多資訊,請參閱 透過 Flash Attention 封裝提升 Hugging Face 訓練效率部落格文章。
from transformers import DataCollatorWithFlattening # Example of using padding-free training data_collator = DataCollatorWithFlattening( tokenizer=tokenizer, return_seq_idx=True, return_flash_attn_kwargs=True )
BambaConfig
class transformers.BambaConfig
< 來源 >( vocab_size = 128000 tie_word_embeddings = False hidden_size = 4096 intermediate_size = 14336 num_hidden_layers = 32 num_attention_heads = 32 num_key_value_heads = 8 hidden_act = 'silu' initializer_range = 0.02 rms_norm_eps = 1e-05 use_cache = True num_logits_to_keep = 1 pad_token_id = 0 bos_token_id = 1 eos_token_id = 2 max_position_embeddings = 262144 attention_dropout = 0.0 attn_layer_indices = None mamba_n_heads = 128 mamba_d_head = 'auto' mamba_n_groups = 1 mamba_d_state = 256 mamba_d_conv = 4 mamba_expand = 2 mamba_chunk_size = 256 mamba_conv_bias = True mamba_proj_bias = False z_loss_coefficient = 0.0 **kwargs )
引數
- vocab_size (
int
, 可選, 預設為 128000) — Bamba 模型的詞彙表大小。定義了在呼叫 BambaModel 時傳入的inputs_ids
可以表示的不同詞元的數量。 - tie_word_embeddings (
bool
, 可選, 預設為False
) — 是否將模型的輸入和輸出詞嵌入繫結。請注意,這僅在模型具有輸出詞嵌入層時才相關。 - hidden_size (
int
, 可選, 預設為 4096) — 隱藏表示的維度。 - intermediate_size (
int
, 可選, 預設為 14336) — MLP 表示的維度。 - num_hidden_layers (
int
, 可選, 預設為 32) — Transformer 編碼器中的隱藏層數量。 - num_attention_heads (
int
, 可選, 預設為 32) — Transformer 編碼器中每個注意力層的注意力頭數量。 - num_key_value_heads (
int
, 可選, 預設為 8) — 這是用於實現分組查詢注意力 (Grouped Query Attention) 的鍵值頭數量。如果num_key_value_heads=num_attention_heads
,模型將使用多頭注意力 (MHA);如果num_key_value_heads=1
,模型將使用多查詢注意力 (MQA);否則使用 GQA。將多頭檢查點轉換為 GQA 檢查點時,每個組的鍵和值頭應透過對該組內所有原始頭進行均值池化來構建。更多細節,請檢視這篇論文。如果未指定,將預設為8
。 - hidden_act (
str
或function
, 可選, 預設為"silu"
) — 解碼器中的非線性啟用函式(函式或字串)。 - initializer_range (
float
, 可選, 預設為 0.02) — 用於初始化所有權重矩陣的 truncated_normal_initializer 的標準差。 - rms_norm_eps (
float
, 可選, 預設為 1e-05) — RMS 歸一化層使用的 epsilon。 - use_cache (
bool
, 可選, 預設為True
) — 模型是否應返回最後的鍵/值注意力(並非所有模型都使用)。僅在config.is_decoder=True
時相關。 - num_logits_to_keep (
int
或None
, 可選, 預設為 1) — 在生成過程中要計算的提示 logits 的數量。如果為None
,將計算所有 logits。如果為整數值,則只計算最後的num_logits_to_keep
個 logits。預設為 1,因為生成只需要最後一個提示詞元的 logits。對於長序列,整個序列的 logits 可能會佔用大量記憶體,因此設定num_logits_to_keep=1
將顯著減少記憶體佔用。 - pad_token_id (
int
, 可選, 預設為 0) — 填充詞元的 ID。 - bos_token_id (
int
, 可選, 預設為 1) — “序列開始”詞元的 ID。 - eos_token_id (
int
, 可選, 預設為 2) — “序列結束”詞元的 ID。 - max_position_embeddings (
int
, 可選, 預設為 262144) — 模型的最大快取序列長度 - attention_dropout (
float
, 可選, 預設為 0.0) — 注意力機率的 dropout 比例。 - attn_layer_indices (
list
, 可選) — 指定將具有完全注意力的層的索引。必須包含最多為 num_hidden_layers 的值。 - mamba_n_heads (
int
, 可選, 預設為 128) — v2 實現中使用的 mamba 頭的數量。 - mamba_d_head (
int
, 可選, 預設為"auto"
) — 頭嵌入維度大小 - mamba_n_groups (
int
, 可選, 預設為 1) — v2 實現中使用的 mamba 組的數量。 - mamba_d_state (
int
, 可選, 預設為 256) — mamba 狀態空間潛變數的維度 - mamba_d_conv (
int
, 可選, 預設為 4) — mamba 卷積核的大小 - mamba_expand (
int
, 可選, 預設為 2) — 用於確定 mamba 中間大小的擴充套件因子(相對於 hidden_size) - mamba_chunk_size (
int
, 可選, 預設為 256) — 在進行預填充/訓練時,用於拆分序列的塊大小。 - mamba_conv_bias (
bool
, 可選, 預設為True
) — 指示是否在 mamba 混合器塊的卷積層中使用偏置的標誌。 - mamba_proj_bias (
bool
, 可選, 預設為False
) — 指示是否在 mamba 混合器塊的輸入和輸出投影([“in_proj”, “out_proj”])中使用偏置的標誌。 - z_loss_coefficient (
float
, 可選, 預設為 0.0) — 用於在訓練期間控制 logit 增長的輔助 z 損失的係數。
這是用於儲存 BambaModel 配置的配置類。它根據指定的引數例項化一個 BambaModel 模型,定義模型架構。使用 ibm-fms/Bamba-9.8b-2.2T-hf 的預設值例項化配置。
BambaModel 是一個混合了 mamba2 架構和 SwiGLU 的模型。其檢查點由 IBM、普林斯頓大學和伊利諾伊大學香檳分校聯合訓練。
配置物件繼承自 PretrainedConfig,可用於控制模型輸出。請閱讀 PretrainedConfig 的文件以獲取更多資訊。
BambaModel
class transformers.BambaModel
< source >( config: BambaConfig )
引數
- config (BambaConfig) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化不會載入與模型相關的權重,只會載入配置。請查閱 from_pretrained() 方法來載入模型權重。
基礎的 Bamba 模型,輸出原始的隱藏狀態,頂部沒有任何特定的頭(head)。
該模型繼承自 PreTrainedModel。請查閱超類文件以瞭解該庫為所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪注意力頭等)。
該模型也是 PyTorch torch.nn.Module 的子類。可以像常規 PyTorch 模組一樣使用它,並參考 PyTorch 文件瞭解所有與通用用法和行為相關的事項。
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.models.bamba.modeling_bamba.HybridMambaAttentionDynamicCache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None **kwargs: typing_extensions.Unpack[transformers.models.bamba.modeling_bamba.BambaFlashAttentionKwargs] ) → transformers.modeling_outputs.BaseModelOutputWithPast 或 tuple(torch.FloatTensor)
引數
- input_ids (
torch.LongTensor
,形狀為(batch_size, sequence_length)
,可選) — 詞彙表中輸入序列標記的索引。預設情況下會忽略填充。可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形狀為(batch_size, sequence_length)
,可選) — 用於避免對填充標記索引執行注意力的掩碼。掩碼值選自[0, 1]
:- 1 表示標記未被遮蔽,
- 0 表示標記被遮蔽。
- position_ids (
torch.LongTensor
,形狀為(batch_size, sequence_length)
,可選) — 位置嵌入中每個輸入序列標記的位置索引。選自範圍[0, config.n_positions - 1]
。 - past_key_values (
~models.bamba.modeling_bamba.HybridMambaAttentionDynamicCache
, 可選) — 預先計算的隱藏狀態(自注意力塊和交叉注意力塊中的鍵和值),可用於加速序列解碼。這通常包括模型在解碼的前一階段返回的 `past_key_values`,當 `use_cache=True` 或 `config.use_cache=True` 時。允許兩種格式:
- 一個 Cache 例項,請參閱我們的 kv 快取指南;
- 一個長度為 `config.n_layers` 的 `tuple(torch.FloatTensor)` 元組,每個元組包含 2 個形狀為 `(batch_size, num_heads, sequence_length, embed_size_per_head)` 的張量。這也稱為舊版快取格式。
模型將輸出與輸入相同的快取格式。如果沒有傳遞 `past_key_values`,將返回舊版快取格式。
如果使用 `past_key_values`,使用者可以選擇只輸入最後一個 `input_ids`(即那些沒有為其提供過去鍵值狀態的 `input_ids`),形狀為 `(batch_size, 1)`,而不是所有形狀為 `(batch_size, sequence_length)` 的 `input_ids`。
- inputs_embeds (
torch.FloatTensor
,形狀為(batch_size, sequence_length, hidden_size)
,可選) — 可選地,你可以選擇直接傳遞嵌入表示,而不是傳遞 `input_ids`。如果你想比模型內部的嵌入查詢矩陣更好地控制如何將 `input_ids` 索引轉換為相關向量,這會很有用。 - use_cache (
bool
, 可選) — 如果設定為True
,將返回past_key_values
鍵值狀態,並可用於加速解碼(請參閱past_key_values
)。 - output_attentions (
bool
, 可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的 `attentions`。 - output_hidden_states (
bool
, 可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的 `hidden_states`。 - cache_position (
torch.LongTensor
,形狀為(sequence_length)
,可選) — 描繪輸入序列標記在序列中位置的索引。與 `position_ids` 相反,此張量不受填充影響。它用於在正確的位置更新快取並推斷完整的序列長度。
返回
transformers.modeling_outputs.BaseModelOutputWithPast 或 tuple(torch.FloatTensor)
一個 transformers.modeling_outputs.BaseModelOutputWithPast 或一個 `torch.FloatTensor` 的元組(如果傳遞了 `return_dict=False` 或當 `config.return_dict=False` 時),根據配置(BambaConfig)和輸入,包含各種元素。
-
last_hidden_state (
torch.FloatTensor
, 形狀為(batch_size, sequence_length, hidden_size)
) — 模型最後一層輸出的隱藏狀態序列。如果使用了
past_key_values
,則只輸出形狀為(batch_size, 1, hidden_size)
的序列的最後一個隱藏狀態。 -
past_key_values (
Cache
, 可選, 當傳遞了 `use_cache=True` 或 `config.use_cache=True` 時返回) — 這是一個 Cache 例項。有關更多詳細資訊,請參閱我們的 kv 快取指南。包含預先計算的隱藏狀態(自注意力塊中的鍵和值,以及當 `config.is_encoder_decoder=True` 時,交叉注意力塊中的鍵和值),可用於(請參閱 `past_key_values` 輸入)加速序列解碼。
-
hidden_states (
tuple(torch.FloatTensor)
, 可選, 當傳遞了 `output_hidden_states=True` 或 `config.output_hidden_states=True` 時返回) — `torch.FloatTensor` 的元組(如果模型有嵌入層,則第一個是嵌入層的輸出,然後是每個層的輸出),形狀為 `(batch_size, sequence_length, hidden_size)`。模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。
-
attentions (
tuple(torch.FloatTensor)
, 可選, 當傳遞了 `output_attentions=True` 或 `config.output_attentions=True` 時返回) — `torch.FloatTensor` 的元組(每層一個),形狀為 `(batch_size, num_heads, sequence_length, sequence_length)`。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
BambaModel 的 forward 方法,重寫了 `__call__` 特殊方法。
雖然前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。
BambaForCausalLM
class transformers.BambaForCausalLM
< source >( config )
引數
- config (BambaForCausalLM) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化不會載入與模型相關的權重,只會載入配置。請查閱 from_pretrained() 方法來載入模型權重。
用於因果語言建模的 Bamba 模型。
該模型繼承自 PreTrainedModel。請查閱超類文件以瞭解該庫為所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪注意力頭等)。
該模型也是 PyTorch torch.nn.Module 的子類。可以像常規 PyTorch 模組一樣使用它,並參考 PyTorch 文件瞭解所有與通用用法和行為相關的事項。
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.models.bamba.modeling_bamba.HybridMambaAttentionDynamicCache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None logits_to_keep: typing.Union[int, torch.Tensor] = 0 **kwargs ) → transformers.modeling_outputs.CausalLMOutputWithPast 或 tuple(torch.FloatTensor)
引數
- input_ids (
torch.LongTensor
,形狀為(batch_size, sequence_length)
,可選) — 詞彙表中輸入序列標記的索引。預設情況下會忽略填充。可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形狀為(batch_size, sequence_length)
,可選) — 用於避免對填充標記索引執行注意力的掩碼。掩碼值選自[0, 1]
:- 1 表示標記未被遮蔽,
- 0 表示標記被遮蔽。
- position_ids (
torch.LongTensor
,形狀為(batch_size, sequence_length)
,可選) — 位置嵌入中每個輸入序列標記的位置索引。選自範圍[0, config.n_positions - 1]
。 - past_key_values (
~models.bamba.modeling_bamba.HybridMambaAttentionDynamicCache
, 可選) — 預先計算的隱藏狀態(自注意力塊和交叉注意力塊中的鍵和值),可用於加速序列解碼。這通常包括模型在解碼的前一階段返回的 `past_key_values`,當 `use_cache=True` 或 `config.use_cache=True` 時。允許兩種格式:
- 一個 Cache 例項,請參閱我們的 kv 快取指南;
- 一個長度為 `config.n_layers` 的 `tuple(torch.FloatTensor)` 元組,每個元組包含 2 個形狀為 `(batch_size, num_heads, sequence_length, embed_size_per_head)` 的張量。這也稱為舊版快取格式。
模型將輸出與輸入相同的快取格式。如果沒有傳遞 `past_key_values`,將返回舊版快取格式。
如果使用 `past_key_values`,使用者可以選擇只輸入最後一個 `input_ids`(即那些沒有為其提供過去鍵值狀態的 `input_ids`),形狀為 `(batch_size, 1)`,而不是所有形狀為 `(batch_size, sequence_length)` 的 `input_ids`。
- inputs_embeds (
torch.FloatTensor
,形狀為(batch_size, sequence_length, hidden_size)
,可選) — 可選地,你可以選擇直接傳遞嵌入表示,而不是傳遞 `input_ids`。如果你想比模型內部的嵌入查詢矩陣更好地控制如何將 `input_ids` 索引轉換為相關向量,這會很有用。 - labels (
torch.LongTensor
,形狀為(batch_size, sequence_length)
,可選) — 用於計算掩碼語言建模損失的標籤。索引應在[0, ..., config.vocab_size]
或 -100 之間(請參閱 `input_ids` 文件字串)。索引設定為 `-100` 的標記將被忽略(遮蔽),損失僅對標籤在[0, ..., config.vocab_size]
中的標記計算。 - use_cache (
bool
, 可選) — 如果設定為True
,將返回past_key_values
鍵值狀態,並可用於加速解碼(請參閱past_key_values
)。 - output_attentions (
bool
, 可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的 `attentions`。 - output_hidden_states (
bool
, 可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的 `hidden_states`。 - cache_position (
torch.LongTensor
,形狀為(sequence_length)
,可選) — 描繪輸入序列標記在序列中位置的索引。與 `position_ids` 相反,此張量不受填充影響。它用於在正確的位置更新快取並推斷完整的序列長度。 - logits_to_keep (
Union[int, torch.Tensor]
, 預設為0
) — 如果是 `int`,則計算最後 `logits_to_keep` 個標記的 logits。如果是 `0`,則計算所有 `input_ids` 的 logits(特殊情況)。生成時只需要最後一個標記的 logits,僅為該標記計算它們可以節省記憶體,這對於長序列或大詞彙表來說非常重要。如果是 `torch.Tensor`,則必須是 1D,對應於要在序列長度維度中保留的索引。這在使用打包張量格式(批處理和序列長度的單個維度)時很有用。
返回
transformers.modeling_outputs.CausalLMOutputWithPast 或 tuple(torch.FloatTensor)
一個 transformers.modeling_outputs.CausalLMOutputWithPast 或一個 `torch.FloatTensor` 的元組(如果傳遞了 `return_dict=False` 或當 `config.return_dict=False` 時),根據配置(BambaConfig)和輸入,包含各種元素。
-
loss (
torch.FloatTensor
形狀為(1,)
,可選,當提供labels
時返回) — 語言建模損失(用於下一個 token 預測)。 -
logits (形狀為
(batch_size, sequence_length, config.vocab_size)
的torch.FloatTensor
) — 語言建模頭部的預測分數(SoftMax 之前的每個詞彙標記的分數)。 -
past_key_values (
Cache
, 可選, 當傳遞了 `use_cache=True` 或 `config.use_cache=True` 時返回) — 這是一個 Cache 例項。有關更多詳細資訊,請參閱我們的 kv 快取指南。包含預計算的隱藏狀態(自注意力塊中的鍵和值),可用於(參見
past_key_values
輸入)加速順序解碼。 -
hidden_states (
tuple(torch.FloatTensor)
, 可選, 當傳遞了 `output_hidden_states=True` 或 `config.output_hidden_states=True` 時返回) — `torch.FloatTensor` 的元組(如果模型有嵌入層,則第一個是嵌入層的輸出,然後是每個層的輸出),形狀為 `(batch_size, sequence_length, hidden_size)`。模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。
-
attentions (
tuple(torch.FloatTensor)
, 可選, 當傳遞了 `output_attentions=True` 或 `config.output_attentions=True` 時返回) — `torch.FloatTensor` 的元組(每層一個),形狀為 `(batch_size, num_heads, sequence_length, sequence_length)`。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
BambaForCausalLM 的 forward 方法,重寫了 `__call__` 特殊方法。
雖然前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。
示例
>>> from transformers import AutoTokenizer, BambaForCausalLM
>>> model = BambaForCausalLM.from_pretrained("...")
>>> tokenizer = AutoTokenizer.from_pretrained("...")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."