Transformers 文件

mT5

Hugging Face's logo
加入 Hugging Face 社群

並獲得增強的文件體驗

開始使用

mT5

PyTorch TensorFlow Flax

概述

mT5 模型由 Linting Xue、Noah Constant、Adam Roberts、Mihir Kale、Rami Al-Rfou、Aditya Siddhant、Aditya Barua、Colin Raffel 在論文 mT5:一個大規模多語言預訓練文字到文字轉換器 中提出。

論文摘要如下:

最近,“文字到文字遷移轉換器”(T5)利用統一的文字到文字格式和規模,在各種英語自然語言處理任務上取得了最先進的結果。在本文中,我們介紹了 mT5,它是 T5 的一個多語言變體,它在一個基於 Common Crawl 的新資料集上進行了預訓練,該資料集涵蓋了 101 種語言。我們詳細介紹了 mT5 的設計和改進的訓練方法,並展示了其在許多多語言基準測試中的最先進效能。我們還描述了一種簡單的技術,用於在零樣本設定下防止“意外翻譯”,即生成模型選擇(部分)將其預測翻譯成錯誤的語言。本工作中使用的所有程式碼和模型檢查點都已公開可用。

注意:mT5 僅在 mC4 上進行了預訓練,不包含任何有監督的訓練。因此,與原始的 T5 模型不同,該模型在使用於下游任務之前必須進行微調。由於 mT5 是無監督預訓練的,因此在單任務微調期間使用任務字首並沒有實際的好處。如果您正在進行多工微調,則應使用字首。

Google 釋出了以下變體:

該模型由 patrickvonplaten 貢獻。原始程式碼可以在這裡找到。

資源

MT5Config

class transformers.MT5Config

< >

( vocab_size = 250112 d_model = 512 d_kv = 64 d_ff = 1024 num_layers = 8 num_decoder_layers = None num_heads = 6 relative_attention_num_buckets = 32 relative_attention_max_distance = 128 dropout_rate = 0.1 layer_norm_epsilon = 1e-06 initializer_factor = 1.0 feed_forward_proj = 'gated-gelu' is_encoder_decoder = True use_cache = True tokenizer_class = 'T5Tokenizer' tie_word_embeddings = False pad_token_id = 0 eos_token_id = 1 decoder_start_token_id = 0 classifier_dropout = 0.0 **kwargs )

引數

  • vocab_size (int, 可選, 預設為 250112) — T5 模型的詞彙表大小。定義了在呼叫 T5ModelTFT5Model 時,可以透過 inputs_ids 表示的不同 token 的數量。
  • d_model (int, 可選, 預設為 512) — 編碼器層和池化層的大小。
  • d_kv (int, 可選, 預設為 64) — 每個注意力頭中鍵、查詢、值投影的大小。在傳統情況下,通常期望 `d_kv` 等於 `d_model // num_heads`。但在 mt5-small 的架構中,`d_kv` 不等於 `d_model // num_heads`。投影層的 `inner_dim` 將定義為 `num_heads * d_kv`。
  • d_ff (int, 可選, 預設為 1024) — 每個 `T5Block` 中中間前饋層的大小。
  • num_layers (int, 可選, 預設為 8) — Transformer 編碼器中的隱藏層數量。
  • num_decoder_layers (int, 可選) — Transformer 解碼器中的隱藏層數量。如果未設定,將使用與 `num_layers` 相同的值。
  • num_heads (int, 可選, 預設為 6) — Transformer 編碼器中每個注意力層的注意力頭數量。
  • relative_attention_num_buckets (int, 可選, 預設為 32) — 用於每個注意力層的桶(bucket)的數量。
  • relative_attention_max_distance (int, 可選, 預設為 128) — 用於桶分離的較長序列的最大距離。
  • dropout_rate (float, 可選, 預設為 0.1) — 所有 dropout 層的比率。
  • classifier_dropout (float, 可選, 預設為 0.0) — 分類器的 dropout 比率。
  • layer_norm_eps (float, 可選, 預設為 1e-6) — 層歸一化層使用的 epsilon 值。
  • initializer_factor (float, 可選, 預設為 1) — 用於初始化所有權重矩陣的因子(應保持為 1,內部用於初始化測試)。
  • feed_forward_proj (string, 可選, 預設為 "gated-gelu") — 要使用的前饋層型別。應為 "relu""gated-gelu" 之一。
  • use_cache (bool, 可選, 預設為 True) — 模型是否應返回最後一個鍵/值注意力(並非所有模型都使用)。

這是一個用於儲存 MT5ModelTFMT5Model 配置的配置類。它用於根據指定的引數例項化一個 mT5 模型,定義模型架構。使用預設值例項化一個配置將產生與 mT5 google/mt5-small 架構相似的配置。

配置物件繼承自 PretrainedConfig,可用於控制模型輸出。有關更多資訊,請閱讀 PretrainedConfig 的文件。

MT5Tokenizer

class transformers.MT5Tokenizer

< >

( vocab_file eos_token = '</s>' unk_token = '<unk>' pad_token = '<pad>' extra_ids = 100 additional_special_tokens = None sp_model_kwargs: typing.Optional[dict[str, typing.Any]] = None legacy = None add_prefix_space = True **kwargs )

檢視 T5Tokenizer 瞭解所有詳細資訊。

MT5TokenizerFast

class transformers.MT5TokenizerFast

< >

( vocab_file = None tokenizer_file = None eos_token = '</s>' unk_token = '<unk>' pad_token = '<pad>' extra_ids = 100 additional_special_tokens = None add_prefix_space = None **kwargs )

有關所有詳細資訊,請參閱 T5TokenizerFast

Pytorch
隱藏 Pytorch 內容

MT5Model

class transformers.MT5Model

< >

( config: MT5Config )

引數

  • config (MT5Config) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。

裸的Mt5模型,輸出原始的隱藏狀態,頂部沒有任何特定的頭。

此模型繼承自 PreTrainedModel。請檢視超類文件,瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪注意力頭等)。

該模型也是一個 PyTorch torch.nn.Module 的子類。可以像常規的 PyTorch 模組一樣使用它,並參考 PyTorch 文件瞭解所有與通用用法和行為相關的事項。

deparallelize

< >

( )

將模型從模型並行狀態移至 CPU。

示例

# On a 4 GPU machine with mt5-xl:
model = MT5ForConditionalGeneration.from_pretrained("Mt5-xl")
device_map = {
    0: [0, 1, 2],
    1: [3, 4, 5, 6, 7, 8, 9],
    2: [10, 11, 12, 13, 14, 15, 16],
    3: [17, 18, 19, 20, 21, 22, 23],
}
model.parallelize(device_map)  # Splits the model across several devices
model.deparallelize()  # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache()

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None decoder_input_ids: typing.Optional[torch.LongTensor] = None decoder_attention_mask: typing.Optional[torch.BoolTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None decoder_head_mask: typing.Optional[torch.FloatTensor] = None cross_attn_head_mask: typing.Optional[torch.Tensor] = None encoder_outputs: typing.Optional[tuple[tuple[torch.FloatTensor]]] = None past_key_values: typing.Optional[tuple[tuple[torch.FloatTensor]]] = None inputs_embeds: typing.Optional[torch.Tensor] = None decoder_inputs_embeds: typing.Optional[torch.Tensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None ) transformers.modeling_outputs.Seq2SeqModelOutput or tuple(torch.FloatTensor)

引數

  • input_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)) — 詞彙表中輸入序列標記的索引。MT5 是一個具有相對位置嵌入的模型,因此您應該能夠在輸入的左側和右側進行填充。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

    要了解更多關於如何為預訓練準備 input_ids 的資訊,請檢視 MT5 訓練

  • attention_mask (torch.FloatTensor,形狀為 (batch_size, sequence_length), 可選) — 用於避免對填充標記索引執行注意力操作的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示標記未被掩碼
    • 0 表示標記已被掩碼

    什麼是注意力掩碼?

  • decoder_input_ids (torch.LongTensor,形狀為 (batch_size, target_sequence_length), 可選) — 詞彙表中解碼器輸入序列標記的索引。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是解碼器輸入 ID?

    MT5 使用 pad_token_id 作為生成 decoder_input_ids 的起始標記。如果使用 past_key_values,則可以選擇只輸入最後一個 decoder_input_ids(參見 past_key_values)。

    要了解更多關於如何為預訓練準備 decoder_input_ids 的資訊,請檢視 MT5 訓練

  • decoder_attention_mask (torch.BoolTensor,形狀為 (batch_size, target_sequence_length), 可選) — 預設行為:生成一個忽略 decoder_input_ids 中填充標記的張量。預設情況下也會使用因果掩碼。
  • head_mask (torch.FloatTensor,形狀為 (num_heads,)(num_layers, num_heads), 可選) — 用於置零自注意力模組中選定頭的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示該頭未被掩碼
    • 0 表示該頭已被掩碼
  • decoder_head_mask (torch.FloatTensor,形狀為 (num_heads,)(num_layers, num_heads), 可選) — 用於置零解碼器中自注意力模組選定頭的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示該頭未被掩碼
    • 0 表示該頭已被掩碼
  • cross_attn_head_mask (torch.Tensor,形狀為 (num_heads,)(num_layers, num_heads), 可選) — 用於置零解碼器中交叉注意力模組選定頭的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示該頭未被掩碼
    • 0 表示該頭已被掩碼
  • encoder_outputs (tuple[tuple[torch.FloatTensor]], 可選) — 元組包含 (last_hidden_state, 可選: hidden_states, 可選: attentions) last_hidden_state 形狀為 (batch_size, sequence_length, hidden_size)可選) 是編碼器最後一層輸出的隱藏狀態序列。用於解碼器的交叉注意力。
  • past_key_values (tuple[tuple[torch.FloatTensor]], 可選) — 預先計算的隱藏狀態(自注意力和交叉注意力塊中的鍵和值),可用於加速順序解碼。這通常是在解碼的前一個階段,當 use_cache=Trueconfig.use_cache=True 時,由模型返回的 past_key_values

    允許兩種格式:

    • 一個 Cache 例項,請參閱我們的 kv 快取指南
    • 長度為 config.n_layerstuple(torch.FloatTensor) 元組,每個元組包含 2 個形狀為 (batch_size, num_heads, sequence_length, embed_size_per_head) 的張量)。這也被稱為傳統快取格式。

    模型將輸出與輸入相同的快取格式。如果沒有傳遞 past_key_values,將返回傳統快取格式。

    如果使用 past_key_values,使用者可以選擇只輸入最後一個 input_ids(那些沒有給出其過去鍵值狀態的 ID),形狀為 (batch_size, 1),而不是所有形狀為 (batch_size, sequence_length)input_ids

  • inputs_embeds (torch.Tensor,形狀為 (batch_size, sequence_length, hidden_size), 可選) — 或者,您可以選擇直接傳遞嵌入表示,而不是傳遞 input_ids。如果您想比模型內部的嵌入查詢矩陣更好地控制如何將 input_ids 索引轉換為關聯向量,這會很有用。
  • decoder_inputs_embeds (torch.Tensor,形狀為 (batch_size, target_sequence_length, hidden_size), 可選) — 或者,您可以選擇直接傳遞嵌入表示,而不是傳遞 decoder_input_ids。如果使用 past_key_values,可以選擇只輸入最後一個 decoder_inputs_embeds(參見 past_key_values)。如果您想比模型內部的嵌入查詢矩陣更好地控制如何將 decoder_input_ids 索引轉換為關聯向量,這會很有用。

    如果 decoder_input_idsdecoder_inputs_embeds 都未設定,decoder_inputs_embeds 將取 inputs_embeds 的值。

  • use_cache (bool, 可選) — 如果設定為 True,將返回 past_key_values 鍵值狀態,並可用於加速解碼(參見 past_key_values)。
  • output_attentions (bool, 可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參見返回張量下的 attentions
  • output_hidden_states (bool, 可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參見返回張量下的 hidden_states
  • return_dict (bool, 可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。
  • cache_position (torch.LongTensor,形狀為 (sequence_length), 可選) — 描繪輸入序列標記在序列中位置的索引。與 position_ids 相反,此張量不受填充影響。它用於在正確的位置更新快取並推斷完整的序列長度。

返回

transformers.modeling_outputs.Seq2SeqModelOutputtuple(torch.FloatTensor)

一個 transformers.modeling_outputs.Seq2SeqModelOutput 或一個 torch.FloatTensor 元組(如果傳遞了 return_dict=False 或當 config.return_dict=False 時),根據配置 (MT5Config) 和輸入包含各種元素。

  • last_hidden_state (torch.FloatTensor,形狀為 (batch_size, sequence_length, hidden_size)) — 模型解碼器最後一層輸出的隱藏狀態序列。

    如果使用了 past_key_values,則只輸出形狀為 (batch_size, 1, hidden_size) 的序列的最後一個隱藏狀態。

  • past_key_values (EncoderDecoderCache, 可選, 當傳遞 use_cache=Trueconfig.use_cache=True 時返回) — 這是一個 EncoderDecoderCache 例項。更多詳情,請參閱我們的 kv 快取指南

    包含預先計算的隱藏狀態(自注意力塊和交叉注意力塊中的鍵和值),可用於(參見 past_key_values 輸入)加速順序解碼。

  • decoder_hidden_states (tuple(torch.FloatTensor), 可選, 當傳遞 output_hidden_states=Trueconfig.output_hidden_states=True 時返回) — 形狀為 (batch_size, sequence_length, hidden_size)torch.FloatTensor 元組(一個用於嵌入層的輸出,如果模型有嵌入層,+ 一個用於每層的輸出)。

    解碼器在每個層輸出的隱藏狀態,加上可選的初始嵌入輸出。

  • decoder_attentions (tuple(torch.FloatTensor), 可選, 當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — 形狀為 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元組(每層一個)。

    解碼器的注意力權重,在注意力 softmax 之後,用於計算自注意力頭中的加權平均。

  • cross_attentions (tuple(torch.FloatTensor), 可選, 當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — 形狀為 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元組(每層一個)。

    解碼器交叉注意力層的注意力權重,在注意力 softmax 之後,用於計算交叉注意力頭中的加權平均。

  • encoder_last_hidden_state (torch.FloatTensor,形狀為 (batch_size, sequence_length, hidden_size)可選) — 模型編碼器最後一層輸出的隱藏狀態序列。

  • encoder_hidden_states (tuple(torch.FloatTensor), 可選, 當傳遞 output_hidden_states=Trueconfig.output_hidden_states=True 時返回) — 形狀為 (batch_size, sequence_length, hidden_size)torch.FloatTensor 元組(一個用於嵌入層的輸出,如果模型有嵌入層,+ 一個用於每層的輸出)。

    編碼器在每個層輸出的隱藏狀態,加上可選的初始嵌入輸出。

  • encoder_attentions (tuple(torch.FloatTensor), 可選, 當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — 形狀為 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元組(每層一個)。

    編碼器的注意力權重,在注意力 softmax 之後,用於計算自注意力頭中的加權平均。

MT5Model 的 forward 方法重寫了 __call__ 特殊方法。

雖然前向傳播的流程需要在此函式內定義,但之後應該呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> from transformers import AutoTokenizer, MT5Model

>>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
>>> model = MT5Model.from_pretrained("google/mt5-small")

>>> input_ids = tokenizer(
...     "Studies have been shown that owning a dog is good for you", return_tensors="pt"
... ).input_ids  # Batch size 1
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids  # Batch size 1

>>> # preprocess: Prepend decoder_input_ids with start token which is pad token for MT5Model.
>>> # This is not needed for torch's MT5ForConditionalGeneration as it does this internally using labels arg.
>>> decoder_input_ids = model._shift_right(decoder_input_ids)

>>> # forward pass
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
>>> last_hidden_states = outputs.last_hidden_state

parallelize

< >

( device_map = None )

引數

  • device_map (dict[int, list], 可選) — 一個將注意力模組對映到裝置的字典。請注意,嵌入模組和 LMHead 總是自動對映到第一個裝置(由於一些特殊原因)。這意味著第一個裝置應該比其他裝置對映更少的注意力模組。作為參考,mt5 模型具有以下數量的注意力模組:

    • mt5-small: 6
    • mt5-base: 12
    • mt5-large: 24
    • mt5-xl: 24
    • mt5-xxl: 24

這是一個實驗性功能,隨時可能更改。

使用裝置對映將模型的注意力模組分佈到多個裝置上。如果沒有給出裝置對映,它將均勻地將塊分佈到所有裝置上。

示例

# Here is an example of a device map on a machine with 4 GPUs using mt5-xl, which has a total of 24 attention modules:
model = MT5ForConditionalGeneration.from_pretrained("mt5-xl")
device_map = {
    0: [0, 1, 2],
    1: [3, 4, 5, 6, 7, 8, 9],
    2: [10, 11, 12, 13, 14, 15, 16],
    3: [17, 18, 19, 20, 21, 22, 23],
}
model.parallelize(device_map)

MT5ForConditionalGeneration

class transformers.MT5ForConditionalGeneration

< >

( config: MT5Config )

引數

  • config (MT5Config) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。

MT5 模型,頂部帶有一個 `語言建模` 頭。

此模型繼承自 PreTrainedModel。請檢視超類文件,瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪注意力頭等)。

該模型也是一個 PyTorch torch.nn.Module 的子類。可以像常規的 PyTorch 模組一樣使用它,並參考 PyTorch 文件瞭解所有與通用用法和行為相關的事項。

deparallelize

< >

( )

將模型從模型並行狀態移至 CPU。

示例

# On a 4 GPU machine with mt5-xl:
model = MT5ForConditionalGeneration.from_pretrained("Mt5-xl")
device_map = {
    0: [0, 1, 2],
    1: [3, 4, 5, 6, 7, 8, 9],
    2: [10, 11, 12, 13, 14, 15, 16],
    3: [17, 18, 19, 20, 21, 22, 23],
}
model.parallelize(device_map)  # Splits the model across several devices
model.deparallelize()  # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache()

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None decoder_input_ids: typing.Optional[torch.LongTensor] = None decoder_attention_mask: typing.Optional[torch.BoolTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None decoder_head_mask: typing.Optional[torch.FloatTensor] = None cross_attn_head_mask: typing.Optional[torch.Tensor] = None encoder_outputs: typing.Optional[tuple[tuple[torch.Tensor]]] = None past_key_values: typing.Optional[tuple[tuple[torch.Tensor]]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None decoder_inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None ) transformers.modeling_outputs.Seq2SeqLMOutput or tuple(torch.FloatTensor)

引數

  • input_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)) — 詞彙表中輸入序列標記的索引。MT5 是一個具有相對位置嵌入的模型,因此您應該能夠在輸入的左側和右側進行填充。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

    要了解更多關於如何為預訓練準備 input_ids 的資訊,請檢視 MT5 訓練

  • attention_mask (torch.FloatTensor,形狀為 (batch_size, sequence_length), 可選) — 用於避免對填充標記索引執行注意力操作的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示標記未被掩碼
    • 0 表示標記已被掩碼

    什麼是注意力掩碼?

  • decoder_input_ids (torch.LongTensor,形狀為 (batch_size, target_sequence_length), 可選) — 詞彙表中解碼器輸入序列標記的索引。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是解碼器輸入 ID?

    MT5 使用 pad_token_id 作為生成 decoder_input_ids 的起始標記。如果使用 past_key_values,則可以選擇只輸入最後一個 decoder_input_ids(參見 past_key_values)。

    要了解更多關於如何為預訓練準備 decoder_input_ids 的資訊,請檢視 MT5 訓練

  • decoder_attention_mask (torch.BoolTensor,形狀為 (batch_size, target_sequence_length), 可選) — 預設行為:生成一個忽略 decoder_input_ids 中填充標記的張量。預設情況下也會使用因果掩碼。
  • head_mask (torch.FloatTensor,形狀為 (num_heads,)(num_layers, num_heads), 可選) — 用於置零自注意力模組中選定頭的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示該頭未被掩碼
    • 0 表示該頭已被掩碼
  • decoder_head_mask (torch.FloatTensor,形狀為 (num_heads,)(num_layers, num_heads), 可選) — 用於置零解碼器中自注意力模組選定頭的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示該頭未被掩碼
    • 0 表示該頭已被掩碼
  • cross_attn_head_mask (torch.Tensor,形狀為 (num_heads,)(num_layers, num_heads), 可選) — 用於置零解碼器中交叉注意力模組選定頭的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示該頭未被掩碼
    • 0 表示該頭已被掩碼
  • encoder_outputs (tuple[tuple[torch.Tensor]], 可選) — 元組包含 (last_hidden_state, 可選: hidden_states, 可選: attentions) last_hidden_state 形狀為 (batch_size, sequence_length, hidden_size)可選) 是編碼器最後一層輸出的隱藏狀態序列。用於解碼器的交叉注意力。
  • past_key_values (tuple[tuple[torch.Tensor]], 可選) — 預先計算的隱藏狀態(自注意力和交叉注意力塊中的鍵和值),可用於加速順序解碼。這通常是在解碼的前一個階段,當 use_cache=Trueconfig.use_cache=True 時,由模型返回的 past_key_values

    允許兩種格式:

    • 一個 Cache 例項,請參閱我們的 kv 快取指南
    • 長度為 config.n_layerstuple(torch.FloatTensor) 元組,每個元組包含 2 個形狀為 (batch_size, num_heads, sequence_length, embed_size_per_head) 的張量)。這也被稱為傳統快取格式。

    模型將輸出與輸入相同的快取格式。如果沒有傳遞 past_key_values,將返回傳統快取格式。

    如果使用 past_key_values,使用者可以選擇只輸入最後一個 input_ids(那些沒有給出其過去鍵值狀態的 ID),形狀為 (batch_size, 1),而不是所有形狀為 (batch_size, sequence_length)input_ids

  • inputs_embeds (torch.FloatTensor,形狀為 (batch_size, sequence_length, hidden_size), 可選) — 或者,您可以選擇直接傳遞嵌入表示,而不是傳遞 input_ids。如果您想比模型內部的嵌入查詢矩陣更好地控制如何將 input_ids 索引轉換為關聯向量,這會很有用。
  • decoder_inputs_embeds (torch.FloatTensor,形狀為 (batch_size, target_sequence_length, hidden_size), 可選) — 或者,您可以選擇直接傳遞嵌入表示,而不是傳遞 decoder_input_ids。如果使用 past_key_values,可以選擇只輸入最後一個 decoder_inputs_embeds(參見 past_key_values)。如果您想比模型內部的嵌入查詢矩陣更好地控制如何將 decoder_input_ids 索引轉換為關聯向量,這會很有用。

    如果 decoder_input_idsdecoder_inputs_embeds 都未設定,decoder_inputs_embeds 將取 inputs_embeds 的值。

  • labels (torch.LongTensor,形狀為 (batch_size,), 可選) — 用於計算序列分類/迴歸損失的標籤。索引應在 [-100, 0, ..., config.vocab_size - 1] 範圍內。所有設定為 -100 的標籤都會被忽略(掩碼),損失僅針對 [0, ..., config.vocab_size] 範圍內的標籤計算。
  • use_cache (bool, 可選) — 如果設定為 True,將返回 past_key_values 鍵值狀態,並可用於加速解碼(參見 past_key_values)。
  • output_attentions (bool, 可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參見返回張量下的 attentions
  • output_hidden_states (bool, 可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參見返回張量下的 hidden_states
  • return_dict (bool, 可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。
  • cache_position (torch.LongTensor,形狀為 (sequence_length), 可選) — 描繪輸入序列標記在序列中位置的索引。與 position_ids 相反,此張量不受填充影響。它用於在正確的位置更新快取並推斷完整的序列長度。

返回

transformers.modeling_outputs.Seq2SeqLMOutputtuple(torch.FloatTensor)

一個 transformers.modeling_outputs.Seq2SeqLMOutput 或一個 torch.FloatTensor 元組(如果傳遞了 return_dict=False 或當 config.return_dict=False 時),根據配置 (MT5Config) 和輸入包含各種元素。

  • loss (torch.FloatTensor,形狀為 (1,)可選,當提供 labels 時返回) — 語言建模損失。

  • logits (形狀為 (batch_size, sequence_length, config.vocab_size)torch.FloatTensor) — 語言建模頭部的預測分數(SoftMax 之前的每個詞彙標記的分數)。

  • past_key_values (EncoderDecoderCache, 可選, 當傳遞 use_cache=Trueconfig.use_cache=True 時返回) — 這是一個 EncoderDecoderCache 例項。更多詳情,請參閱我們的 kv 快取指南

    包含預先計算的隱藏狀態(自注意力塊和交叉注意力塊中的鍵和值),可用於(參見 past_key_values 輸入)加速順序解碼。

  • decoder_hidden_states (tuple(torch.FloatTensor), 可選, 當傳遞 output_hidden_states=Trueconfig.output_hidden_states=True 時返回) — 形狀為 (batch_size, sequence_length, hidden_size)torch.FloatTensor 元組(一個用於嵌入層的輸出,如果模型有嵌入層,+ 一個用於每層的輸出)。

    解碼器在每一層輸出時的隱藏狀態以及初始嵌入輸出。

  • decoder_attentions (tuple(torch.FloatTensor), 可選, 當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — 形狀為 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元組(每層一個)。

    解碼器的注意力權重,在注意力 softmax 之後,用於計算自注意力頭中的加權平均。

  • cross_attentions (tuple(torch.FloatTensor), 可選, 當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — 形狀為 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元組(每層一個)。

    解碼器交叉注意力層的注意力權重,在注意力 softmax 之後,用於計算交叉注意力頭中的加權平均。

  • encoder_last_hidden_state (torch.FloatTensor,形狀為 (batch_size, sequence_length, hidden_size)可選) — 模型編碼器最後一層輸出的隱藏狀態序列。

  • encoder_hidden_states (tuple(torch.FloatTensor), 可選, 當傳遞 output_hidden_states=Trueconfig.output_hidden_states=True 時返回) — 形狀為 (batch_size, sequence_length, hidden_size)torch.FloatTensor 元組(一個用於嵌入層的輸出,如果模型有嵌入層,+ 一個用於每層的輸出)。

    編碼器在每一層輸出時的隱藏狀態以及初始嵌入輸出。

  • encoder_attentions (tuple(torch.FloatTensor), 可選, 當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — 形狀為 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元組(每層一個)。

    編碼器的注意力權重,在注意力 softmax 之後,用於計算自注意力頭中的加權平均。

MT5ForConditionalGeneration 的 forward 方法重寫了 __call__ 特殊方法。

雖然前向傳播的流程需要在此函式內定義,但之後應該呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> from transformers import AutoTokenizer, MT5ForConditionalGeneration

>>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
>>> model = MT5ForConditionalGeneration.from_pretrained("google/mt5-small")

>>> # training
>>> input_ids = tokenizer("The <extra_id_0> walks in <extra_id_1> park", return_tensors="pt").input_ids
>>> labels = tokenizer("<extra_id_0> cute dog <extra_id_1> the <extra_id_2>", return_tensors="pt").input_ids
>>> outputs = model(input_ids=input_ids, labels=labels)
>>> loss = outputs.loss
>>> logits = outputs.logits

>>> # inference
>>> input_ids = tokenizer(
...     "summarize: studies have shown that owning a dog is good for you", return_tensors="pt"
... ).input_ids  # Batch size 1
>>> outputs = model.generate(input_ids)
>>> print(tokenizer.decode(outputs[0], skip_special_tokens=True))
>>> # studies have shown that owning a dog is good for you.

parallelize

< >

( device_map = None )

引數

  • device_map (dict[int, list], 可選) — 一個將注意力模組對映到裝置的字典。請注意,出於深奧的原因,嵌入模組和 LMHead 總是自動對映到第一個裝置。這意味著第一個裝置上對映的注意力模組應少於其他裝置。作為參考,mt5 模型具有以下數量的注意力模組:

    • mt5-small: 6
    • mt5-base: 12
    • mt5-large: 24
    • mt5-xl: 24
    • mt5-xxl: 24

這是一個實驗性功能,隨時可能更改。

使用裝置對映將模型的注意力模組分佈到多個裝置上。如果沒有給出裝置對映,它將均勻地將塊分佈到所有裝置上。

示例

# Here is an example of a device map on a machine with 4 GPUs using mt5-xl, which has a total of 24 attention modules:
model = MT5ForConditionalGeneration.from_pretrained("mt5-xl")
device_map = {
    0: [0, 1, 2],
    1: [3, 4, 5, 6, 7, 8, 9],
    2: [10, 11, 12, 13, 14, 15, 16],
    3: [17, 18, 19, 20, 21, 22, 23],
}
model.parallelize(device_map)

MT5EncoderModel

class transformers.MT5EncoderModel

< >

( config: MT5Config )

引數

  • config (MT5Config) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。

裸的Mt5模型,輸出原始的隱藏狀態,頂部沒有任何特定的頭。

此模型繼承自 PreTrainedModel。請檢視超類文件,瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪注意力頭等)。

該模型也是一個 PyTorch torch.nn.Module 的子類。可以像常規的 PyTorch 模組一樣使用它,並參考 PyTorch 文件瞭解所有與通用用法和行為相關的事項。

deparallelize

< >

( )

將模型從模型並行狀態移至 CPU。

示例

# On a 4 GPU machine with mt5-xl:
model = MT5ForConditionalGeneration.from_pretrained("Mt5-xl")
device_map = {
    0: [0, 1, 2],
    1: [3, 4, 5, 6, 7, 8, 9],
    2: [10, 11, 12, 13, 14, 15, 16],
    3: [17, 18, 19, 20, 21, 22, 23],
}
model.parallelize(device_map)  # Splits the model across several devices
model.deparallelize()  # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache()

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.BaseModelOutputtuple(torch.FloatTensor)

引數

  • input_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)) — 詞彙表中輸入序列標記的索引。MT5 是一個具有相對位置嵌入的模型,因此您應該能夠在輸入的左右兩側進行填充。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    要了解如何為預訓練準備 input_ids,請參閱 MT5 訓練

  • attention_mask (torch.FloatTensor,形狀為 (batch_size, sequence_length)可選) — 用於避免對填充標記索引執行注意力的掩碼。掩碼值選自 [0, 1]

    • 1 表示標記未被遮蔽
    • 0 表示標記被遮蔽

    什麼是注意力掩碼?

  • head_mask (torch.FloatTensor,形狀為 (num_heads,)(num_layers, num_heads)可選) — 用於置零自注意力模組中選定頭的掩碼。掩碼值選自 [0, 1]

    • 1 表示頭未被遮蔽
    • 0 表示頭被遮蔽
  • inputs_embeds (torch.FloatTensor,形狀為 (batch_size, sequence_length, hidden_size)可選) — 可選地,您可以選擇直接傳遞嵌入表示,而不是傳遞 input_ids。如果您想比模型的內部嵌入查詢矩陣更多地控制如何將 input_ids 索引轉換為關聯向量,這將非常有用。
  • output_attentions (bool可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的 attentions
  • output_hidden_states (bool可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的 hidden_states
  • return_dict (bool可選) — 是否返回 ModelOutput 而不是普通元組。

返回

transformers.modeling_outputs.BaseModelOutputtuple(torch.FloatTensor)

一個 transformers.modeling_outputs.BaseModelOutput 或一個 torch.FloatTensor 元組(如果傳遞了 return_dict=Falseconfig.return_dict=False),包含根據配置(MT5Config)和輸入的不同元素。

  • last_hidden_state (torch.FloatTensor, 形狀為 (batch_size, sequence_length, hidden_size)) — 模型最後一層輸出的隱藏狀態序列。

  • hidden_states (tuple(torch.FloatTensor)可選,在傳遞 output_hidden_states=Trueconfig.output_hidden_states=True 時返回) — torch.FloatTensor 元組(一個用於嵌入層的輸出(如果模型有嵌入層),另一個用於每層的輸出),形狀為 (batch_size, sequence_length, hidden_size)

    模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。

  • attentions (tuple(torch.FloatTensor)可選,當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — torch.FloatTensor 的元組(每層一個),形狀為 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

MT5EncoderModel 的前向方法,覆蓋了 __call__ 特殊方法。

雖然前向傳播的流程需要在此函式內定義,但之後應該呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> from transformers import AutoTokenizer, MT5EncoderModel

>>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
>>> model = MT5EncoderModel.from_pretrained("google/mt5-small")
>>> input_ids = tokenizer(
...     "Studies have been shown that owning a dog is good for you", return_tensors="pt"
... ).input_ids  # Batch size 1
>>> outputs = model(input_ids=input_ids)
>>> last_hidden_states = outputs.last_hidden_state

parallelize

< >

( device_map = None )

引數

  • device_map (dict[int, list], 可選) — 一個將注意力模組對映到裝置的字典。請注意,出於深奧的原因,嵌入模組和 LMHead 總是自動對映到第一個裝置。這意味著第一個裝置上對映的注意力模組應少於其他裝置。作為參考,mt5 模型具有以下數量的注意力模組:

    • mt5-small: 6
    • mt5-base: 12
    • mt5-large: 24
    • mt5-xl: 24
    • mt5-xxl: 24

這是一個實驗性功能,隨時可能更改。

使用裝置對映將模型的注意力模組分佈到多個裝置上。如果沒有給出裝置對映,它將均勻地將塊分佈到所有裝置上。

示例

# Here is an example of a device map on a machine with 4 GPUs using mt5-xl, which has a total of 24 attention modules:
model = MT5ForConditionalGeneration.from_pretrained("mt5-xl")
device_map = {
    0: [0, 1, 2],
    1: [3, 4, 5, 6, 7, 8, 9],
    2: [10, 11, 12, 13, 14, 15, 16],
    3: [17, 18, 19, 20, 21, 22, 23],
}
model.parallelize(device_map)

MT5ForSequenceClassification

class transformers.MT5ForSequenceClassification

< >

( config: MT5Config )

引數

  • config (MT5Config) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。

帶序列分類/頭的 MT5 模型(在池化輸出之上加一個線性層),例如用於 GLUE 任務。

此模型繼承自 PreTrainedModel。請檢視超類文件,瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪注意力頭等)。

該模型也是一個 PyTorch torch.nn.Module 的子類。可以像常規的 PyTorch 模組一樣使用它,並參考 PyTorch 文件瞭解所有與通用用法和行為相關的事項。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None decoder_input_ids: typing.Optional[torch.LongTensor] = None decoder_attention_mask: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.Tensor] = None decoder_head_mask: typing.Optional[torch.Tensor] = None cross_attn_head_mask: typing.Optional[torch.Tensor] = None encoder_outputs: typing.Optional[list[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None decoder_inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.Seq2SeqSequenceClassifierOutputtuple(torch.FloatTensor)

引數

  • input_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)) — 詞彙表中輸入序列標記的索引。MT5 是一個具有相對位置嵌入的模型,因此您應該能夠在輸入的左右兩側進行填充。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入ID?

    要了解如何為預訓練準備 input_ids,請參閱 MT5 訓練

  • attention_mask (torch.Tensor,形狀為 (batch_size, sequence_length)可選) — 用於避免對填充標記索引執行注意力的掩碼。掩碼值選自 [0, 1]

    • 1 表示標記未被遮蔽
    • 0 表示標記被遮蔽

    什麼是注意力掩碼?

  • decoder_input_ids (torch.LongTensor,形狀為 (batch_size, target_sequence_length)可選) — 解碼器輸入序列標記在詞彙表中的索引。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是解碼器輸入ID?

    MT5 使用 pad_token_id 作為生成 decoder_input_ids 的起始標記。如果使用 past_key_values,可以選擇只輸入最後一個 decoder_input_ids(請參閱 past_key_values)。

    要了解如何為預訓練準備 decoder_input_ids,請參閱 MT5 訓練

  • decoder_attention_mask (torch.BoolTensor,形狀為 (batch_size, target_sequence_length)可選) — 預設行為:生成一個忽略 decoder_input_ids 中填充標記的張量。預設情況下也會使用因果掩碼。
  • head_mask (torch.Tensor,形狀為 (num_heads,)(num_layers, num_heads)可選) — 用於置零自注意力模組中選定頭的掩碼。掩碼值選自 [0, 1]

    • 1 表示頭未被遮蔽
    • 0 表示頭被遮蔽
  • decoder_head_mask (torch.FloatTensor,形狀為 (num_heads,)(num_layers, num_heads)可選) — 用於置零解碼器中自注意力模組選定頭的掩碼。掩碼值選自 [0, 1]

    • 1 表示頭未被遮蔽
    • 0 表示頭被遮蔽
  • cross_attn_head_mask (torch.Tensor,形狀為 (num_heads,)(num_layers, num_heads)可選) — 用於置零解碼器中交叉注意力模組選定頭的掩碼。掩碼值選自 [0, 1]

    • 1 表示頭未被遮蔽
    • 0 表示頭被遮蔽
  • encoder_outputs (list[torch.FloatTensor]可選) — 元組包含 (last_hidden_state可選: hidden_states可選: attentions)。last_hidden_state 形狀為 (batch_size, sequence_length, hidden_size)可選) 是編碼器最後一層輸出的隱藏狀態序列。用於解碼器的交叉注意力。
  • inputs_embeds (torch.FloatTensor,形狀為 (batch_size, sequence_length, hidden_size)可選) — 可選地,您可以選擇直接傳遞嵌入表示,而不是傳遞 input_ids。如果您想比模型的內部嵌入查詢矩陣更多地控制如何將 input_ids 索引轉換為關聯向量,這將非常有用。
  • decoder_inputs_embeds (torch.FloatTensor,形狀為 (batch_size, target_sequence_length, hidden_size)可選) — 可選地,您可以選擇直接傳遞嵌入表示,而不是傳遞 decoder_input_ids。如果使用 past_key_values,可以選擇只輸入最後一個 decoder_inputs_embeds(請參閱 past_key_values)。如果您想比模型的內部嵌入查詢矩陣更多地控制如何將 decoder_input_ids 索引轉換為關聯向量,這將非常有用。

    如果 decoder_input_idsdecoder_inputs_embeds 都未設定,則 decoder_inputs_embeds 將取 inputs_embeds 的值。

  • labels (torch.LongTensor,形狀為 (batch_size,)可選) — 用於計算序列分類/迴歸損失的標籤。索引應在 [0, ..., config.num_labels - 1] 範圍內。如果 config.num_labels > 1,則計算分類損失(交叉熵)。
  • use_cache (bool可選) — 如果設定為 True,將返回 past_key_values 鍵值狀態,可用於加速解碼(請參閱 past_key_values)。
  • output_attentions (bool可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的 attentions
  • output_hidden_states (bool可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的 hidden_states
  • return_dict (bool可選) — 是否返回 ModelOutput 而不是普通元組。

返回

transformers.modeling_outputs.Seq2SeqSequenceClassifierOutputtuple(torch.FloatTensor)

一個 transformers.modeling_outputs.Seq2SeqSequenceClassifierOutput 或一個 torch.FloatTensor 元組(如果傳遞了 return_dict=Falseconfig.return_dict=False),包含根據配置(MT5Config)和輸入的不同元素。

  • loss (形狀為 (1,)torch.FloatTensor可選,當提供 label 時返回) — 分類 (如果 config.num_labels==1 則為迴歸) 損失。

  • logits (形狀為 (batch_size, config.num_labels)torch.FloatTensor) — 分類(如果 config.num_labels==1,則為迴歸)分數(SoftMax 之前)。

  • past_key_values (EncoderDecoderCache, 可選, 當傳遞 use_cache=Trueconfig.use_cache=True 時返回) — 這是一個 EncoderDecoderCache 例項。更多詳情,請參閱我們的 kv 快取指南

    包含預先計算的隱藏狀態(自注意力塊和交叉注意力塊中的鍵和值),可用於(參見 past_key_values 輸入)加速順序解碼。

  • decoder_hidden_states (tuple(torch.FloatTensor), 可選, 當傳遞 output_hidden_states=Trueconfig.output_hidden_states=True 時返回) — 形狀為 (batch_size, sequence_length, hidden_size)torch.FloatTensor 元組(一個用於嵌入層的輸出,如果模型有嵌入層,+ 一個用於每層的輸出)。

    解碼器在每一層輸出時的隱藏狀態以及初始嵌入輸出。

  • decoder_attentions (tuple(torch.FloatTensor), 可選, 當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — 形狀為 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元組(每層一個)。

    解碼器的注意力權重,在注意力 softmax 之後,用於計算自注意力頭中的加權平均。

  • cross_attentions (tuple(torch.FloatTensor), 可選, 當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — 形狀為 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元組(每層一個)。

    解碼器交叉注意力層的注意力權重,在注意力 softmax 之後,用於計算交叉注意力頭中的加權平均。

  • encoder_last_hidden_state (torch.FloatTensor,形狀為 (batch_size, sequence_length, hidden_size)可選) — 模型編碼器最後一層輸出的隱藏狀態序列。

  • encoder_hidden_states (tuple(torch.FloatTensor), 可選, 當傳遞 output_hidden_states=Trueconfig.output_hidden_states=True 時返回) — 形狀為 (batch_size, sequence_length, hidden_size)torch.FloatTensor 元組(一個用於嵌入層的輸出,如果模型有嵌入層,+ 一個用於每層的輸出)。

    編碼器在每一層輸出時的隱藏狀態以及初始嵌入輸出。

  • encoder_attentions (tuple(torch.FloatTensor), 可選, 當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — 形狀為 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元組(每層一個)。

    編碼器的注意力權重,在注意力 softmax 之後,用於計算自注意力頭中的加權平均。

MT5ForSequenceClassification 的前向方法,覆蓋了 __call__ 特殊方法。

雖然前向傳播的流程需要在此函式內定義,但之後應該呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

單標籤分類示例

>>> import torch
>>> from transformers import AutoTokenizer, MT5ForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
>>> model = MT5ForSequenceClassification.from_pretrained("google/mt5-small")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_id = logits.argmax().item()
>>> model.config.id2label[predicted_class_id]
...

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = MT5ForSequenceClassification.from_pretrained("google/mt5-small", num_labels=num_labels)

>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...

多標籤分類示例

>>> import torch
>>> from transformers import AutoTokenizer, MT5ForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
>>> model = MT5ForSequenceClassification.from_pretrained("google/mt5-small", problem_type="multi_label_classification")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = MT5ForSequenceClassification.from_pretrained(
...     "google/mt5-small", num_labels=num_labels, problem_type="multi_label_classification"
... )

>>> labels = torch.sum(
...     torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss

MT5ForTokenClassification

class transformers.MT5ForTokenClassification

< >

( config: MT5Config )

引數

  • config (MT5Config) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。

帶標記分類頭的 Mt5 transformer 模型(在隱藏狀態輸出之上加一個線性層),例如用於命名實體識別(NER)任務。

此模型繼承自 PreTrainedModel。請檢視超類文件,瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪注意力頭等)。

該模型也是一個 PyTorch torch.nn.Module 的子類。可以像常規的 PyTorch 模組一樣使用它,並參考 PyTorch 文件瞭解所有與通用用法和行為相關的事項。

forward

< >

( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

引數

  • input_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)) — 詞彙表中輸入序列標記的索引。MT5 是一個具有相對位置嵌入的模型,因此您應該能夠在輸入的左右兩側進行填充。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入ID?

    要了解如何為預訓練準備 input_ids,請參閱 MT5 訓練

  • attention_mask (torch.Tensor,形狀為 (batch_size, sequence_length)可選) — 用於避免對填充標記索引執行注意力的掩碼。掩碼值選自 [0, 1]

    • 1 表示標記未被遮蔽
    • 0 表示標記被遮蔽

    什麼是注意力掩碼?

  • head_mask (torch.Tensor,形狀為 (num_heads,)(num_layers, num_heads)可選) — 用於置零自注意力模組中選定頭的掩碼。掩碼值選自 [0, 1]

    • 1 表示頭未被遮蔽
    • 0 表示頭被遮蔽
  • inputs_embeds (torch.Tensor,形狀為 (batch_size, sequence_length, hidden_size)可選) — 可選地,您可以選擇直接傳遞嵌入表示,而不是傳遞 input_ids。如果您想比模型的內部嵌入查詢矩陣更多地控制如何將 input_ids 索引轉換為關聯向量,這將非常有用。
  • labels (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 用於計算標記分類損失的標籤。索引應在 [0, ..., config.num_labels - 1] 範圍內。
  • output_attentions (bool可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的 attentions
  • output_hidden_states (bool可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的 hidden_states
  • return_dict (bool, 可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。

返回

transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

一個 transformers.modeling_outputs.TokenClassifierOutput 或一個 torch.FloatTensor 的元組(如果傳遞了 return_dict=False 或當 config.return_dict=False 時),包含根據配置(MT5Config)和輸入而異的各種元素。

  • loss (形狀為 (1,)torch.FloatTensor可選,當提供 labels 時返回) — 分類損失。

  • logits (形狀為 (batch_size, sequence_length, config.num_labels)torch.FloatTensor) — 分類分數(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor)可選,在傳遞 output_hidden_states=Trueconfig.output_hidden_states=True 時返回) — torch.FloatTensor 元組(一個用於嵌入層的輸出(如果模型有嵌入層),另一個用於每層的輸出),形狀為 (batch_size, sequence_length, hidden_size)

    模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。

  • attentions (tuple(torch.FloatTensor)可選,當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — torch.FloatTensor 的元組(每層一個),形狀為 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

MT5ForTokenClassification 的 forward 方法會覆蓋 __call__ 特殊方法。

雖然前向傳播的流程需要在此函式內定義,但之後應該呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> from transformers import AutoTokenizer, MT5ForTokenClassification
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
>>> model = MT5ForTokenClassification.from_pretrained("google/mt5-small")

>>> inputs = tokenizer(
...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_token_class_ids = logits.argmax(-1)

>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> predicted_tokens_classes
...

>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...

MT5ForQuestionAnswering

class transformers.MT5ForQuestionAnswering

< >

( config: MT5Config )

引數

  • config (MT5Config) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化不會載入與模型關聯的權重,只會載入配置。請檢視 from_pretrained() 方法以載入模型權重。

Mt5 transformer,頂部帶有一個用於抽取式問答任務(如 SQuAD)的片段分類頭(一個位於隱藏狀態輸出之上的線性層,用於計算 `span start logits` 和 `span end logits`)。

此模型繼承自 PreTrainedModel。請檢視超類文件,瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪注意力頭等)。

該模型也是一個 PyTorch torch.nn.Module 的子類。可以像常規的 PyTorch 模組一樣使用它,並參考 PyTorch 文件瞭解所有與通用用法和行為相關的事項。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None decoder_input_ids: typing.Optional[torch.LongTensor] = None decoder_attention_mask: typing.Optional[torch.BoolTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None decoder_head_mask: typing.Optional[torch.FloatTensor] = None cross_attn_head_mask: typing.Optional[torch.Tensor] = None encoder_outputs: typing.Optional[tuple[tuple[torch.Tensor]]] = None start_positions: typing.Optional[torch.LongTensor] = None end_positions: typing.Optional[torch.LongTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None decoder_inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.Seq2SeqQuestionAnsweringModelOutputtuple(torch.FloatTensor)

引數

  • input_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)) — 詞彙表中輸入序列標記的索引。T5 是一個帶有相對位置嵌入的模型,因此你應該能夠對輸入的左右兩側進行填充。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

    要了解更多關於如何為預訓練準備 input_ids 的資訊,請參閱 T5 訓練

  • attention_mask (torch.FloatTensor,形狀為 (batch_size, sequence_length)可選) — 掩碼,用於避免對填充標記索引執行注意力操作。掩碼值選自 [0, 1]

    • 1 表示標記未被遮蓋
    • 0 表示標記被遮蓋

    什麼是注意力掩碼?

  • decoder_input_ids (torch.LongTensor,形狀為 (batch_size, target_sequence_length)可選) — 詞彙表中解碼器輸入序列標記的索引。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是解碼器輸入 ID?

    T5 使用 `pad_token_id` 作為生成 `decoder_input_ids` 的起始標記。如果使用了 `past_key_values`,則可以選擇只輸入最後的 `decoder_input_ids`(參見 `past_key_values`)。

    要了解更多關於如何為預訓練準備 `decoder_input_ids` 的資訊,請參閱 T5 訓練

  • decoder_attention_mask (torch.BoolTensor,形狀為 (batch_size, target_sequence_length)可選) — 預設行為:生成一個忽略 `decoder_input_ids` 中填充標記的張量。預設情況下也會使用因果掩碼。
  • head_mask (torch.FloatTensor,形狀為 (num_heads,)(num_layers, num_heads)可選) — 掩碼,用於將自注意力模組中選定的頭置零。掩碼值選自 [0, 1]

    • 1 表示頭未被遮蓋
    • 0 表示頭被遮蓋
  • decoder_head_mask (torch.FloatTensor,形狀為 (num_heads,)(num_layers, num_heads)可選) — 掩碼,用於將解碼器中自注意力模組的選定頭置零。掩碼值選自 [0, 1]

    • 1 表示頭未被遮蓋
    • 0 表示頭被遮蓋
  • cross_attn_head_mask (torch.Tensor,形狀為 (num_heads,)(num_layers, num_heads)可選) — 掩碼,用於將解碼器中交叉注意力模組的選定頭置零。掩碼值選自 [0, 1]

    • 1 表示頭未被遮蓋
    • 0 表示頭被遮蓋
  • encoder_outputs (tuple[tuple[torch.Tensor]], 可選) — 元組包含 (last_hidden_state, 可選: hidden_states, 可選: attentions)。形狀為 (batch_size, sequence_length, hidden_size) 的 `last_hidden_state` 是編碼器最後一層輸出的隱藏狀態序列。用於解碼器的交叉注意力機制中。
  • start_positions (torch.LongTensor,形狀為 (batch_size,)可選) — 標記片段開始位置(索引)的標籤,用於計算標記分類損失。位置被限制在序列長度(sequence_length)範圍內。序列之外的位置不計入損失計算。
  • end_positions (torch.LongTensor,形狀為 (batch_size,)可選) — 標記片段結束位置(索引)的標籤,用於計算標記分類損失。位置被限制在序列長度(sequence_length)範圍內。序列之外的位置不計入損失計算。
  • inputs_embeds (torch.FloatTensor,形狀為 (batch_size, sequence_length, hidden_size)可選) — 可選地,你可以選擇直接傳遞嵌入表示而不是傳遞 input_ids。如果你希望對如何將 input_ids 索引轉換為關聯向量進行更多控制,而不是使用模型的內部嵌入查詢矩陣,這會很有用。
  • decoder_inputs_embeds (torch.FloatTensor,形狀為 (batch_size, target_sequence_length, hidden_size)可選) — 可選地,你可以選擇直接傳遞嵌入表示而不是傳遞 `decoder_input_ids`。如果使用了 `past_key_values`,則可以選擇只輸入最後的 `decoder_inputs_embeds`(參見 `past_key_values`)。如果你希望對如何將 `decoder_input_ids` 索引轉換為關聯向量進行更多控制,而不是使用模型的內部嵌入查詢矩陣,這會很有用。

    如果 `decoder_input_ids` 和 `decoder_inputs_embeds` 都未設定,`decoder_inputs_embeds` 將取 `inputs_embeds` 的值。

  • use_cache (bool, 可選) — 如果設定為 True,將返回 past_key_values 鍵值狀態,可用於加速解碼(參見 past_key_values)。
  • output_attentions (bool, 可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的 `attentions`。
  • output_hidden_states (bool, 可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的 `hidden_states`。
  • return_dict (bool, 可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。

返回

transformers.modeling_outputs.Seq2SeqQuestionAnsweringModelOutputtuple(torch.FloatTensor)

一個 transformers.modeling_outputs.Seq2SeqQuestionAnsweringModelOutput 或一個 torch.FloatTensor 的元組(如果傳遞了 return_dict=False 或當 config.return_dict=False 時),包含根據配置(MT5Config)和輸入而異的各種元素。

  • loss (torch.FloatTensor of shape (1,), 可選, 當提供 labels 時返回) — 總範圍提取損失是起始位置和結束位置的交叉熵之和。

  • start_logits (torch.FloatTensor of shape (batch_size, sequence_length)) — 範圍起始分數(SoftMax 之前)。

  • end_logits (torch.FloatTensor of shape (batch_size, sequence_length)) — 範圍結束分數(SoftMax 之前)。

  • past_key_values (EncoderDecoderCache, 可選, 當傳遞 use_cache=Trueconfig.use_cache=True 時返回) — 這是一個 EncoderDecoderCache 例項。更多詳情,請參閱我們的 kv 快取指南

    包含預先計算的隱藏狀態(自注意力塊和交叉注意力塊中的鍵和值),可用於(參見 past_key_values 輸入)加速順序解碼。

  • decoder_hidden_states (tuple(torch.FloatTensor), 可選, 當傳遞 output_hidden_states=Trueconfig.output_hidden_states=True 時返回) — 形狀為 (batch_size, sequence_length, hidden_size)torch.FloatTensor 元組(一個用於嵌入層的輸出,如果模型有嵌入層,+ 一個用於每層的輸出)。

    解碼器在每一層輸出時的隱藏狀態以及初始嵌入輸出。

  • decoder_attentions (tuple(torch.FloatTensor), 可選, 當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — 形狀為 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元組(每層一個)。

    解碼器的注意力權重,在注意力 softmax 之後,用於計算自注意力頭中的加權平均。

  • cross_attentions (tuple(torch.FloatTensor), 可選, 當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — 形狀為 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元組(每層一個)。

    解碼器交叉注意力層的注意力權重,在注意力 softmax 之後,用於計算交叉注意力頭中的加權平均。

  • encoder_last_hidden_state (torch.FloatTensor,形狀為 (batch_size, sequence_length, hidden_size)可選) — 模型編碼器最後一層輸出的隱藏狀態序列。

  • encoder_hidden_states (tuple(torch.FloatTensor), 可選, 當傳遞 output_hidden_states=Trueconfig.output_hidden_states=True 時返回) — 形狀為 (batch_size, sequence_length, hidden_size)torch.FloatTensor 元組(一個用於嵌入層的輸出,如果模型有嵌入層,+ 一個用於每層的輸出)。

    編碼器在每一層輸出時的隱藏狀態以及初始嵌入輸出。

  • encoder_attentions (tuple(torch.FloatTensor), 可選, 當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — 形狀為 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元組(每層一個)。

    編碼器的注意力權重,在注意力 softmax 之後,用於計算自注意力頭中的加權平均。

MT5ForQuestionAnswering 的 forward 方法會覆蓋 __call__ 特殊方法。

雖然前向傳播的流程需要在此函式內定義,但之後應該呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> from transformers import AutoTokenizer, MT5ForQuestionAnswering
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
>>> model = MT5ForQuestionAnswering.from_pretrained("google/mt5-small")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()

>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> tokenizer.decode(predict_answer_tokens, skip_special_tokens=True)
...

>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])

>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss
>>> round(loss.item(), 2)
...
TensorFlow
隱藏 TensorFlow 內容

TFMT5Model

class transformers.TFMT5Model

< >

( *args **kwargs )

此類覆蓋了 TFT5Model。請查閱父類文件以獲取相應的文件和用法示例。

示例

>>> from transformers import TFMT5Model, AutoTokenizer

>>> model = TFMT5Model.from_pretrained("google/mt5-small")
>>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
>>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien."
>>> summary = "Weiter Verhandlung in Syrien."
>>> inputs = tokenizer(article, return_tensors="tf")
>>> labels = tokenizer(text_target=summary, return_tensors="tf")

>>> outputs = model(input_ids=inputs["input_ids"], decoder_input_ids=labels["input_ids"])
>>> hidden_states = outputs.last_hidden_state

TFMT5ForConditionalGeneration

class transformers.TFMT5ForConditionalGeneration

< >

( *args **kwargs )

此類覆蓋了 TFT5ForConditionalGeneration。請查閱父類文件以獲取相應的文件和用法示例。

示例

>>> from transformers import TFMT5ForConditionalGeneration, AutoTokenizer

>>> model = TFMT5ForConditionalGeneration.from_pretrained("google/mt5-small")
>>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
>>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien."
>>> summary = "Weiter Verhandlung in Syrien."
>>> inputs = tokenizer(article, text_target=summary, return_tensors="tf")

>>> outputs = model(**inputs)
>>> loss = outputs.loss

TFMT5EncoderModel

class transformers.TFMT5EncoderModel

< >

( *args **kwargs )

此類覆蓋了 TFT5EncoderModel。請查閱父類文件以獲取相應的文件和用法示例。

示例

>>> from transformers import TFMT5EncoderModel, AutoTokenizer

>>> model = TFMT5EncoderModel.from_pretrained("google/mt5-small")
>>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
>>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien."
>>> input_ids = tokenizer(article, return_tensors="tf").input_ids
>>> outputs = model(input_ids)
>>> hidden_state = outputs.last_hidden_state
JAX
隱藏 JAX 內容

FlaxMT5Model

class transformers.FlaxMT5Model

< >

( config: T5Config input_shape: tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )

此類覆蓋了 FlaxT5Model。請查閱父類文件以獲取相應的文件和用法示例。

示例

>>> from transformers import FlaxMT5Model, AutoTokenizer

>>> model = FlaxMT5Model.from_pretrained("google/mt5-small")
>>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")

>>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien."
>>> summary = "Weiter Verhandlung in Syrien."
>>> inputs = tokenizer(article, return_tensors="np")

>>> decoder_input_ids = tokenizer(text_target=summary, return_tensors="np").input_ids

>>> outputs = model(input_ids=inputs["input_ids"], decoder_input_ids=decoder_input_ids)
>>> hidden_states = outputs.last_hidden_state

FlaxMT5ForConditionalGeneration

class transformers.FlaxMT5ForConditionalGeneration

< >

( config: T5Config input_shape: tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )

此類覆蓋了 FlaxT5ForConditionalGeneration。請查閱父類文件以獲取相應的文件和用法示例。

示例

>>> from transformers import FlaxMT5ForConditionalGeneration, AutoTokenizer

>>> model = FlaxMT5ForConditionalGeneration.from_pretrained("google/mt5-small")
>>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")

>>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien."
>>> summary = "Weiter Verhandlung in Syrien."
>>> inputs = tokenizer(article, return_tensors="np")

>>> decoder_input_ids = tokenizer(text_target=summary, return_tensors="np").input_ids

>>> outputs = model(**inputs, decoder_input_ids=decoder_input_ids)
>>> logits = outputs.logits

FlaxMT5EncoderModel

class transformers.FlaxMT5EncoderModel

< >

( config: T5Config input_shape: tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )

此類覆蓋了 FlaxT5EncoderModel。請查閱父類文件以獲取相應的文件和用法示例。

示例

>>> from transformers import FlaxT5EncoderModel, AutoTokenizer

>>> model = FlaxT5EncoderModel.from_pretrained("google/mt5-small")
>>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")

>>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien."
>>> summary = "Weiter Verhandlung in Syrien."
>>> inputs = tokenizer(article, return_tensors="np")

>>> decoder_input_ids = tokenizer(text_target=summary, return_tensors="np").input_ids

>>> outputs = model(input_ids=inputs["input_ids"])
>>> hidden_states = outputs.last_hidden_state
< > 在 GitHub 上更新

© . This site is unofficial and not affiliated with Hugging Face, Inc.