Transformers 文件

ConvBERT

Hugging Face's logo
加入 Hugging Face 社群

並獲得增強的文件體驗

開始使用

ConvBERT

PyTorch TensorFlow

概述

ConvBERT 模型由 Zihang Jiang、Weihao Yu、Daquan Zhou、Yunpeng Chen、Jiashi Feng 和 Shuicheng Yan 在論文 ConvBERT: Improving BERT with Span-based Dynamic Convolution 中提出。

論文摘要如下:

像 BERT 及其變體這樣的預訓練語言模型最近在各種自然語言理解任務中取得了令人印象深刻的效能。然而,BERT 嚴重依賴全域性自注意力模組,因此記憶體佔用和計算成本都很高。雖然它的所有注意力頭都在整個輸入序列上查詢以從全域性視角生成注意力圖,但我們觀察到一些頭只需要學習區域性依賴關係,這意味著存在計算冗餘。因此,我們提出了一種新穎的基於區間的動態卷積來替換這些自注意力頭,以直接建模區域性依賴關係。新穎的卷積頭與其餘的自注意力頭一起,形成了一個新的混合注意力模組,在全域性和區域性上下文學習上都更有效。我們將 BERT 配備了這種混合注意力設計,並構建了一個 ConvBERT 模型。實驗表明,ConvBERT 在各種下游任務中顯著優於 BERT 及其變體,並且訓練成本更低,模型引數更少。值得注意的是,ConvBERTbase 模型的 GLUE 得分達到 86.4,比 ELECTRAbase 高 0.7,而訓練成本不到 1/4。程式碼和預訓練模型將會發布。

此模型由 abhishek 貢獻。原始實現可以在這裡找到:https://github.com/yitu-opensource/ConvBert

使用技巧

ConvBERT 的訓練技巧與 BERT 相似。有關使用技巧,請參閱 BERT 文件

資源

ConvBertConfig

class transformers.ConvBertConfig

< >

( vocab_size = 30522 hidden_size = 768 num_hidden_layers = 12 num_attention_heads = 12 intermediate_size = 3072 hidden_act = 'gelu' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 512 type_vocab_size = 2 initializer_range = 0.02 layer_norm_eps = 1e-12 pad_token_id = 1 bos_token_id = 0 eos_token_id = 2 embedding_size = 768 head_ratio = 2 conv_kernel_size = 9 num_groups = 1 classifier_dropout = None **kwargs )

引數

  • vocab_size (int, 可選, 預設為 30522) — ConvBERT 模型的詞彙表大小。定義了在呼叫 ConvBertModelTFConvBertModel 時傳遞的 `inputs_ids` 可以表示的不同標記的數量。
  • hidden_size (int, 可選, 預設為 768) — 編碼器層和池化層的維度。
  • num_hidden_layers (int, 可選, 預設為 12) — Transformer 編碼器中的隱藏層數。
  • num_attention_heads (int, 可選, 預設為 12) — Transformer 編碼器中每個注意力層的注意力頭數量。
  • intermediate_size (int, 可選, 預設為 3072) — Transformer 編碼器中“中間”(即前饋)層的維度。
  • hidden_act (strfunction, 可選, 預設為 "gelu") — 編碼器和池化層中的非線性啟用函式(函式或字串)。如果為字串,則支援 "gelu""relu""selu""gelu_new"
  • hidden_dropout_prob (float, 可選, 預設為 0.1) — 嵌入、編碼器和池化層中所有全連線層的丟棄機率。
  • attention_probs_dropout_prob (float, 可選, 預設為 0.1) — 注意力機率的丟棄率。
  • max_position_embeddings (int, 可選, 預設為 512) — 此模型可能使用的最大序列長度。通常將其設定為較大的值以備不時之需(例如,512、1024 或 2048)。
  • type_vocab_size (int, 可選, 預設為 2) — 在呼叫 ConvBertModelTFConvBertModel 時傳遞的 `token_type_ids` 的詞彙表大小。
  • initializer_range (float, 可選, 預設為 0.02) — 用於初始化所有權重矩陣的 truncated_normal_initializer 的標準差。
  • layer_norm_eps (float, 可選, 預設為 1e-12) — 層歸一化層使用的 epsilon 值。
  • head_ratio (int, 可選, 預設為 2) — 用於減少注意力頭數量的比例 gamma。
  • num_groups (int, 可選, 預設為 1) — ConvBert 模型中分組線性層的組數。
  • conv_kernel_size (int, 可選, 預設為 9) — 卷積核的大小。
  • classifier_dropout (float, 可選) — 分類頭的丟棄率。

這是用於儲存 ConvBertModel 配置的配置類。它用於根據指定的引數例項化一個 ConvBERT 模型,定義模型架構。使用預設值例項化配置將產生與 ConvBERT YituTech/conv-bert-base 架構類似的配置。

配置物件繼承自 PretrainedConfig,可用於控制模型輸出。有關更多資訊,請閱讀 PretrainedConfig 的文件。

示例

>>> from transformers import ConvBertConfig, ConvBertModel

>>> # Initializing a ConvBERT convbert-base-uncased style configuration
>>> configuration = ConvBertConfig()

>>> # Initializing a model (with random weights) from the convbert-base-uncased style configuration
>>> model = ConvBertModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

ConvBertTokenizer

class transformers.ConvBertTokenizer

< >

( vocab_file do_lower_case = True do_basic_tokenize = True never_split = None unk_token = '[UNK]' sep_token = '[SEP]' pad_token = '[PAD]' cls_token = '[CLS]' mask_token = '[MASK]' tokenize_chinese_chars = True strip_accents = None clean_up_tokenization_spaces = True **kwargs )

引數

  • vocab_file (str) — 包含詞彙表的檔案。
  • do_lower_case (bool, 可選, 預設為 True) — 是否在分詞時將輸入轉換為小寫。
  • do_basic_tokenize (bool, 可選, 預設為 True) — 是否在 WordPiece 之前進行基本分詞。
  • never_split (Iterable, 可選) — 在分詞過程中永遠不會被分割的詞元集合。僅在 do_basic_tokenize=True 時有效。
  • unk_token (str, 可選, 預設為 "[UNK]") — 未知詞元。不在詞彙表中的詞元無法轉換為 ID,將被設定為此詞元。
  • sep_token (str, 可選, 預設為 "[SEP]") — 分隔符詞元,用於從多個序列構建一個序列時使用,例如用於序列分類的兩個序列,或用於問答的文字和問題。它也用作帶有特殊詞元的序列的最後一個詞元。
  • pad_token (str, 可選, 預設為 "[PAD]") — 用於填充的詞元,例如在批處理不同長度的序列時使用。
  • cls_token (str, 可選, 預設為 "[CLS]") — 分類器詞元,用於進行序列分類(對整個序列進行分類,而不是按詞元分類)。當使用特殊詞元構建序列時,它是序列的第一個詞元。
  • mask_token (str, 可選, 預設為 "[MASK]") — 用於掩蓋值的詞元。這是在使用掩碼語言建模訓練此模型時使用的詞元。這是模型將嘗試預測的詞元。
  • tokenize_chinese_chars (bool, 可選, 預設為 True) — 是否對中文字元進行分詞。

    對於日語,這可能應該停用(參見這個 issue)。

  • strip_accents (bool, 可選) — 是否去除所有重音符號。如果未指定此選項,則將由 lowercase 的值決定(與原始 ConvBERT 中一樣)。
  • clean_up_tokenization_spaces (bool, 可選, 預設為 True) — 是否在解碼後清理空格,清理包括移除潛在的額外空格等瑕疵。

構建一個 ConvBERT 分詞器。基於 WordPiece。

該分詞器繼承自 PreTrainedTokenizer,其中包含了大部分主要方法。使用者應參考此超類以獲取有關這些方法的更多資訊。

build_inputs_with_special_tokens

< >

( token_ids_0: list token_ids_1: typing.Optional[list[int]] = None ) List[int]

引數

  • token_ids_0 (List[int]) — 將要新增特殊詞元的 ID 列表。
  • token_ids_1 (List[int], 可選) — 用於序列對的可選的第二個 ID 列表。

返回

List[int]

帶有適當特殊標記的輸入ID列表。

透過連線和新增特殊詞元,從一個序列或一對序列為序列分類任務構建模型輸入。一個 ConvBERT 序列具有以下格式:

  • 單個序列:[CLS] X [SEP]
  • 序列對:[CLS] A [SEP] B [SEP]

get_special_tokens_mask

< >

( token_ids_0: list token_ids_1: typing.Optional[list[int]] = None already_has_special_tokens: bool = False ) List[int]

引數

  • token_ids_0 (List[int]) — ID 列表。
  • token_ids_1 (List[int], 可選) — 用於序列對的可選的第二個 ID 列表。
  • already_has_special_tokens (bool, 可選, 預設為 False) — 詞元列表是否已經為模型格式化了特殊詞元。

返回

List[int]

一個範圍為 [0, 1] 的整數列表:1 表示特殊標記,0 表示序列標記。

從沒有新增特殊標記的標記列表中檢索序列ID。此方法在使用分詞器prepare_for_model方法新增特殊標記時呼叫。

create_token_type_ids_from_sequences

< >

( token_ids_0: list token_ids_1: typing.Optional[list[int]] = None ) list[int]

引數

  • token_ids_0 (list[int]) — 第一個分詞後的序列。
  • token_ids_1 (list[int], 可選) — 第二個分詞後的序列。

返回

list[int]

標記型別 ID。

建立與傳入序列對應的標記型別 ID。什麼是標記型別 ID?

如果模型有特殊的構建方式,應在子類中重寫此方法。

save_vocabulary

< >

( save_directory: str filename_prefix: typing.Optional[str] = None )

ConvBertTokenizerFast

class transformers.ConvBertTokenizerFast

< >

( vocab_file = None tokenizer_file = None do_lower_case = True unk_token = '[UNK]' sep_token = '[SEP]' pad_token = '[PAD]' cls_token = '[CLS]' mask_token = '[MASK]' tokenize_chinese_chars = True strip_accents = None **kwargs )

引數

  • vocab_file (str) — 包含詞彙表的檔案。
  • do_lower_case (bool, 可選, 預設為 True) — 是否在分詞時將輸入轉換為小寫。
  • unk_token (str, 可選, 預設為 "[UNK]") — 未知詞元。不在詞彙表中的詞元無法轉換為 ID,將被設定為此詞元。
  • sep_token (str, 可選, 預設為 "[SEP]") — 分隔符詞元,用於從多個序列構建一個序列時使用,例如用於序列分類的兩個序列,或用於問答的文字和問題。它也用作帶有特殊詞元的序列的最後一個詞元。
  • pad_token (str, 可選, 預設為 "[PAD]") — 用於填充的詞元,例如在批處理不同長度的序列時使用。
  • cls_token (str, 可選, 預設為 "[CLS]") — 分類器詞元,用於進行序列分類(對整個序列進行分類,而不是按詞元分類)。當使用特殊詞元構建序列時,它是序列的第一個詞元。
  • mask_token (str, 可選, 預設為 "[MASK]") — 用於掩蓋值的詞元。這是在使用掩碼語言建模訓練此模型時使用的詞元。這是模型將嘗試預測的詞元。
  • clean_text (bool, 可選, 預設為 True) — 是否在分詞前透過刪除任何控制字元並將所有空白替換為標準空格來清理文字。
  • tokenize_chinese_chars (bool, 可選, 預設為 True) — 是否對中文字元進行分詞。對於日語,這可能應該停用(參見 這個 issue)。
  • strip_accents (bool, 可選) — 是否去除所有重音符號。如果未指定此選項,則將由 lowercase 的值決定(與原始 ConvBERT 中一樣)。
  • wordpieces_prefix (str, 可選, 預設為 "##") — 子詞的字首。

構建一個“快速”的 ConvBERT 分詞器(由 HuggingFace 的 tokenizers 庫支援)。基於 WordPiece。

該分詞器繼承自 PreTrainedTokenizerFast,其中包含了大部分主要方法。使用者應參考此超類以獲取有關這些方法的更多資訊。

build_inputs_with_special_tokens

< >

( token_ids_0 token_ids_1 = None ) List[int]

引數

  • token_ids_0 (List[int]) — 將要新增特殊詞元的 ID 列表。
  • token_ids_1 (List[int], 可選) — 用於序列對的可選的第二個 ID 列表。

返回

List[int]

帶有適當特殊標記的輸入ID列表。

透過連線和新增特殊詞元,從一個序列或一對序列為序列分類任務構建模型輸入。一個 ConvBERT 序列具有以下格式:

  • 單個序列:[CLS] X [SEP]
  • 序列對:[CLS] A [SEP] B [SEP]
Pytorch
隱藏 Pytorch 內容

ConvBertModel

class transformers.ConvBertModel

< >

( config )

引數

  • config (ConvBertModel) — 包含模型所有引數的模型配置類。使用配置檔案初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。

基礎的 Convbert 模型,輸出原始的隱藏狀態,沒有任何特定的頭部。

此模型繼承自 PreTrainedModel。有關該庫為其所有模型實現的通用方法(如下載或儲存、調整輸入嵌入大小、修剪頭部等),請查閱超類文件。

此模型也是 PyTorch torch.nn.Module 的子類。可以像常規 PyTorch 模組一樣使用它,並參考 PyTorch 文件瞭解所有與常規用法和行為相關的事項。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.BaseModelOutputWithCrossAttentions or tuple(torch.FloatTensor)

引數

  • input_ids (torch.LongTensor,形狀為 (batch_size, sequence_length), 可選) — 詞彙表中輸入序列詞元的索引。預設情況下將忽略填充。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參見 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (torch.FloatTensor,形狀為 (batch_size, sequence_length), 可選) — 用於避免對填充詞元索引執行注意力的掩碼。掩碼值選自 [0, 1]

    • 1 表示詞元未被掩碼,
    • 0 表示詞元已被掩碼

    什麼是注意力掩碼?

  • token_type_ids (torch.LongTensor,形狀為 (batch_size, sequence_length), 可選) — 用於指示輸入的第一部分和第二部分的片段詞元索引。索引選自 [0, 1]

    • 0 對應於 *A 句* 詞元,
    • 1 對應於 *B 句* 詞元。

    什麼是詞元型別 ID?

  • position_ids (torch.LongTensor,形狀為 (batch_size, sequence_length), 可選) — 位置嵌入中每個輸入序列詞元的位置索引。選自範圍 [0, config.n_positions - 1]

    什麼是位置 ID?

  • head_mask (torch.FloatTensor,形狀為 (num_heads,)(num_layers, num_heads), 可選) — 用於使自注意力模組的選定頭部無效的掩碼。掩碼值選自 [0, 1]

    • 1 表示頭部未被掩碼,
    • 0 表示頭部已被掩碼
  • inputs_embeds (torch.FloatTensor,形狀為 (batch_size, sequence_length, hidden_size), 可選) — 可選地,你可以選擇直接傳遞嵌入表示,而不是傳遞 input_ids。如果你想比模型內部的嵌入查詢矩陣更多地控制如何將 input_ids 索引轉換為關聯向量,這將非常有用。
  • output_attentions (bool, 可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參見返回張量下的 attentions
  • output_hidden_states (bool, 可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參見返回張量下的 hidden_states
  • return_dict (bool, 可選) — 是否返回一個 ModelOutput 物件而不是一個普通的元組。

返回

transformers.modeling_outputs.BaseModelOutputWithCrossAttentionstuple(torch.FloatTensor)

一個 transformers.modeling_outputs.BaseModelOutputWithCrossAttentions 物件或一個 torch.FloatTensor 的元組(如果傳遞了 return_dict=Falseconfig.return_dict=False),包含根據配置(ConvBertConfig)和輸入而變化的不同元素。

  • last_hidden_state (torch.FloatTensor, 形狀為 (batch_size, sequence_length, hidden_size)) — 模型最後一層輸出的隱藏狀態序列。

  • hidden_states (tuple(torch.FloatTensor), 可選, 當傳遞 output_hidden_states=Trueconfig.output_hidden_states=True 時返回) — torch.FloatTensor 的元組(如果模型有嵌入層,則一個為嵌入層的輸出,另外每個層一個輸出),形狀為 (batch_size, sequence_length, hidden_size)

    模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。

  • attentions (tuple(torch.FloatTensor), 可選, 當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — torch.FloatTensor 的元組(每層一個),形狀為 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

  • cross_attentions (tuple(torch.FloatTensor), 可選, 當傳遞 output_attentions=Trueconfig.add_cross_attention=Trueconfig.output_attentions=True 時返回) — torch.FloatTensor 的元組(每層一個),形狀為 (batch_size, num_heads, sequence_length, sequence_length)

    解碼器交叉注意力層的注意力權重,在注意力 softmax 之後,用於計算交叉注意力頭中的加權平均。

ConvBertModel 的 forward 方法,覆蓋了 __call__ 特殊方法。

儘管前向傳播的流程需要在此函式中定義,但之後應該呼叫 Module 例項而不是這個函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

ConvBertForMaskedLM

class transformers.ConvBertForMaskedLM

< >

( config )

引數

  • config (ConvBertForMaskedLM) — 模型配置類,包含模型的所有引數。使用配置檔案初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。

帶有一個 `語言建模` 頭的 Convbert 模型。

此模型繼承自 PreTrainedModel。有關該庫為其所有模型實現的通用方法(如下載或儲存、調整輸入嵌入大小、修剪頭部等),請查閱超類文件。

此模型也是 PyTorch torch.nn.Module 的子類。可以像常規 PyTorch 模組一樣使用它,並參考 PyTorch 文件瞭解所有與常規用法和行為相關的事項。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.MaskedLMOutputtuple(torch.FloatTensor)

引數

  • input_ids (torch.LongTensor,形狀為 (batch_size, sequence_length), 可選) — 詞彙表中輸入序列詞元的索引。預設情況下,填充將被忽略。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (torch.FloatTensor,形狀為 (batch_size, sequence_length), 可選) — 用於避免對填充詞元索引執行注意力的掩碼。掩碼值選自 [0, 1]

    • 1 表示詞元未被掩碼,
    • 0 表示詞元被掩碼

    什麼是注意力掩碼?

  • token_type_ids (torch.LongTensor,形狀為 (batch_size, sequence_length), 可選) — 分段詞元索引,用於指示輸入的第一部分和第二部分。索引選自 [0, 1]

    • 0 對應於*句子 A* 的詞元,
    • 1 對應於*句子 B* 的詞元。

    什麼是詞元型別 ID?

  • position_ids (torch.LongTensor,形狀為 (batch_size, sequence_length), 可選) — 每個輸入序列詞元在位置嵌入中的位置索引。選自範圍 [0, config.n_positions - 1]

    什麼是位置 ID?

  • head_mask (torch.FloatTensor,形狀為 (num_heads,)(num_layers, num_heads), 可選) — 用於置零自注意力模組中選定頭的掩碼。掩碼值選自 [0, 1]

    • 1 表示頭未被掩碼,
    • 0 表示頭被掩碼
  • inputs_embeds (torch.FloatTensor,形狀為 (batch_size, sequence_length, hidden_size), 可選) — 可選地,你可以選擇直接傳遞嵌入表示而不是 input_ids。如果你想比模型內部的嵌入查詢矩陣更好地控制如何將 input_ids 索引轉換為相關向量,這將非常有用。
  • labels (torch.LongTensor,形狀為 (batch_size, sequence_length), 可選) — 用於計算掩碼語言建模損失的標籤。索引應在 [-100, 0, ..., config.vocab_size] 中(參見 input_ids 文件字串)。索引設定為 -100 的詞元將被忽略(掩碼),損失僅針對標籤在 [0, ..., config.vocab_size] 中的詞元計算。
  • output_attentions (bool, 可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的 attentions
  • output_hidden_states (bool, 可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的 hidden_states
  • return_dict (bool, 可選) — 是否返回一個 ModelOutput 物件而不是一個普通的元組。

返回

transformers.modeling_outputs.MaskedLMOutputtuple(torch.FloatTensor)

一個 transformers.modeling_outputs.MaskedLMOutput 物件或一個 torch.FloatTensor 的元組(如果傳遞了 return_dict=Falseconfig.return_dict=False),包含根據配置(ConvBertConfig)和輸入而變化的不同元素。

  • loss (形狀為 (1,)torch.FloatTensor可選,當提供 labels 時返回) — 掩碼語言建模 (MLM) 損失。

  • logits (形狀為 (batch_size, sequence_length, config.vocab_size)torch.FloatTensor) — 語言建模頭部的預測分數(SoftMax 之前的每個詞彙標記的分數)。

  • hidden_states (tuple(torch.FloatTensor), 可選, 當傳遞 output_hidden_states=Trueconfig.output_hidden_states=True 時返回) — torch.FloatTensor 的元組(如果模型有嵌入層,則一個為嵌入層的輸出,另外每個層一個輸出),形狀為 (batch_size, sequence_length, hidden_size)

    模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。

  • attentions (tuple(torch.FloatTensor), 可選, 當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — torch.FloatTensor 的元組(每層一個),形狀為 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

ConvBertForMaskedLM 的 forward 方法,覆蓋了 __call__ 特殊方法。

儘管前向傳播的流程需要在此函式中定義,但之後應該呼叫 Module 例項而不是這個函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> from transformers import AutoTokenizer, ConvBertForMaskedLM
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("YituTech/conv-bert-base")
>>> model = ConvBertForMaskedLM.from_pretrained("YituTech/conv-bert-base")

>>> inputs = tokenizer("The capital of France is <mask>.", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> # retrieve index of <mask>
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]

>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
>>> tokenizer.decode(predicted_token_id)
...

>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
>>> # mask labels of non-<mask> tokens
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)

>>> outputs = model(**inputs, labels=labels)
>>> round(outputs.loss.item(), 2)
...

ConvBertForSequenceClassification

class transformers.ConvBertForSequenceClassification

< >

( config )

引數

ConvBERT 模型 Transformer,其頂部帶有一個序列分類/迴歸頭(一個在池化輸出頂部的線性層),例如用於 GLUE 任務。

此模型繼承自 PreTrainedModel。有關該庫為其所有模型實現的通用方法(如下載或儲存、調整輸入嵌入大小、修剪頭部等),請查閱超類文件。

此模型也是 PyTorch torch.nn.Module 的子類。可以像常規 PyTorch 模組一樣使用它,並參考 PyTorch 文件瞭解所有與常規用法和行為相關的事項。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.SequenceClassifierOutputtuple(torch.FloatTensor)

引數

  • input_ids (torch.LongTensor,形狀為 (batch_size, sequence_length), 可選) — 詞彙表中輸入序列詞元的索引。預設情況下,填充將被忽略。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (torch.FloatTensor,形狀為 (batch_size, sequence_length), 可選) — 用於避免對填充詞元索引執行注意力的掩碼。掩碼值選自 [0, 1]

    • 1 表示詞元未被掩碼,
    • 0 表示詞元被掩碼

    什麼是注意力掩碼?

  • token_type_ids (torch.LongTensor,形狀為 (batch_size, sequence_length), 可選) — 分段詞元索引,用於指示輸入的第一部分和第二部分。索引選自 [0, 1]

    • 0 對應於*句子 A* 的詞元,
    • 1 對應於*句子 B* 的詞元。

    什麼是詞元型別 ID?

  • position_ids (torch.LongTensor,形狀為 (batch_size, sequence_length), 可選) — 每個輸入序列詞元在位置嵌入中的位置索引。選自範圍 [0, config.n_positions - 1]

    什麼是位置 ID?

  • head_mask (torch.FloatTensor,形狀為 (num_heads,)(num_layers, num_heads), 可選) — 用於置零自注意力模組中選定頭的掩碼。掩碼值選自 [0, 1]

    • 1 表示頭未被掩碼,
    • 0 表示頭被掩碼
  • inputs_embeds (torch.FloatTensor,形狀為 (batch_size, sequence_length, hidden_size), 可選) — 可選地,你可以選擇直接傳遞嵌入表示而不是 input_ids。如果你想比模型內部的嵌入查詢矩陣更好地控制如何將 input_ids 索引轉換為相關向量,這將非常有用。
  • labels (torch.LongTensor,形狀為 (batch_size,), 可選) — 用於計算序列分類/迴歸損失的標籤。索引應在 [0, ..., config.num_labels - 1] 中。如果 config.num_labels == 1,則計算迴歸損失(均方損失)。如果 config.num_labels > 1,則計算分類損失(交叉熵)。
  • output_attentions (bool, 可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的 attentions
  • output_hidden_states (bool, 可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的 hidden_states
  • return_dict (bool, 可選) — 是否返回一個 ModelOutput 物件而不是一個普通的元組。

返回

transformers.modeling_outputs.SequenceClassifierOutputtuple(torch.FloatTensor)

一個 transformers.modeling_outputs.SequenceClassifierOutput 物件或一個 torch.FloatTensor 的元組(如果傳遞了 return_dict=Falseconfig.return_dict=False),包含根據配置(ConvBertConfig)和輸入而變化的不同元素。

  • loss (形狀為 (1,)torch.FloatTensor可選,當提供 labels 時返回) — 分類損失(如果 config.num_labels==1,則為迴歸損失)。

  • logits (形狀為 (batch_size, config.num_labels)torch.FloatTensor) — 分類(如果 config.num_labels==1,則為迴歸)分數(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor), 可選, 當傳遞 output_hidden_states=Trueconfig.output_hidden_states=True 時返回) — torch.FloatTensor 的元組(如果模型有嵌入層,則一個為嵌入層的輸出,另外每個層一個輸出),形狀為 (batch_size, sequence_length, hidden_size)

    模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。

  • attentions (tuple(torch.FloatTensor), 可選, 當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — torch.FloatTensor 的元組(每層一個),形狀為 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

ConvBertForSequenceClassification 的 forward 方法,覆蓋了 __call__ 特殊方法。

儘管前向傳播的流程需要在此函式中定義,但之後應該呼叫 Module 例項而不是這個函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

單標籤分類示例

>>> import torch
>>> from transformers import AutoTokenizer, ConvBertForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("YituTech/conv-bert-base")
>>> model = ConvBertForSequenceClassification.from_pretrained("YituTech/conv-bert-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_id = logits.argmax().item()
>>> model.config.id2label[predicted_class_id]
...

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = ConvBertForSequenceClassification.from_pretrained("YituTech/conv-bert-base", num_labels=num_labels)

>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...

多標籤分類示例

>>> import torch
>>> from transformers import AutoTokenizer, ConvBertForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("YituTech/conv-bert-base")
>>> model = ConvBertForSequenceClassification.from_pretrained("YituTech/conv-bert-base", problem_type="multi_label_classification")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = ConvBertForSequenceClassification.from_pretrained(
...     "YituTech/conv-bert-base", num_labels=num_labels, problem_type="multi_label_classification"
... )

>>> labels = torch.sum(
...     torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss

ConvBertForMultipleChoice

class transformers.ConvBertForMultipleChoice

< >

( config )

引數

  • config (ConvBertForMultipleChoice) — 模型配置類,包含模型的所有引數。使用配置檔案初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。

Convbert 模型,其頂部帶有一個多項選擇分類頭(一個在池化輸出頂部的線性和 softmax 層),例如用於 RocStories/SWAG 任務。

此模型繼承自 PreTrainedModel。有關該庫為其所有模型實現的通用方法(如下載或儲存、調整輸入嵌入大小、修剪頭部等),請查閱超類文件。

此模型也是 PyTorch torch.nn.Module 的子類。可以像常規 PyTorch 模組一樣使用它,並參考 PyTorch 文件瞭解所有與常規用法和行為相關的事項。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.MultipleChoiceModelOutputtuple(torch.FloatTensor)

引數

  • input_ids (torch.LongTensor,形狀為 (batch_size, num_choices, sequence_length)) — 詞彙表中輸入序列詞元的索引。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (torch.FloatTensor,形狀為 (batch_size, sequence_length), 可選) — 用於避免對填充詞元索引執行注意力的掩碼。掩碼值選自 [0, 1]

    • 1 表示詞元未被掩碼,
    • 0 表示詞元被掩碼

    什麼是注意力掩碼?

  • token_type_ids (torch.LongTensor,形狀為 (batch_size, num_choices, sequence_length), 可選) — 分段詞元索引,用於指示輸入的第一部分和第二部分。索引選自 [0, 1]

返回

transformers.modeling_outputs.MultipleChoiceModelOutputtuple(torch.FloatTensor)

一個 transformers.modeling_outputs.MultipleChoiceModelOutput 物件或一個 torch.FloatTensor 的元組(如果傳遞了 return_dict=Falseconfig.return_dict=False),包含根據配置(ConvBertConfig)和輸入而變化的不同元素。

  • loss (形狀為 (1,)torch.FloatTensor可選,當提供 labels 時返回) — 分類損失。

  • logits (形狀為 (batch_size, num_choices)torch.FloatTensor) — num_choices 是輸入張量的第二維大小。(請參閱上面的 input_ids)。

    分類分數(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor), 可選, 當傳遞 output_hidden_states=Trueconfig.output_hidden_states=True 時返回) — torch.FloatTensor 的元組(如果模型有嵌入層,則一個為嵌入層的輸出,另外每個層一個輸出),形狀為 (batch_size, sequence_length, hidden_size)

    模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。

  • attentions (tuple(torch.FloatTensor), 可選, 當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — torch.FloatTensor 的元組(每層一個),形狀為 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

ConvBertForMultipleChoice 的 forward 方法,覆蓋了 __call__ 特殊方法。

儘管前向傳播的流程需要在此函式中定義,但之後應該呼叫 Module 例項而不是這個函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> from transformers import AutoTokenizer, ConvBertForMultipleChoice
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("YituTech/conv-bert-base")
>>> model = ConvBertForMultipleChoice.from_pretrained("YituTech/conv-bert-base")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0)  # choice0 is correct (according to Wikipedia ;)), batch size 1

>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels)  # batch size is 1

>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits

ConvBertForTokenClassification

class transformers.ConvBertForTokenClassification

< >

( config )

引數

  • config (ConvBertForTokenClassification) — 模型配置類,包含模型的所有引數。使用配置檔案初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。

Convbert transformer,其頂部帶有一個詞元分類頭(一個在隱藏狀態輸出頂部的線性層),例如用於命名實體識別(NER)任務。

此模型繼承自 PreTrainedModel。有關該庫為其所有模型實現的通用方法(如下載或儲存、調整輸入嵌入大小、修剪頭部等),請查閱超類文件。

此模型也是 PyTorch torch.nn.Module 的子類。可以像常規 PyTorch 模組一樣使用它,並參考 PyTorch 文件瞭解所有與常規用法和行為相關的事項。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

引數

  • input_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 詞彙表中輸入序列標記的索引。預設情況下,填充將被忽略。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (torch.FloatTensor,形狀為 (batch_size, sequence_length)可選) — 用於避免對填充標記索引執行注意力操作的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示標記未被遮蔽
    • 0 表示標記已被遮蔽

    什麼是注意力掩碼?

  • token_type_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 用於指示輸入的第一部分和第二部分的段標記索引。索引在 [0, 1] 中選擇:

    • 0 對應於 *A 句子* 的標記,
    • 1 對應於 *B 句子* 的標記。

    什麼是標記型別 ID?

  • position_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 位置嵌入中每個輸入序列標記的位置索引。在 [0, config.n_positions - 1] 範圍內選擇。

    什麼是位置 ID?

  • head_mask (torch.FloatTensor,形狀為 (num_heads,)(num_layers, num_heads)可選) — 用於置零自注意力模組中選定頭的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示頭未被遮蔽
    • 0 表示頭已被遮蔽
  • inputs_embeds (torch.FloatTensor,形狀為 (batch_size, sequence_length, hidden_size)可選) — 可選地,你可以不傳遞 input_ids,而是直接傳遞一個嵌入表示。如果你想比模型內部的嵌入查詢矩陣更好地控制如何將 input_ids 索引轉換為關聯向量,這會很有用。
  • labels (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 用於計算標記分類損失的標籤。索引應在 [0, ..., config.num_labels - 1] 範圍內。
  • output_attentions (bool可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的 attentions
  • output_hidden_states (bool可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的 hidden_states
  • return_dict (bool可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。

返回

transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

一個 transformers.modeling_outputs.TokenClassifierOutput 或一個 torch.FloatTensor 的元組(如果傳遞 return_dict=False 或當 config.return_dict=False 時),根據配置(ConvBertConfig)和輸入包含各種元素。

  • loss (形狀為 (1,)torch.FloatTensor可選,當提供 labels 時返回) — 分類損失。

  • logits (形狀為 (batch_size, sequence_length, config.num_labels)torch.FloatTensor) — 分類分數(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor), 可選, 當傳遞 output_hidden_states=Trueconfig.output_hidden_states=True 時返回) — torch.FloatTensor 的元組(如果模型有嵌入層,則一個為嵌入層的輸出,另外每個層一個輸出),形狀為 (batch_size, sequence_length, hidden_size)

    模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。

  • attentions (tuple(torch.FloatTensor), 可選, 當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — torch.FloatTensor 的元組(每層一個),形狀為 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

ConvBertForTokenClassification 的前向方法會覆蓋 __call__ 特殊方法。

儘管前向傳播的流程需要在此函式中定義,但之後應該呼叫 Module 例項而不是這個函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> from transformers import AutoTokenizer, ConvBertForTokenClassification
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("YituTech/conv-bert-base")
>>> model = ConvBertForTokenClassification.from_pretrained("YituTech/conv-bert-base")

>>> inputs = tokenizer(
...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_token_class_ids = logits.argmax(-1)

>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> predicted_tokens_classes
...

>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...

ConvBertForQuestionAnswering

class transformers.ConvBertForQuestionAnswering

< >

( config )

引數

  • config (ConvBertForQuestionAnswering) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。

帶有片段分類頭的 Convbert Transformer,用於抽取式問答任務,如 SQuAD(在隱藏狀態輸出之上新增一個線性層,用於計算 `span start logits` 和 `span end logits`)。

此模型繼承自 PreTrainedModel。有關該庫為其所有模型實現的通用方法(如下載或儲存、調整輸入嵌入大小、修剪頭部等),請查閱超類文件。

此模型也是 PyTorch torch.nn.Module 的子類。可以像常規 PyTorch 模組一樣使用它,並參考 PyTorch 文件瞭解所有與常規用法和行為相關的事項。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None start_positions: typing.Optional[torch.LongTensor] = None end_positions: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.QuestionAnsweringModelOutputtuple(torch.FloatTensor)

引數

  • input_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 詞彙表中輸入序列標記的索引。預設情況下,填充將被忽略。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (torch.FloatTensor,形狀為 (batch_size, sequence_length)可選) — 用於避免對填充標記索引執行注意力操作的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示標記未被遮蔽
    • 0 表示標記已被遮蔽

    什麼是注意力掩碼?

  • token_type_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 用於指示輸入的第一部分和第二部分的段標記索引。索引在 [0, 1] 中選擇:

    • 0 對應於 *A 句子* 的標記,
    • 1 對應於 *B 句子* 的標記。

    什麼是標記型別 ID?

  • position_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 位置嵌入中每個輸入序列標記的位置索引。在 [0, config.n_positions - 1] 範圍內選擇。

    什麼是位置 ID?

  • head_mask (torch.FloatTensor,形狀為 (num_heads,)(num_layers, num_heads)可選) — 用於置零自注意力模組中選定頭的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示頭未被遮蔽
    • 0 表示頭已被遮蔽
  • inputs_embeds (torch.FloatTensor,形狀為 (batch_size, sequence_length, hidden_size)可選) — 可選地,你可以不傳遞 input_ids,而是直接傳遞一個嵌入表示。如果你想比模型內部的嵌入查詢矩陣更好地控制如何將 input_ids 索引轉換為關聯向量,這會很有用。
  • start_positions (torch.LongTensor,形狀為 (batch_size,)可選) — 標記片段開始位置(索引)的標籤,用於計算標記分類損失。位置被限制在序列長度(sequence_length)範圍內。超出序列範圍的位置在計算損失時不被考慮。
  • end_positions (torch.LongTensor,形狀為 (batch_size,)可選) — 標記片段結束位置(索引)的標籤,用於計算標記分類損失。位置被限制在序列長度(sequence_length)範圍內。超出序列範圍的位置在計算損失時不被考慮。
  • output_attentions (bool可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的 attentions
  • output_hidden_states (bool可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的 hidden_states
  • return_dict (bool可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。

返回

transformers.modeling_outputs.QuestionAnsweringModelOutputtuple(torch.FloatTensor)

一個 transformers.modeling_outputs.QuestionAnsweringModelOutput 或一個 torch.FloatTensor 的元組(如果傳遞 return_dict=False 或當 config.return_dict=False 時),根據配置(ConvBertConfig)和輸入包含各種元素。

  • loss (torch.FloatTensor of shape (1,), 可選, 當提供 labels 時返回) — 總範圍提取損失是起始位置和結束位置的交叉熵之和。

  • start_logits (torch.FloatTensor of shape (batch_size, sequence_length)) — 範圍起始分數(SoftMax 之前)。

  • end_logits (torch.FloatTensor of shape (batch_size, sequence_length)) — 範圍結束分數(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor), 可選, 當傳遞 output_hidden_states=Trueconfig.output_hidden_states=True 時返回) — torch.FloatTensor 的元組(如果模型有嵌入層,則一個為嵌入層的輸出,另外每個層一個輸出),形狀為 (batch_size, sequence_length, hidden_size)

    模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。

  • attentions (tuple(torch.FloatTensor), 可選, 當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — torch.FloatTensor 的元組(每層一個),形狀為 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

ConvBertForQuestionAnswering 的前向方法會覆蓋 __call__ 特殊方法。

儘管前向傳播的流程需要在此函式中定義,但之後應該呼叫 Module 例項而不是這個函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> from transformers import AutoTokenizer, ConvBertForQuestionAnswering
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("YituTech/conv-bert-base")
>>> model = ConvBertForQuestionAnswering.from_pretrained("YituTech/conv-bert-base")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()

>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> tokenizer.decode(predict_answer_tokens, skip_special_tokens=True)
...

>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])

>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss
>>> round(loss.item(), 2)
...
TensorFlow
隱藏 TensorFlow 內容

TFConvBertModel

class transformers.TFConvBertModel

< >

( config *inputs **kwargs )

引數

  • config (ConvBertConfig) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。

基礎的 ConvBERT 模型 Transformer,輸出原始的隱藏狀態,頂部沒有任何特定的頭。

此模型繼承自 TFPreTrainedModel。請查閱超類文件以瞭解該庫為所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭等)。

該模型也是 keras.Model 的子類。可以像常規的 TF 2.0 Keras 模型一樣使用它,並參考 TF 2.0 文件瞭解所有與常規用法和行為相關的事項。

transformers 中的 TensorFlow 模型和層接受兩種輸入格式

  • 所有輸入作為關鍵字引數(如 PyTorch 模型),或
  • 所有輸入作為第一個位置引數中的列表、元組或字典。

支援第二種格式的原因是,Keras 方法在將輸入傳遞給模型和層時更喜歡這種格式。由於這種支援,當使用像 `model.fit()` 這樣的方法時,一切應該都能“正常工作”——只需以 `model.fit()` 支援的任何格式傳遞你的輸入和標籤!但是,如果你想在 Keras 方法(如 `fit()` 和 `predict()`)之外使用第二種格式,例如在使用 Keras `Functional` API 建立自己的層或模型時,有三種可能性可以用來將所有輸入張量收集到第一個位置引數中

  • 只有一個 input_ids 的單個張量,沒有其他:model(input_ids)
  • 長度可變的列表,包含一個或多個輸入張量,按文件字串中給出的順序:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 一個字典,其中包含一個或多個與文件字串中給出的輸入名稱關聯的輸入張量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

請注意,當透過子類化建立模型和層時,你不需要擔心任何這些問題,因為你可以像呼叫任何其他 Python 函式一樣傳遞輸入!

呼叫

< >

( input_ids: TFModelInputType | None = None attention_mask: Optional[Union[np.array, tf.Tensor]] = None token_type_ids: Optional[Union[np.array, tf.Tensor]] = None position_ids: Optional[Union[np.array, tf.Tensor]] = None head_mask: Optional[Union[np.array, tf.Tensor]] = None inputs_embeds: tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: bool = False ) transformers.modeling_tf_outputs.TFBaseModelOutputtuple(tf.Tensor)

引數

  • input_ids (Numpy 陣列tf.Tensor,形狀為 (batch_size, sequence_length)) — 詞彙表中輸入序列標記的索引。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.call()PreTrainedTokenizer.encode()

    什麼是輸入 ID?

  • attention_mask (Numpy 陣列tf.Tensor,形狀為 (batch_size, sequence_length)可選) — 用於避免對填充標記索引執行注意力操作的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示標記未被遮蔽
    • 0 表示標記已被遮蔽

    什麼是注意力掩碼?

  • token_type_ids (Numpy 陣列tf.Tensor,形狀為 (batch_size, sequence_length)可選) — 用於指示輸入的第一部分和第二部分的段標記索引。索引在 [0, 1] 中選擇:

    • 0 對應於 *A 句子* 的標記,
    • 1 對應於 *B 句子* 的標記。

    什麼是標記型別 ID?

  • position_ids (Numpy 陣列tf.Tensor,形狀為 (batch_size, sequence_length)可選) — 位置嵌入中每個輸入序列標記的位置索引。在 [0, config.max_position_embeddings - 1] 範圍內選擇。

    什麼是位置 ID?

  • head_mask (Numpy 陣列tf.Tensor,形狀為 (num_heads,)(num_layers, num_heads)可選) — 用於置零自注意力模組中選定頭的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示頭未被遮蔽
    • 0 表示頭已被遮蔽
  • inputs_embeds (tf.Tensor,形狀為 (batch_size, sequence_length, hidden_size)可選) — 可選地,你可以不傳遞 input_ids,而是直接傳遞一個嵌入表示。如果你想比模型內部的嵌入查詢矩陣更好地控制如何將 input_ids 索引轉換為關聯向量,這會很有用。
  • output_attentions (bool可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的 attentions。此引數只能在 Eager 模式下使用,在圖模式下將使用配置中的值。
  • output_hidden_states (bool可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的 hidden_states。此引數只能在 Eager 模式下使用,在圖模式下將使用配置中的值。
  • return_dict (bool可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。此引數可以在 Eager 模式下使用,在圖模式下該值將始終設定為 True。
  • training (bool可選,預設為 False) — 是否在訓練模式下使用模型(一些模組如 dropout 模組在訓練和評估之間有不同的行為)。

返回

transformers.modeling_tf_outputs.TFBaseModelOutputtuple(tf.Tensor)

一個 transformers.modeling_tf_outputs.TFBaseModelOutput 或一個 tf.Tensor 的元組(如果傳遞 return_dict=False 或當 config.return_dict=False 時),根據配置(ConvBertConfig)和輸入包含各種元素。

  • last_hidden_state (tf.Tensor of shape (batch_size, sequence_length, hidden_size)) — 模型最後一層輸出的隱藏狀態序列。

  • hidden_states (tuple(tf.FloatTensor)可選,當傳遞 output_hidden_states=Trueconfig.output_hidden_states=True 時返回) — tf.Tensor 的元組(一個用於嵌入層的輸出 + 一個用於每層的輸出),形狀為 (batch_size, sequence_length, hidden_size)

    模型在每個層輸出的隱藏狀態加上初始嵌入輸出。

  • attentions (tuple(tf.Tensor)可選,當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — tf.Tensor 的元組(每層一個),形狀為 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

TFConvBertModel 的前向方法會覆蓋 __call__ 特殊方法。

儘管前向傳播的流程需要在此函式中定義,但之後應該呼叫 Module 例項而不是這個函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> from transformers import AutoTokenizer, TFConvBertModel
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("YituTech/conv-bert-base")
>>> model = TFConvBertModel.from_pretrained("YituTech/conv-bert-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)

>>> last_hidden_states = outputs.last_hidden_state

TFConvBertForMaskedLM

class transformers.TFConvBertForMaskedLM

< >

( config *inputs **kwargs )

引數

  • config (ConvBertConfig) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。

帶有 `語言建模` 頭的 ConvBERT 模型。

此模型繼承自 TFPreTrainedModel。請查閱超類文件以瞭解該庫為所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭等)。

該模型也是 keras.Model 的子類。可以像常規的 TF 2.0 Keras 模型一樣使用它,並參考 TF 2.0 文件瞭解所有與常規用法和行為相關的事項。

transformers 中的 TensorFlow 模型和層接受兩種輸入格式

  • 所有輸入作為關鍵字引數(如 PyTorch 模型),或
  • 所有輸入作為第一個位置引數中的列表、元組或字典。

支援第二種格式的原因是,Keras 方法在將輸入傳遞給模型和層時更喜歡這種格式。由於這種支援,當使用像 `model.fit()` 這樣的方法時,一切應該都能“正常工作”——只需以 `model.fit()` 支援的任何格式傳遞你的輸入和標籤!但是,如果你想在 Keras 方法(如 `fit()` 和 `predict()`)之外使用第二種格式,例如在使用 Keras `Functional` API 建立自己的層或模型時,有三種可能性可以用來將所有輸入張量收集到第一個位置引數中

  • 只有一個 input_ids 的單個張量,沒有其他:model(input_ids)
  • 長度可變的列表,包含一個或多個輸入張量,按文件字串中給出的順序:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 一個字典,其中包含一個或多個與文件字串中給出的輸入名稱關聯的輸入張量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

請注意,當透過子類化建立模型和層時,你不需要擔心任何這些問題,因為你可以像呼叫任何其他 Python 函式一樣傳遞輸入!

呼叫

< >

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: tf.Tensor | None = None training: Optional[bool] = False ) transformers.modeling_tf_outputs.TFMaskedLMOutputtuple(tf.Tensor)

引數

  • input_ids (Numpy 陣列tf.Tensor,形狀為 (batch_size, sequence_length)) — 詞彙表中輸入序列標記的索引。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.call()PreTrainedTokenizer.encode()

    什麼是輸入 ID?

  • attention_mask (Numpy 陣列tf.Tensor,形狀為 (batch_size, sequence_length)可選) — 用於避免對填充標記索引執行注意力操作的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示標記未被遮蔽
    • 0 表示標記已被遮蔽

    什麼是注意力掩碼?

  • token_type_ids (Numpy 陣列tf.Tensor,形狀為 (batch_size, sequence_length)可選) — 用於指示輸入的第一部分和第二部分的段標記索引。索引在 [0, 1] 中選擇:

    • 0 對應於 *A 句子* 的標記,
    • 1 對應於 *B 句子* 的標記。

    什麼是標記型別 ID?

  • position_ids (Numpy 陣列tf.Tensor,形狀為 (batch_size, sequence_length)可選) — 位置嵌入中每個輸入序列標記的位置索引。在 [0, config.max_position_embeddings - 1] 範圍內選擇。

    什麼是位置 ID?

  • head_mask (Numpy arraytf.Tensor,形狀為 (num_heads,)(num_layers, num_heads)可選) — 用於使自注意力模組中選定的頭無效的掩碼。掩碼值選自 [0, 1]

    • 1 表示該頭未被掩碼
    • 0 表示該頭已被掩碼
  • inputs_embeds (tf.Tensor,形狀為 (batch_size, sequence_length, hidden_size)可選) — 可選地,你可以不傳遞 input_ids,而是直接傳遞一個嵌入表示。如果你想比模型內部的嵌入查詢矩陣更好地控制如何將 input_ids 索引轉換為相關向量,這會非常有用。
  • output_attentions (bool可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的 attentions。此引數只能在即時執行模式(eager mode)下使用,在圖模式(graph mode)下將使用配置中的值。
  • output_hidden_states (bool可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的 hidden_states。此引數只能在即時執行模式(eager mode)下使用,在圖模式(graph mode)下將使用配置中的值。
  • return_dict (bool可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。此引數可以在即時執行模式(eager mode)下使用,在圖模式(graph mode)下該值將始終設定為 True。
  • training (bool可選,預設為 False) — 是否在訓練模式下使用模型(某些模組如 dropout 模組在訓練和評估之間有不同的行為)。
  • labels (tf.Tensor,形狀為 (batch_size, sequence_length)可選) — 用於計算掩碼語言建模損失的標籤。索引應在 [-100, 0, ..., config.vocab_size] 範圍內(參見 input_ids 文件字串)。索引設定為 -100 的詞元將被忽略(掩碼),損失僅針對標籤在 [0, ..., config.vocab_size] 範圍內的詞元進行計算。

返回

transformers.modeling_tf_outputs.TFMaskedLMOutputtuple(tf.Tensor)

一個 transformers.modeling_tf_outputs.TFMaskedLMOutput 或一個 tf.Tensor 的元組(如果傳遞了 return_dict=Falseconfig.return_dict=False),根據配置 (ConvBertConfig) 和輸入,包含各種元素。

  • loss (tf.Tensor of shape (n,), 可選, 其中 n 是非掩碼標籤的數量,當提供 labels 時返回) — 掩碼語言模型 (MLM) 損失。

  • logits (tf.Tensor of shape (batch_size, sequence_length, config.vocab_size)) — 語言模型頭部的預測分數(SoftMax 之前每個詞彙標記的分數)。

  • hidden_states (tuple(tf.Tensor)可選,當傳遞 output_hidden_states=Trueconfig.output_hidden_states=True 時返回) — tf.Tensor 的元組(一個用於嵌入層的輸出 + 一個用於每層的輸出),形狀為 (batch_size, sequence_length, hidden_size)

    模型在每個層輸出的隱藏狀態加上初始嵌入輸出。

  • attentions (tuple(tf.Tensor)可選,當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — tf.Tensor 的元組(每層一個),形狀為 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

TFConvBertForMaskedLM 的前向方法,覆蓋了 __call__ 特殊方法。

儘管前向傳播的流程需要在此函式中定義,但之後應該呼叫 Module 例項而不是這個函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> from transformers import AutoTokenizer, TFConvBertForMaskedLM
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("YituTech/conv-bert-base")
>>> model = TFConvBertForMaskedLM.from_pretrained("YituTech/conv-bert-base")

>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="tf")
>>> logits = model(**inputs).logits

>>> # retrieve index of [MASK]
>>> mask_token_index = tf.where((inputs.input_ids == tokenizer.mask_token_id)[0])
>>> selected_logits = tf.gather_nd(logits[0], indices=mask_token_index)

>>> predicted_token_id = tf.math.argmax(selected_logits, axis=-1)
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="tf")["input_ids"]
>>> # mask labels of non-[MASK] tokens
>>> labels = tf.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)

>>> outputs = model(**inputs, labels=labels)

TFConvBertForSequenceClassification

class transformers.TFConvBertForSequenceClassification

< >

( config *inputs **kwargs )

引數

  • config (ConvBertConfig) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化不會載入與模型相關的權重,僅載入配置。請檢視 from_pretrained() 方法以載入模型權重。

ConvBERT 模型 Transformer,其頂部帶有一個序列分類/迴歸頭,例如用於 GLUE 任務。

此模型繼承自 TFPreTrainedModel。請查閱超類文件以瞭解該庫為所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭等)。

該模型也是 keras.Model 的子類。可以像常規的 TF 2.0 Keras 模型一樣使用它,並參考 TF 2.0 文件瞭解所有與常規用法和行為相關的事項。

transformers 中的 TensorFlow 模型和層接受兩種輸入格式

  • 所有輸入作為關鍵字引數(如 PyTorch 模型),或
  • 所有輸入作為第一個位置引數中的列表、元組或字典。

支援第二種格式的原因是,Keras 方法在將輸入傳遞給模型和層時更喜歡這種格式。由於這種支援,當使用像 `model.fit()` 這樣的方法時,一切應該都能“正常工作”——只需以 `model.fit()` 支援的任何格式傳遞你的輸入和標籤!但是,如果你想在 Keras 方法(如 `fit()` 和 `predict()`)之外使用第二種格式,例如在使用 Keras `Functional` API 建立自己的層或模型時,有三種可能性可以用來將所有輸入張量收集到第一個位置引數中

  • 只有一個 input_ids 的單個張量,沒有其他:model(input_ids)
  • 長度可變的列表,包含一個或多個輸入張量,按文件字串中給出的順序:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 一個字典,其中包含一個或多個與文件字串中給出的輸入名稱關聯的輸入張量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

請注意,當透過子類化建立模型和層時,你不需要擔心任何這些問題,因為你可以像呼叫任何其他 Python 函式一樣傳遞輸入!

呼叫

< >

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: tf.Tensor | None = None training: Optional[bool] = False ) transformers.modeling_tf_outputs.TFSequenceClassifierOutputtuple(tf.Tensor)

引數

  • input_ids (Numpy arraytf.Tensor,形狀為 (batch_size, sequence_length)) — 詞彙表中輸入序列詞元的索引。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.call()PreTrainedTokenizer.encode()

    什麼是輸入 ID?

  • attention_mask (Numpy arraytf.Tensor,形狀為 (batch_size, sequence_length)可選) — 用於避免對填充詞元索引執行注意力的掩碼。掩碼值選自 [0, 1]

    • 1 表示詞元未被掩碼
    • 0 表示詞元已被掩碼

    什麼是注意力掩碼?

  • token_type_ids (Numpy arraytf.Tensor,形狀為 (batch_size, sequence_length)可選) — 段標記索引,用於指示輸入的第一部分和第二部分。索引選自 [0, 1]

    • 0 對應於 *句子 A* 的詞元,
    • 1 對應於 *句子 B* 的詞元。

    什麼是詞元型別 ID?

  • position_ids (Numpy arraytf.Tensor,形狀為 (batch_size, sequence_length)可選) — 每個輸入序列詞元在位置嵌入中的位置索引。選自範圍 [0, config.max_position_embeddings - 1]

    什麼是位置 ID?

  • head_mask (Numpy arraytf.Tensor,形狀為 (num_heads,)(num_layers, num_heads)可選) — 用於使自注意力模組中選定的頭無效的掩碼。掩碼值選自 [0, 1]

    • 1 表示該頭未被掩碼
    • 0 表示該頭已被掩碼
  • inputs_embeds (tf.Tensor,形狀為 (batch_size, sequence_length, hidden_size)可選) — 可選地,你可以不傳遞 input_ids,而是直接傳遞一個嵌入表示。如果你想比模型內部的嵌入查詢矩陣更好地控制如何將 input_ids 索引轉換為相關向量,這會非常有用。
  • output_attentions (bool可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的 attentions。此引數只能在即時執行模式(eager mode)下使用,在圖模式(graph mode)下將使用配置中的值。
  • output_hidden_states (bool可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的 hidden_states。此引數只能在即時執行模式(eager mode)下使用,在圖模式(graph mode)下將使用配置中的值。
  • return_dict (bool可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。此引數可以在即時執行模式(eager mode)下使用,在圖模式(graph mode)下該值將始終設定為 True。
  • training (bool可選,預設為 False) — 是否在訓練模式下使用模型(某些模組如 dropout 模組在訓練和評估之間有不同的行為)。
  • labels (tf.Tensor,形狀為 (batch_size,)可選) — 用於計算序列分類/迴歸損失的標籤。索引應在 [0, ..., config.num_labels - 1] 範圍內。如果 config.num_labels == 1,則計算迴歸損失(均方損失),如果 config.num_labels > 1,則計算分類損失(交叉熵)。

返回

transformers.modeling_tf_outputs.TFSequenceClassifierOutputtuple(tf.Tensor)

一個 transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或一個 tf.Tensor 的元組(如果傳遞了 return_dict=Falseconfig.return_dict=False),根據配置 (ConvBertConfig) 和輸入,包含各種元素。

  • loss (tf.Tensor,形狀為 (batch_size, )可選,當提供 labels 時返回) — 分類損失(如果 config.num_labels==1,則為迴歸損失)。

  • logits (tf.Tensor,形狀為 (batch_size, config.num_labels)) — 分類(或迴歸,如果 config.num_labels==1)分數(SoftMax 之前)。

  • hidden_states (tuple(tf.Tensor)可選,當傳遞 output_hidden_states=Trueconfig.output_hidden_states=True 時返回) — tf.Tensor 的元組(一個用於嵌入層的輸出 + 一個用於每層的輸出),形狀為 (batch_size, sequence_length, hidden_size)

    模型在每個層輸出的隱藏狀態加上初始嵌入輸出。

  • attentions (tuple(tf.Tensor)可選,當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — tf.Tensor 的元組(每層一個),形狀為 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

TFConvBertForSequenceClassification 的前向方法,覆蓋了 __call__ 特殊方法。

儘管前向傳播的流程需要在此函式中定義,但之後應該呼叫 Module 例項而不是這個函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> from transformers import AutoTokenizer, TFConvBertForSequenceClassification
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("YituTech/conv-bert-base")
>>> model = TFConvBertForSequenceClassification.from_pretrained("YituTech/conv-bert-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")

>>> logits = model(**inputs).logits

>>> predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0])
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = TFConvBertForSequenceClassification.from_pretrained("YituTech/conv-bert-base", num_labels=num_labels)

>>> labels = tf.constant(1)
>>> loss = model(**inputs, labels=labels).loss

TFConvBertForMultipleChoice

class transformers.TFConvBertForMultipleChoice

< >

( config *inputs **kwargs )

引數

  • config (ConvBertConfig) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化不會載入與模型相關的權重,僅載入配置。請檢視 from_pretrained() 方法以載入模型權重。

ConvBERT 模型,頂部帶有一個多項選擇分類頭(池化輸出之上的線性層和 softmax),例如用於 RocStories/SWAG 任務。

此模型繼承自 TFPreTrainedModel。請查閱超類文件以瞭解該庫為所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭等)。

該模型也是 keras.Model 的子類。可以像常規的 TF 2.0 Keras 模型一樣使用它,並參考 TF 2.0 文件瞭解所有與常規用法和行為相關的事項。

transformers 中的 TensorFlow 模型和層接受兩種輸入格式

  • 所有輸入作為關鍵字引數(如 PyTorch 模型),或
  • 所有輸入作為第一個位置引數中的列表、元組或字典。

支援第二種格式的原因是,Keras 方法在將輸入傳遞給模型和層時更喜歡這種格式。由於這種支援,當使用像 `model.fit()` 這樣的方法時,一切應該都能“正常工作”——只需以 `model.fit()` 支援的任何格式傳遞你的輸入和標籤!但是,如果你想在 Keras 方法(如 `fit()` 和 `predict()`)之外使用第二種格式,例如在使用 Keras `Functional` API 建立自己的層或模型時,有三種可能性可以用來將所有輸入張量收集到第一個位置引數中

  • 只有一個 input_ids 的單個張量,沒有其他:model(input_ids)
  • 長度可變的列表,包含一個或多個輸入張量,按文件字串中給出的順序:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 一個字典,其中包含一個或多個與文件字串中給出的輸入名稱關聯的輸入張量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

請注意,當透過子類化建立模型和層時,你不需要擔心任何這些問題,因為你可以像呼叫任何其他 Python 函式一樣傳遞輸入!

呼叫

< >

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: tf.Tensor | None = None training: Optional[bool] = False ) transformers.modeling_tf_outputs.TFMultipleChoiceModelOutputtuple(tf.Tensor)

引數

  • input_ids (Numpy arraytf.Tensor,形狀為 (batch_size, num_choices, sequence_length)) — 詞彙表中輸入序列詞元的索引。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.call()PreTrainedTokenizer.encode()

    什麼是輸入 ID?

  • attention_mask (Numpy arraytf.Tensor,形狀為 (batch_size, num_choices, sequence_length)可選) — 用於避免對填充詞元索引執行注意力的掩碼。掩碼值選自 [0, 1]

    • 1 表示詞元未被掩碼
    • 0 表示詞元已被掩碼

    什麼是注意力掩碼?

  • token_type_ids (Numpy arraytf.Tensor,形狀為 (batch_size, num_choices, sequence_length)可選) — 段標記索引,用於指示輸入的第一部分和第二部分。索引選自 [0, 1]

    • 0 對應於 *句子 A* 的詞元,
    • 1 對應於 *句子 B* 的詞元。

    什麼是詞元型別 ID?

  • position_ids (Numpy arraytf.Tensor,形狀為 (batch_size, num_choices, sequence_length)可選) — 每個輸入序列詞元在位置嵌入中的位置索引。選自範圍 [0, config.max_position_embeddings - 1]

    什麼是位置 ID?

  • head_mask (Numpy arraytf.Tensor,形狀為 (num_heads,)(num_layers, num_heads)可選) — 用於使自注意力模組中選定的頭無效的掩碼。掩碼值選自 [0, 1]

    • 1 表示該頭未被掩碼
    • 0 表示該頭已被掩碼
  • inputs_embeds (tf.Tensor,形狀為 (batch_size, num_choices, sequence_length, hidden_size)可選) — 可選地,你可以不傳遞 input_ids,而是直接傳遞一個嵌入表示。如果你想比模型內部的嵌入查詢矩陣更好地控制如何將 input_ids 索引轉換為相關向量,這會非常有用。
  • output_attentions (bool可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的 attentions。此引數只能在即時執行模式(eager mode)下使用,在圖模式(graph mode)下將使用配置中的值。
  • output_hidden_states (bool可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的 hidden_states。此引數只能在即時執行模式(eager mode)下使用,在圖模式(graph mode)下將使用配置中的值。
  • return_dict (bool可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。此引數可以在即時執行模式(eager mode)下使用,在圖模式(graph mode)下該值將始終設定為 True。
  • training (bool可選,預設為 False) — 是否在訓練模式下使用模型(某些模組如 dropout 模組在訓練和評估之間有不同的行為)。
  • labels (tf.Tensor,形狀為 (batch_size,)可選) — 用於計算多項選擇分類損失的標籤。索引應在 [0, ..., num_choices] 範圍內,其中 num_choices 是輸入張量第二維的大小。(參見上面的 input_ids

返回

transformers.modeling_tf_outputs.TFMultipleChoiceModelOutputtuple(tf.Tensor)

一個 transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput 或一個 tf.Tensor 的元組(如果傳遞了 return_dict=Falseconfig.return_dict=False),根據配置 (ConvBertConfig) 和輸入,包含各種元素。

  • loss (tf.Tensor,形狀為 (batch_size, )可選,當提供 labels 時返回) — 分類損失。

  • logits (tf.Tensor,形狀為 (batch_size, num_choices)) — num_choices 是輸入張量的第二維。(參見上面的 input_ids)。

    分類分數(SoftMax 之前)。

  • hidden_states (tuple(tf.Tensor)可選,當傳遞 output_hidden_states=Trueconfig.output_hidden_states=True 時返回) — tf.Tensor 的元組(一個用於嵌入層的輸出 + 一個用於每層的輸出),形狀為 (batch_size, sequence_length, hidden_size)

    模型在每個層輸出的隱藏狀態加上初始嵌入輸出。

  • attentions (tuple(tf.Tensor)可選,當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — tf.Tensor 的元組(每層一個),形狀為 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

TFConvBertForMultipleChoice 的前向方法,覆蓋了 __call__ 特殊方法。

儘管前向傳播的流程需要在此函式中定義,但之後應該呼叫 Module 例項而不是這個函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> from transformers import AutoTokenizer, TFConvBertForMultipleChoice
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("YituTech/conv-bert-base")
>>> model = TFConvBertForMultipleChoice.from_pretrained("YituTech/conv-bert-base")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."

>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="tf", padding=True)
>>> inputs = {k: tf.expand_dims(v, 0) for k, v in encoding.items()}
>>> outputs = model(inputs)  # batch size is 1

>>> # the linear classifier still needs to be trained
>>> logits = outputs.logits

TFConvBertForTokenClassification

class transformers.TFConvBertForTokenClassification

< >

( config *inputs **kwargs )

引數

  • config (ConvBertConfig) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化不會載入與模型相關的權重,僅載入配置。請檢視 from_pretrained() 方法以載入模型權重。

ConvBERT 模型,頂部帶有一個詞元分類頭(隱藏狀態輸出之上的線性層),例如用於命名實體識別 (NER) 任務。

此模型繼承自 TFPreTrainedModel。請查閱超類文件以瞭解該庫為所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭等)。

該模型也是 keras.Model 的子類。可以像常規的 TF 2.0 Keras 模型一樣使用它,並參考 TF 2.0 文件瞭解所有與常規用法和行為相關的事項。

transformers 中的 TensorFlow 模型和層接受兩種輸入格式

  • 所有輸入作為關鍵字引數(如 PyTorch 模型),或
  • 所有輸入作為第一個位置引數中的列表、元組或字典。

支援第二種格式的原因是,Keras 方法在將輸入傳遞給模型和層時更喜歡這種格式。由於這種支援,當使用像 `model.fit()` 這樣的方法時,一切應該都能“正常工作”——只需以 `model.fit()` 支援的任何格式傳遞你的輸入和標籤!但是,如果你想在 Keras 方法(如 `fit()` 和 `predict()`)之外使用第二種格式,例如在使用 Keras `Functional` API 建立自己的層或模型時,有三種可能性可以用來將所有輸入張量收集到第一個位置引數中

  • 只有一個 input_ids 的單個張量,沒有其他:model(input_ids)
  • 長度可變的列表,包含一個或多個輸入張量,按文件字串中給出的順序:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 一個字典,其中包含一個或多個與文件字串中給出的輸入名稱關聯的輸入張量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

請注意,當透過子類化建立模型和層時,你不需要擔心任何這些問題,因為你可以像呼叫任何其他 Python 函式一樣傳遞輸入!

呼叫

< >

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: tf.Tensor | None = None training: Optional[bool] = False ) transformers.modeling_tf_outputs.TFTokenClassifierOutputtuple(tf.Tensor)

引數

  • input_ids (Numpy arraytf.Tensor,形狀為 (batch_size, sequence_length)) — 詞彙表中輸入序列標記的索引。

    索引可以使用 AutoTokenizer 獲得。詳情請參閱 PreTrainedTokenizer.call()PreTrainedTokenizer.encode()

    什麼是 input IDs?

  • attention_mask (Numpy arraytf.Tensor,形狀為 (batch_size, sequence_length), 可選) — 用於避免對填充標記索引執行注意力計算的掩碼。掩碼值選自 [0, 1]

    • 1 表示標記未被掩碼
    • 0 表示標記已被掩碼

    什麼是注意力掩碼?

  • token_type_ids (Numpy arraytf.Tensor,形狀為 (batch_size, sequence_length), 可選) — 用於指示輸入的第一和第二部分的片段標記索引。索引選自 [0, 1]

    • 0 對應於 句子 A 的標記,
    • 1 對應於 句子 B 的標記。

    什麼是標記型別 ID?

  • position_ids (Numpy arraytf.Tensor,形狀為 (batch_size, sequence_length), 可選) — 每個輸入序列標記在位置嵌入中的位置索引。選自範圍 [0, config.max_position_embeddings - 1]

    什麼是位置 ID?

  • head_mask (Numpy arraytf.Tensor,形狀為 (num_heads,)(num_layers, num_heads), 可選) — 用於將自注意力模組中選定的頭置空的掩碼。掩碼值選自 [0, 1]

    • 1 表示該頭未被掩碼
    • 0 表示該頭已被掩碼
  • inputs_embeds (tf.Tensor,形狀為 (batch_size, sequence_length, hidden_size), 可選) — 可選地,你可以不傳遞 input_ids,而是直接傳遞一個嵌入表示。如果你想比模型內部的嵌入查詢矩陣更好地控制如何將 input_ids 索引轉換為關聯向量,這會很有用。
  • output_attentions (bool, 可選) — 是否返回所有注意力層的注意力張量。更多細節請參閱返回張量下的 attentions。此引數只能在即時模式(eager mode)下使用,在圖模式(graph mode)下將使用配置中的值。
  • output_hidden_states (bool, 可選) — 是否返回所有層的隱藏狀態。更多細節請參閱返回張量下的 hidden_states。此引數只能在即時模式(eager mode)下使用,在圖模式(graph mode)下將使用配置中的值。
  • return_dict (bool, 可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。此引數可以在即時模式下使用,在圖模式下該值將始終設定為 True。
  • training (bool, 可選, 預設為 False) — 是否以訓練模式使用模型(一些模組如 dropout 模組在訓練和評估之間有不同的行為)。
  • labels (tf.Tensor,形狀為 (batch_size, sequence_length), 可選) — 用於計算標記分類損失的標籤。索引應在 [0, ..., config.num_labels - 1] 範圍內。

返回

transformers.modeling_tf_outputs.TFTokenClassifierOutputtuple(tf.Tensor)

一個 transformers.modeling_tf_outputs.TFTokenClassifierOutput 或一個 tf.Tensor 的元組(如果傳遞了 return_dict=False 或當 config.return_dict=False 時),包含各種元素,具體取決於配置(ConvBertConfig)和輸入。

  • loss (tf.Tensor,形狀為 (n,)可選,其中 n 是未被掩蓋的標籤數量,當提供 labels 時返回) — 分類損失。

  • logits (tf.Tensor,形狀為 (batch_size, sequence_length, config.num_labels)) — 分類分數(SoftMax 之前)。

  • hidden_states (tuple(tf.Tensor)可選,當傳遞 output_hidden_states=Trueconfig.output_hidden_states=True 時返回) — tf.Tensor 的元組(一個用於嵌入層的輸出 + 一個用於每層的輸出),形狀為 (batch_size, sequence_length, hidden_size)

    模型在每個層輸出的隱藏狀態加上初始嵌入輸出。

  • attentions (tuple(tf.Tensor)可選,當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — tf.Tensor 的元組(每層一個),形狀為 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

TFConvBertForTokenClassification 的前向方法,重寫了 __call__ 特殊方法。

儘管前向傳播的流程需要在此函式中定義,但之後應該呼叫 Module 例項而不是這個函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> from transformers import AutoTokenizer, TFConvBertForTokenClassification
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("YituTech/conv-bert-base")
>>> model = TFConvBertForTokenClassification.from_pretrained("YituTech/conv-bert-base")

>>> inputs = tokenizer(
...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="tf"
... )

>>> logits = model(**inputs).logits
>>> predicted_token_class_ids = tf.math.argmax(logits, axis=-1)

>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t] for t in predicted_token_class_ids[0].numpy().tolist()]
>>> labels = predicted_token_class_ids
>>> loss = tf.math.reduce_mean(model(**inputs, labels=labels).loss)

TFConvBertForQuestionAnswering

class transformers.TFConvBertForQuestionAnswering

< >

( config *inputs **kwargs )

引數

  • config (ConvBertConfig) — 包含模型所有引數的模型配置類。使用配置檔案初始化並不會載入與模型關聯的權重,只加載配置。請檢視 from_pretrained() 方法來載入模型權重。

帶有片段分類頭的 ConvBERT 模型,用於抽取式問答任務,如 SQuAD(在隱藏狀態輸出之上有一個線性層,用於計算 `span start logits` 和 `span end logits`)。

此模型繼承自 TFPreTrainedModel。請查閱超類文件以瞭解該庫為所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭等)。

該模型也是 keras.Model 的子類。可以像常規的 TF 2.0 Keras 模型一樣使用它,並參考 TF 2.0 文件瞭解所有與常規用法和行為相關的事項。

transformers 中的 TensorFlow 模型和層接受兩種輸入格式

  • 所有輸入作為關鍵字引數(如 PyTorch 模型),或
  • 所有輸入作為第一個位置引數中的列表、元組或字典。

支援第二種格式的原因是,Keras 方法在將輸入傳遞給模型和層時更喜歡這種格式。由於這種支援,當使用像 `model.fit()` 這樣的方法時,一切應該都能“正常工作”——只需以 `model.fit()` 支援的任何格式傳遞你的輸入和標籤!但是,如果你想在 Keras 方法(如 `fit()` 和 `predict()`)之外使用第二種格式,例如在使用 Keras `Functional` API 建立自己的層或模型時,有三種可能性可以用來將所有輸入張量收集到第一個位置引數中

  • 只有一個 input_ids 的單個張量,沒有其他:model(input_ids)
  • 長度可變的列表,包含一個或多個輸入張量,按文件字串中給出的順序:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 一個字典,其中包含一個或多個與文件字串中給出的輸入名稱關聯的輸入張量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

請注意,當透過子類化建立模型和層時,你不需要擔心任何這些問題,因為你可以像呼叫任何其他 Python 函式一樣傳遞輸入!

呼叫

< >

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None start_positions: tf.Tensor | None = None end_positions: tf.Tensor | None = None training: Optional[bool] = False ) transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutputtuple(tf.Tensor)

引數

  • input_ids (Numpy arraytf.Tensor,形狀為 (batch_size, sequence_length)) — 詞彙表中輸入序列標記的索引。

    索引可以使用 AutoTokenizer 獲得。詳情請參閱 PreTrainedTokenizer.call()PreTrainedTokenizer.encode()

    什麼是 input IDs?

  • attention_mask (Numpy arraytf.Tensor,形狀為 (batch_size, sequence_length), 可選) — 用於避免對填充標記索引執行注意力計算的掩碼。掩碼值選自 [0, 1]

    • 1 表示標記未被掩碼
    • 0 表示標記已被掩碼

    什麼是注意力掩碼?

  • token_type_ids (Numpy arraytf.Tensor,形狀為 (batch_size, sequence_length), 可選) — 用於指示輸入的第一和第二部分的片段標記索引。索引選自 [0, 1]

    • 0 對應於 句子 A 的標記,
    • 1 對應於 句子 B 的標記。

    什麼是標記型別 ID?

  • position_ids (Numpy arraytf.Tensor,形狀為 (batch_size, sequence_length), 可選) — 每個輸入序列標記在位置嵌入中的位置索引。選自範圍 [0, config.max_position_embeddings - 1]

    什麼是位置 ID?

  • head_mask (Numpy arraytf.Tensor,形狀為 (num_heads,)(num_layers, num_heads), 可選) — 用於將自注意力模組中選定的頭置空的掩碼。掩碼值選自 [0, 1]

    • 1 表示該頭未被掩碼
    • 0 表示該頭已被掩碼
  • inputs_embeds (tf.Tensor,形狀為 (batch_size, sequence_length, hidden_size), 可選) — 可選地,你可以不傳遞 input_ids,而是直接傳遞一個嵌入表示。如果你想比模型內部的嵌入查詢矩陣更好地控制如何將 input_ids 索引轉換為關聯向量,這會很有用。
  • output_attentions (bool, 可選) — 是否返回所有注意力層的注意力張量。更多細節請參閱返回張量下的 attentions。此引數只能在即時模式(eager mode)下使用,在圖模式(graph mode)下將使用配置中的值。
  • output_hidden_states (bool, 可選) — 是否返回所有層的隱藏狀態。更多細節請參閱返回張量下的 hidden_states。此引數只能在即時模式(eager mode)下使用,在圖模式(graph mode)下將使用配置中的值。
  • return_dict (bool, 可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。此引數可以在即時模式下使用,在圖模式下該值將始終設定為 True。
  • training (bool, 可選, 預設為 False) — 是否以訓練模式使用模型(一些模組如 dropout 模組在訓練和評估之間有不同的行為)。
  • start_positions (tf.Tensor,形狀為 (batch_size,), 可選) — 標記片段開始位置(索引)的標籤,用於計算標記分類損失。位置被限制在序列長度(sequence_length)內。序列之外的位置在計算損失時不被考慮。
  • end_positions (tf.Tensor,形狀為 (batch_size,), 可選) — 標記片段結束位置(索引)的標籤,用於計算標記分類損失。位置被限制在序列長度(sequence_length)內。序列之外的位置在計算損失時不被考慮。

返回

transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutputtuple(tf.Tensor)

一個 transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput 或一個 tf.Tensor 的元組(如果傳遞了 return_dict=False 或當 config.return_dict=False 時),包含各種元素,具體取決於配置(ConvBertConfig)和輸入。

  • loss (tf.Tensor,形狀為 (batch_size, ), 可選, 當提供了 start_positionsend_positions 時返回) — 總的片段抽取損失是開始和結束位置的交叉熵損失之和。

  • start_logits (形狀為 (batch_size, sequence_length)tf.Tensor) — 跨度起始分數(SoftMax 之前)。

  • end_logits (形狀為 (batch_size, sequence_length)tf.Tensor) — 跨度結束分數(SoftMax 之前)。

  • hidden_states (tuple(tf.Tensor)可選,當傳遞 output_hidden_states=Trueconfig.output_hidden_states=True 時返回) — tf.Tensor 的元組(一個用於嵌入層的輸出 + 一個用於每層的輸出),形狀為 (batch_size, sequence_length, hidden_size)

    模型在每個層輸出的隱藏狀態加上初始嵌入輸出。

  • attentions (tuple(tf.Tensor)可選,當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — tf.Tensor 的元組(每層一個),形狀為 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

TFConvBertForQuestionAnswering 的前向方法,重寫了 __call__ 特殊方法。

儘管前向傳播的流程需要在此函式中定義,但之後應該呼叫 Module 例項而不是這個函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> from transformers import AutoTokenizer, TFConvBertForQuestionAnswering
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("YituTech/conv-bert-base")
>>> model = TFConvBertForQuestionAnswering.from_pretrained("YituTech/conv-bert-base")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

>>> inputs = tokenizer(question, text, return_tensors="tf")
>>> outputs = model(**inputs)

>>> answer_start_index = int(tf.math.argmax(outputs.start_logits, axis=-1)[0])
>>> answer_end_index = int(tf.math.argmax(outputs.end_logits, axis=-1)[0])

>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> # target is "nice puppet"
>>> target_start_index = tf.constant([14])
>>> target_end_index = tf.constant([15])

>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = tf.math.reduce_mean(outputs.loss)
< > 在 GitHub 上更新

© . This site is unofficial and not affiliated with Hugging Face, Inc.