Transformers 文件
RoFormer
並獲得增強的文件體驗
開始使用
RoFormer
RoFormer 引入了旋轉位置嵌入(Rotary Position Embedding, RoPE)技術,透過在二維空間中旋轉輸入來編碼詞元位置。這使得模型能夠追蹤絕對位置並建模相對關係。RoPE 可以擴充套件到更長的序列,考慮到了詞元依賴性的自然衰減,並能與更高效的線性自注意力機制協同工作。
你可以在 Hub 上找到所有 RoFormer 的檢查點。
點選右側邊欄中的 RoFormer 模型,檢視更多關於如何將 RoFormer 應用於不同語言任務的示例。
下面的示例演示瞭如何使用 Pipeline、AutoModel 以及從命令列預測 [MASK]
詞元。
# uncomment to install rjieba which is needed for the tokenizer
# !pip install rjieba
import torch
from transformers import pipeline
pipe = pipeline(
task="fill-mask",
model="junnyu/roformer_chinese_base",
torch_dtype=torch.float16,
device=0
)
output = pipe("水在零度時會[MASK]")
print(output)
注意
- 當前的 RoFormer 實現是一個僅編碼器模型。原始程式碼可以在 ZhuiyiTechnology/roformer 倉庫中找到。
RoFormerConfig
class transformers.RoFormerConfig
< 原始碼 >( vocab_size = 50000 embedding_size = None hidden_size = 768 num_hidden_layers = 12 num_attention_heads = 12 intermediate_size = 3072 hidden_act = 'gelu' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 1536 type_vocab_size = 2 initializer_range = 0.02 layer_norm_eps = 1e-12 pad_token_id = 0 rotary_value = False use_cache = True **kwargs )
引數
- vocab_size (
int
, 可選, 預設為 50000) — RoFormer 模型的詞彙表大小。定義了在呼叫 RoFormerModel 或 TFRoFormerModel 時,可以透過inputs_ids
表示的不同詞元的數量。 - embedding_size (
int
, 可選, 預設為 None) — 編碼器層和池化層的維度。如果未提供,則預設為hidden_size
。 - hidden_size (
int
, 可選, 預設為 768) — 編碼器層和池化層的維度。 - num_hidden_layers (
int
, 可選, 預設為 12) — Transformer 編碼器中的隱藏層數量。 - num_attention_heads (
int
, 可選, 預設為 12) — Transformer 編碼器中每個注意力層的注意力頭數量。 - intermediate_size (
int
, 可選, 預設為 3072) — Transformer 編碼器中“中間”(即前饋)層的維度。 - hidden_act (
str
orfunction
, 可選, 預設為"gelu"
) — 編碼器和池化器中的非線性啟用函式(函式或字串)。如果為字串,支援"gelu"
、"relu"
、"selu"
和"gelu_new"
。 - hidden_dropout_prob (
float
, 可選, 預設為 0.1) — 嵌入層、編碼器和池化器中所有全連線層的丟棄機率。 - attention_probs_dropout_prob (
float
, 可選, 預設為 0.1) — 注意力機率的丟棄率。 - max_position_embeddings (
int
, 可選, 預設為 1536) — 該模型可能使用的最大序列長度。通常將其設定為一個較大的值以防萬一(例如 512、1024 或 1536)。 - type_vocab_size (
int
, 可選, 預設為 2) — 在呼叫 RoFormerModel 或 TFRoFormerModel 時傳入的token_type_ids
的詞彙表大小。 - initializer_range (
float
, 可選, 預設為 0.02) — 用於初始化所有權重矩陣的 truncated_normal_initializer 的標準差。 - layer_norm_eps (
float
, 可選, 預設為 1e-12) — 層歸一化層使用的 epsilon 值。 - is_decoder (
bool
, 可選, 預設為False
) — 模型是否用作解碼器。如果為False
,則模型用作編碼器。 - use_cache (
bool
, 可選, 預設為True
) — 模型是否應返回最後一個鍵/值注意力(並非所有模型都使用)。僅在config.is_decoder=True
時相關。 - rotary_value (
bool
, 可選, 預設為False
) — 是否在值層上應用旋轉位置嵌入。
這是用於儲存 RoFormerModel 配置的配置類。它用於根據指定的引數例項化一個 RoFormer 模型,定義模型架構。使用預設值例項化配置將產生與 RoFormer junnyu/roformer_chinese_base 架構類似的配置。
配置物件繼承自 PretrainedConfig,可用於控制模型輸出。更多資訊請參閱 PretrainedConfig 的文件。
示例
>>> from transformers import RoFormerModel, RoFormerConfig
>>> # Initializing a RoFormer junnyu/roformer_chinese_base style configuration
>>> configuration = RoFormerConfig()
>>> # Initializing a model (with random weights) from the junnyu/roformer_chinese_base style configuration
>>> model = RoFormerModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
RoFormerTokenizer
class transformers.RoFormerTokenizer
< 原始碼 >( vocab_file do_lower_case = True do_basic_tokenize = True never_split = None unk_token = '[UNK]' sep_token = '[SEP]' pad_token = '[PAD]' cls_token = '[CLS]' mask_token = '[MASK]' tokenize_chinese_chars = True strip_accents = None **kwargs )
引數
- vocab_file (
str
) — 包含詞彙表的檔案。 - do_lower_case (
bool
, 可選, 預設為True
) — 是否在分詞時將輸入轉換為小寫。 - do_basic_tokenize (
bool
, 可選, 預設為True
) — 是否在 WordPiece 之前進行基本分詞。 - never_split (
Iterable
, 可選) — 在分詞過程中永遠不會被分割的詞元集合。僅在do_basic_tokenize=True
時有效。 - unk_token (
str
, 可選, 預設為"[UNK]"
) — 未知詞元。不在詞彙表中的詞元無法轉換為 ID,將被設定為此詞元。 - sep_token (
str
, 可選, 預設為"[SEP]"
) — 分隔符詞元,用於從多個序列構建一個序列,例如用於序列分類的兩個序列,或用於問答的文字和問題。它也用作使用特殊詞元構建的序列的最後一個詞元。 - pad_token (
str
, 可選, 預設為"[PAD]"
) — 用於填充的詞元,例如在批處理不同長度的序列時使用。 - cls_token (
str
, 可選, 預設為"[CLS]"
) — 分類器詞元,用於進行序列分類(對整個序列而不是逐個詞元進行分類)。當使用特殊詞元構建序列時,它是序列的第一個詞元。 - mask_token (
str
, 可選, 預設為"[MASK]"
) — 用於掩碼值的詞元。這是在使用掩碼語言建模訓練此模型時使用的詞元。這是模型將嘗試預測的詞元。 - tokenize_chinese_chars (
bool
, 可選, 預設為True
) — 是否對中文字元進行分詞。對於日語,這可能需要停用(請參閱此 問題)。
- strip_accents (
bool
, 可選) — 是否移除所有重音符號。如果未指定此選項,則將由lowercase
的值決定(與原始 BERT 中一樣)。
構建一個 RoFormer 分詞器。基於 Rust Jieba。
此分詞器繼承自 PreTrainedTokenizer,它包含了大部分主要方法。使用者應參考此超類以獲取有關這些方法的更多資訊。
示例
>>> from transformers import RoFormerTokenizer
>>> tokenizer = RoFormerTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> tokenizer.tokenize("今天天氣非常好。")
['今', '天', '天', '氣', '非常', '好', '。']
build_inputs_with_special_tokens
< 來源 >( token_ids_0: list token_ids_1: typing.Optional[list[int]] = None ) → List[int]
透過拼接和新增特殊標記,從一個序列或一對序列為序列分類任務構建模型輸入。一個 RoFormer 序列具有以下格式:
- 單個序列:
[CLS] X [SEP]
- 序列對:
[CLS] A [SEP] B [SEP]
get_special_tokens_mask
< 來源 >( token_ids_0: list token_ids_1: typing.Optional[list[int]] = None already_has_special_tokens: bool = False ) → List[int]
從沒有新增特殊標記的標記列表中檢索序列ID。此方法在使用分詞器prepare_for_model
方法新增特殊標記時呼叫。
create_token_type_ids_from_sequences
< 來源 >( token_ids_0: list token_ids_1: typing.Optional[list[int]] = None ) → list[int]
建立與傳入序列對應的標記型別 ID。什麼是標記型別 ID?
如果模型有特殊的構建方式,應在子類中重寫此方法。
RoFormerTokenizerFast
class transformers.RoFormerTokenizerFast
< 來源 >( vocab_file = None tokenizer_file = None do_lower_case = True unk_token = '[UNK]' sep_token = '[SEP]' pad_token = '[PAD]' cls_token = '[CLS]' mask_token = '[MASK]' tokenize_chinese_chars = True strip_accents = None **kwargs )
構建一個“快速”的 RoFormer 分詞器(由 HuggingFace 的 tokenizers 庫支援)。
RoFormerTokenizerFast 幾乎與 BertTokenizerFast 相同,並執行端到端的分詞:標點符號分割和詞元化。在對中文進行分詞時,它們之間存在一些差異。
此分詞器繼承自 PreTrainedTokenizerFast,它包含了大部分主要方法。使用者應參考此超類以獲取有關這些方法的更多資訊。
示例
>>> from transformers import RoFormerTokenizerFast
>>> tokenizer = RoFormerTokenizerFast.from_pretrained("junnyu/roformer_chinese_base")
>>> tokenizer.tokenize("今天天氣非常好。")
['今', '天', '天', '氣', '非常', '好', '。']
RoFormerModel
class transformers.RoFormerModel
< 來源 >( config )
引數
- config (RoFormerModel) — 包含模型所有引數的模型配置類。使用配置檔案初始化不會載入與模型相關的權重,只會載入配置。請查閱 from_pretrained() 方法來載入模型權重。
該模型既可以作為編碼器(僅使用自注意力),也可以作為解碼器。在作為解碼器的情況下,在自注意力層之間會增加一個交叉注意力層,遵循 Attention is all you need(作者:Ashish Vaswani、Noam Shazeer、Niki Parmar、Jakob Uszkoreit、Llion Jones、Aidan N. Gomez、Lukasz Kaiser 和 Illia Polosukhin)中描述的架構。
要作為解碼器使用,模型需要在初始化時將配置的 `is_decoder` 引數設定為 `True`。要在 Seq2Seq 模型中使用,模型需要在初始化時將 `is_decoder` 和 `add_cross_attention` 引數都設定為 `True`;此時,前向傳播中需要輸入 `encoder_hidden_states`。
此模型繼承自 PreTrainedModel。請查閱超類文件以瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪注意力頭等)。
此模型也是 PyTorch torch.nn.Module 的子類。可以像常規的 PyTorch Module 一樣使用它,並參考 PyTorch 文件瞭解所有與通用用法和行為相關的事項。
forward
< 來源 >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None encoder_hidden_states: typing.Optional[torch.FloatTensor] = None encoder_attention_mask: typing.Optional[torch.FloatTensor] = None past_key_values: typing.Optional[tuple[tuple[torch.FloatTensor]]] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentions 或 tuple(torch.FloatTensor)
引數
- input_ids (
torch.LongTensor
,形狀為(batch_size, sequence_length)
,可選) — 詞彙表中輸入序列標記的索引。預設情況下,填充將被忽略。索引可以使用 AutoTokenizer 獲得。詳情請參閱 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
,形狀為(batch_size, sequence_length)
,可選) — 用於避免對填充標記索引執行注意力的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示標記未被遮蓋,
- 0 表示標記被遮蓋。
- token_type_ids (
torch.LongTensor
,形狀為(batch_size, sequence_length)
,可選) — 段標記索引,用於指示輸入的第一部分和第二部分。索引在[0, 1]
中選擇:- 0 對應於 句子 A 的標記,
- 1 對應於 句子 B 的標記。
- head_mask (
torch.FloatTensor
,形狀為(num_heads,)
或(num_layers, num_heads)
,可選) — 用於置零自注意力模組中選定頭的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示頭未被遮蓋,
- 0 表示頭被遮蓋。
- inputs_embeds (
torch.FloatTensor
,形狀為(batch_size, sequence_length, hidden_size)
,可選) — 可選地,你可以選擇直接傳遞嵌入表示,而不是傳遞 `input_ids`。如果你想比模型內部的嵌入查詢矩陣更好地控制如何將 `input_ids` 索引轉換為相關向量,這會很有用。 - encoder_hidden_states (
torch.FloatTensor
,形狀為(batch_size, sequence_length, hidden_size)
,可選) — 編碼器最後一層輸出的隱藏狀態序列。如果模型被配置為解碼器,則用於交叉注意力。 - encoder_attention_mask (
torch.FloatTensor
,形狀為(batch_size, sequence_length)
,可選) — 用於避免對編碼器輸入的填充標記索引執行注意力的掩碼。如果模型被配置為解碼器,則該掩碼用於交叉注意力。掩碼值在[0, 1]
中選擇:- 1 表示標記未被遮蓋,
- 0 表示標記被遮蓋。
- past_key_values (
tuple[tuple[torch.FloatTensor]]
, 可選) — 預先計算的隱藏狀態(自注意力塊和交叉注意力塊中的鍵和值),可用於加速序列解碼。這通常包括在解碼的先前階段由模型返回的 `past_key_values`,當 `use_cache=True` 或 `config.use_cache=True` 時。允許兩種格式:
- Cache 例項,請參閱我們的 kv 快取指南;
- 長度為 `config.n_layers` 的 `tuple(torch.FloatTensor)` 元組,每個元組有兩個形狀為 `(batch_size, num_heads, sequence_length, embed_size_per_head)` 的張量。這也稱為舊版快取格式。
模型將輸出與輸入相同的快取格式。如果未傳遞 `past_key_values`,則將返回舊版快取格式。
如果使用 `past_key_values`,使用者可以選擇只輸入最後一個 `input_ids`(那些沒有為其提供過去鍵值狀態的 `input_ids`),形狀為 `(batch_size, 1)`,而不是所有形狀為 `(batch_size, sequence_length)` 的 `input_ids`。
- use_cache (
bool
, 可選) — 如果設定為 `True`,則返回 `past_key_values` 鍵值狀態,可用於加速解碼(參見 `past_key_values`)。 - output_attentions (
bool
, 可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的 `attentions`。 - output_hidden_states (
bool
, 可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的 `hidden_states`。 - return_dict (
bool
, 可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。
返回
transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentions 或 tuple(torch.FloatTensor)
一個 transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentions 或一個 `torch.FloatTensor` 的元組(如果傳遞了 `return_dict=False` 或者 `config.return_dict=False`),包含根據配置(RoFormerConfig)和輸入的不同元素。
-
last_hidden_state (
torch.FloatTensor
, 形狀為(batch_size, sequence_length, hidden_size)
) — 模型最後一層輸出的隱藏狀態序列。如果使用了
past_key_values
,則只輸出形狀為(batch_size, 1, hidden_size)
的序列的最後一個隱藏狀態。 -
past_key_values (
Cache
,可選,當傳遞 `use_cache=True` 或 `config.use_cache=True` 時返回) — 這是一個 Cache 例項。更多詳情,請參閱我們的 kv 快取指南。包含預先計算的隱藏狀態(自注意力塊中的鍵和值,以及當 `config.is_encoder_decoder=True` 時交叉注意力塊中的鍵和值),可用於(參見 `past_key_values` 輸入)加速序列解碼。
-
hidden_states (
tuple(torch.FloatTensor)
,可選,當傳遞 `output_hidden_states=True` 或 `config.output_hidden_states=True` 時返回) — `torch.FloatTensor` 的元組(一個用於嵌入層的輸出,如果模型有嵌入層,+ 每個層的輸出),形狀為 `(batch_size, sequence_length, hidden_size)`。模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。
-
attentions (
tuple(torch.FloatTensor)
,可選,當傳遞 `output_attentions=True` 或 `config.output_attentions=True` 時返回) — `torch.FloatTensor` 的元組(每層一個),形狀為 `(batch_size, num_heads, sequence_length, sequence_length)`。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
-
cross_attentions (
tuple(torch.FloatTensor)
,可選,當傳遞 `output_attentions=True` 和 `config.add_cross_attention=True` 或 `config.output_attentions=True` 時返回) — `torch.FloatTensor` 的元組(每層一個),形狀為 `(batch_size, num_heads, sequence_length, sequence_length)`。解碼器交叉注意力層的注意力權重,在注意力 softmax 之後,用於計算交叉注意力頭中的加權平均。
RoFormerModel 的前向方法重寫了 `__call__` 特殊方法。
雖然前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。
RoFormerForCausalLM
class transformers.RoFormerForCausalLM
< 來源 >( config )
引數
- config (RoFormerForCausalLM) — 包含模型所有引數的模型配置類。使用配置檔案初始化不會載入與模型相關的權重,只會載入配置。請查閱 from_pretrained() 方法來載入模型權重。
帶有 `language modeling` 頭的 RoFormer 模型,用於 CLM 微調。
此模型繼承自 PreTrainedModel。請查閱超類文件以瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪注意力頭等)。
此模型也是 PyTorch torch.nn.Module 的子類。可以像常規的 PyTorch Module 一樣使用它,並參考 PyTorch 文件瞭解所有與通用用法和行為相關的事項。
forward
< 來源 >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None encoder_hidden_states: typing.Optional[torch.FloatTensor] = None encoder_attention_mask: typing.Optional[torch.FloatTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None cross_attn_head_mask: typing.Optional[torch.Tensor] = None past_key_values: typing.Optional[tuple[tuple[torch.FloatTensor]]] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None **kwargs ) → transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或 tuple(torch.FloatTensor)
引數
- input_ids (
torch.LongTensor
,形狀為(batch_size, sequence_length)
,可選) — 詞彙表中輸入序列標記的索引。預設情況下將忽略填充(Padding)。可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
,形狀為(batch_size, sequence_length)
,可選) — 用於避免對填充(padding)標記索引執行注意力(attention)計算的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示標記未被遮蓋,
- 0 表示標記已被遮蓋。
- token_type_ids (
torch.LongTensor
,形狀為(batch_size, sequence_length)
,可選) — 片段標記索引,用於指示輸入的第一和第二部分。索引在[0, 1]
中選擇:- 0 對應於 句子 A 的標記,
- 1 對應於 句子 B 的標記。
- inputs_embeds (
torch.FloatTensor
,形狀為(batch_size, sequence_length, hidden_size)
,可選) — 可選地,你可以選擇直接傳遞嵌入表示,而不是傳遞input_ids
。如果你想比模型內部的嵌入查詢矩陣更好地控制如何將input_ids
索引轉換為關聯向量,這會非常有用。 - encoder_hidden_states (
torch.FloatTensor
,形狀為(batch_size, sequence_length, hidden_size)
,可選) — 編碼器最後一層輸出的隱藏狀態序列。如果模型配置為解碼器,則在交叉注意力(cross-attention)中使用。 - encoder_attention_mask (
torch.FloatTensor
,形狀為(batch_size, sequence_length)
,可選) — 用於避免對編碼器輸入的填充標記索引執行注意力計算的掩碼。如果模型配置為解碼器,則此掩碼用於交叉注意力(cross-attention)。掩碼值在[0, 1]
中選擇:- 1 表示標記未被遮蓋,
- 0 表示標記已被遮蓋。
- head_mask (
torch.FloatTensor
,形狀為(num_heads,)
或(num_layers, num_heads)
,可選) — 用於使自注意力(self-attention)模組的選定頭無效的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示該頭未被遮蓋,
- 0 表示該頭已被遮蓋。
- cross_attn_head_mask (
torch.Tensor
,形狀為(num_layers, num_heads)
,可選) — 用於使交叉注意力(cross-attention)模組的選定頭無效的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示該頭未被遮蓋,
- 0 表示該頭已被遮蓋。
- past_key_values (
tuple[tuple[torch.FloatTensor]]
,可選) — 預先計算的隱藏狀態(自注意力和交叉注意力塊中的鍵和值),可用於加速順序解碼。這通常是在解碼的前一階段,當use_cache=True
或config.use_cache=True
時,由模型返回的past_key_values
。允許兩種格式:
- Cache 例項,請參閱我們的 KV 快取指南;
- 長度為
config.n_layers
的tuple(torch.FloatTensor)
元組,每個元組包含 2 個形狀為(batch_size, num_heads, sequence_length, embed_size_per_head)
的張量。這也稱為傳統快取格式。
模型將輸出與輸入相同的快取格式。如果未傳遞
past_key_values
,則將返回傳統快取格式。如果使用
past_key_values
,使用者可以選擇僅輸入最後一個input_ids
(那些沒有為其提供過去鍵值狀態的 ID),形狀為(batch_size, 1)
,而不是所有形狀為(batch_size, sequence_length)
的input_ids
。 - labels (
torch.LongTensor
,形狀為(batch_size, sequence_length)
,可選) — 用於計算從左到右語言建模損失(下一個詞預測)的標籤。索引應在[-100, 0, ..., config.vocab_size]
範圍內(請參閱input_ids
文件)。索引設定為-100
的標記將被忽略(遮蓋),損失僅對標籤在[0, ..., config.vocab_size]
範圍內的標記進行計算。 - use_cache (
bool
,可選) — 如果設定為True
,則返回past_key_values
鍵值狀態,可用於加速解碼(請參閱past_key_values
)。 - output_attentions (
bool
,可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的attentions
。 - output_hidden_states (
bool
,可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的hidden_states
。 - return_dict (
bool
,可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。
返回
transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或 tuple(torch.FloatTensor)
一個 transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或一個 torch.FloatTensor
的元組(如果傳遞了 return_dict=False
或 config.return_dict=False
),它包含各種元素,具體取決於配置(RoFormerConfig)和輸入。
-
loss (
torch.FloatTensor
形狀為(1,)
,可選,當提供labels
時返回) — 語言建模損失(用於下一個 token 預測)。 -
logits (形狀為
(batch_size, sequence_length, config.vocab_size)
的torch.FloatTensor
) — 語言建模頭部的預測分數(SoftMax 之前的每個詞彙標記的分數)。 -
hidden_states (
tuple(torch.FloatTensor)
,可選,當傳遞 `output_hidden_states=True` 或 `config.output_hidden_states=True` 時返回) — `torch.FloatTensor` 的元組(一個用於嵌入層的輸出,如果模型有嵌入層,+ 每個層的輸出),形狀為 `(batch_size, sequence_length, hidden_size)`。模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。
-
attentions (
tuple(torch.FloatTensor)
,可選,當傳遞 `output_attentions=True` 或 `config.output_attentions=True` 時返回) — `torch.FloatTensor` 的元組(每層一個),形狀為 `(batch_size, num_heads, sequence_length, sequence_length)`。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
-
cross_attentions (
tuple(torch.FloatTensor)
,可選,當傳遞output_attentions=True
或config.output_attentions=True
時返回) —torch.FloatTensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 後的交叉注意力權重,用於計算交叉注意力頭中的加權平均。
-
past_key_values (
Cache
,可選,當傳遞 `use_cache=True` 或 `config.use_cache=True` 時返回) — 這是一個 Cache 例項。更多詳情,請參閱我們的 kv 快取指南。包含預先計算的隱藏狀態(注意力塊中的鍵和值),可用於(參見
past_key_values
輸入)加速順序解碼。
RoFormerForCausalLM 的 forward 方法會覆蓋 __call__
特殊方法。
雖然前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。
示例
>>> from transformers import AutoTokenizer, RoFormerForCausalLM, RoFormerConfig
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> config = RoFormerConfig.from_pretrained("junnyu/roformer_chinese_base")
>>> config.is_decoder = True
>>> model = RoFormerForCausalLM.from_pretrained("junnyu/roformer_chinese_base", config=config)
>>> inputs = tokenizer("今天天氣非常好。", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.logits
RoFormerForMaskedLM
class transformers.RoFormerForMaskedLM
< 原始碼 >( config )
引數
- config (RoFormerForMaskedLM) — 模型配置類,包含模型的所有引數。使用配置檔案初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。
帶有一個 `language modeling` 頭的 Roformer 模型。
此模型繼承自 PreTrainedModel。請查閱超類文件以瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪注意力頭等)。
此模型也是 PyTorch torch.nn.Module 的子類。可以像常規的 PyTorch Module 一樣使用它,並參考 PyTorch 文件瞭解所有與通用用法和行為相關的事項。
forward
< 原始碼 >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None encoder_hidden_states: typing.Optional[torch.FloatTensor] = None encoder_attention_mask: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.MaskedLMOutput 或 tuple(torch.FloatTensor)
引數
- input_ids (
torch.LongTensor
,形狀為(batch_size, sequence_length)
,可選) — 詞彙表中輸入序列標記的索引。預設情況下將忽略填充(Padding)。可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
,形狀為(batch_size, sequence_length)
,可選) — 用於避免對填充(padding)標記索引執行注意力(attention)計算的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示標記未被遮蓋,
- 0 表示標記已被遮蓋。
- token_type_ids (
torch.LongTensor
,形狀為(batch_size, sequence_length)
,可選) — 片段標記索引,用於指示輸入的第一和第二部分。索引在[0, 1]
中選擇:- 0 對應於 句子 A 的標記,
- 1 對應於 句子 B 的標記。
- head_mask (
torch.FloatTensor
,形狀為(num_heads,)
或(num_layers, num_heads)
,可選) — 用於使自注意力(self-attention)模組的選定頭無效的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示該頭未被遮蓋,
- 0 表示該頭已被遮蓋。
- inputs_embeds (
torch.FloatTensor
,形狀為(batch_size, sequence_length, hidden_size)
,可選) — 可選地,你可以選擇直接傳遞嵌入表示,而不是傳遞input_ids
。如果你想比模型內部的嵌入查詢矩陣更好地控制如何將input_ids
索引轉換為關聯向量,這會非常有用。 - encoder_hidden_states (
torch.FloatTensor
,形狀為(batch_size, sequence_length, hidden_size)
,可選) — 編碼器最後一層輸出的隱藏狀態序列。如果模型配置為解碼器,則在交叉注意力(cross-attention)中使用。 - encoder_attention_mask (
torch.FloatTensor
,形狀為(batch_size, sequence_length)
,可選) — 用於避免對編碼器輸入的填充標記索引執行注意力計算的掩碼。如果模型配置為解碼器,則此掩碼用於交叉注意力(cross-attention)。掩碼值在[0, 1]
中選擇:- 1 表示標記未被遮蓋,
- 0 表示標記已被遮蓋。
- labels (
torch.LongTensor
,形狀為(batch_size, sequence_length)
,可選) — 用於計算遮蓋語言建模損失的標籤。索引應在[-100, 0, ..., config.vocab_size]
範圍內(請參閱input_ids
文件)。索引設定為-100
的標記將被忽略(遮蓋),損失僅對標籤在[0, ..., config.vocab_size]
範圍內的標記進行計算。 - output_attentions (
bool
,可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的attentions
。 - output_hidden_states (
bool
,可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的hidden_states
。 - return_dict (
bool
,可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。
返回
transformers.modeling_outputs.MaskedLMOutput 或 tuple(torch.FloatTensor)
一個 transformers.modeling_outputs.MaskedLMOutput 或一個 torch.FloatTensor
的元組(如果傳遞了 return_dict=False
或 config.return_dict=False
),它包含各種元素,具體取決於配置(RoFormerConfig)和輸入。
-
loss (形狀為
(1,)
的torch.FloatTensor
,可選,當提供labels
時返回) — 掩碼語言建模 (MLM) 損失。 -
logits (形狀為
(batch_size, sequence_length, config.vocab_size)
的torch.FloatTensor
) — 語言建模頭部的預測分數(SoftMax 之前的每個詞彙標記的分數)。 -
hidden_states (
tuple(torch.FloatTensor)
,可選,當傳遞 `output_hidden_states=True` 或 `config.output_hidden_states=True` 時返回) — `torch.FloatTensor` 的元組(一個用於嵌入層的輸出,如果模型有嵌入層,+ 每個層的輸出),形狀為 `(batch_size, sequence_length, hidden_size)`。模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。
-
attentions (
tuple(torch.FloatTensor)
,可選,當傳遞 `output_attentions=True` 或 `config.output_attentions=True` 時返回) — `torch.FloatTensor` 的元組(每層一個),形狀為 `(batch_size, num_heads, sequence_length, sequence_length)`。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
RoFormerForMaskedLM 的 forward 方法會覆蓋 __call__
特殊方法。
雖然前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。
示例
>>> from transformers import AutoTokenizer, RoFormerForMaskedLM
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> model = RoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base")
>>> inputs = tokenizer("The capital of France is <mask>.", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> # retrieve index of <mask>
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]
>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
>>> tokenizer.decode(predicted_token_id)
...
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
>>> # mask labels of non-<mask> tokens
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)
>>> outputs = model(**inputs, labels=labels)
>>> round(outputs.loss.item(), 2)
...
RoFormerForSequenceClassification
class transformers.RoFormerForSequenceClassification
< 原始碼 >( config )
引數
- config (RoFormerForSequenceClassification) — 模型配置類,包含模型的所有引數。使用配置檔案初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。
RoFormer 模型,帶有一個序列分類/迴歸頭(即在池化輸出之上加一個線性層),例如用於 GLUE 任務。
此模型繼承自 PreTrainedModel。請查閱超類文件以瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪注意力頭等)。
此模型也是 PyTorch torch.nn.Module 的子類。可以像常規的 PyTorch Module 一樣使用它,並參考 PyTorch 文件瞭解所有與通用用法和行為相關的事項。
forward
< 原始碼 >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.SequenceClassifierOutput 或 tuple(torch.FloatTensor)
引數
- input_ids (
torch.LongTensor
,形狀為(batch_size, sequence_length)
,可選) — 詞彙表中輸入序列標記的索引。預設情況下將忽略填充(Padding)。可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
,形狀為(batch_size, sequence_length)
,可選) — 用於避免對填充(padding)標記索引執行注意力(attention)計算的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示標記未被遮蓋,
- 0 表示標記已被遮蓋。
- token_type_ids (
torch.LongTensor
,形狀為(batch_size, sequence_length)
,可選) — 片段標記索引,用於指示輸入的第一和第二部分。索引在[0, 1]
中選擇:- 0 對應於 句子 A 的標記,
- 1 對應於 句子 B 的標記。
- head_mask (
torch.FloatTensor
,形狀為(num_heads,)
或(num_layers, num_heads)
,可選) — 用於使自注意力(self-attention)模組的選定頭無效的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示該頭未被遮蓋,
- 0 表示該頭已被遮蓋。
- inputs_embeds (
torch.FloatTensor
,形狀為(batch_size, sequence_length, hidden_size)
,可選) — 可選地,你可以選擇直接傳遞嵌入表示,而不是傳遞input_ids
。如果你想比模型內部的嵌入查詢矩陣更好地控制如何將input_ids
索引轉換為關聯向量,這會非常有用。 - labels (
torch.LongTensor
,形狀為(batch_size,)
,可選) — 用於計算序列分類/迴歸損失的標籤。索引應在[0, ..., config.num_labels - 1]
範圍內。如果config.num_labels == 1
,則計算迴歸損失(均方損失),如果config.num_labels > 1
,則計算分類損失(交叉熵)。 - output_attentions (
bool
,可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的attentions
。 - output_hidden_states (
bool
,可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的hidden_states
。 - return_dict (
bool
,可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。
返回
transformers.modeling_outputs.SequenceClassifierOutput 或 tuple(torch.FloatTensor)
一個 transformers.modeling_outputs.SequenceClassifierOutput 或一個 torch.FloatTensor
的元組(如果傳遞了 return_dict=False
或 config.return_dict=False
),它包含各種元素,具體取決於配置(RoFormerConfig)和輸入。
-
loss (形狀為
(1,)
的torch.FloatTensor
,可選,當提供labels
時返回) — 分類損失(如果 config.num_labels==1,則為迴歸損失)。 -
logits (形狀為
(batch_size, config.num_labels)
的torch.FloatTensor
) — 分類(如果 config.num_labels==1,則為迴歸)分數(SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
,可選,當傳遞 `output_hidden_states=True` 或 `config.output_hidden_states=True` 時返回) — `torch.FloatTensor` 的元組(一個用於嵌入層的輸出,如果模型有嵌入層,+ 每個層的輸出),形狀為 `(batch_size, sequence_length, hidden_size)`。模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。
-
attentions (
tuple(torch.FloatTensor)
,可選,當傳遞 `output_attentions=True` 或 `config.output_attentions=True` 時返回) — `torch.FloatTensor` 的元組(每層一個),形狀為 `(batch_size, num_heads, sequence_length, sequence_length)`。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
RoFormerForSequenceClassification 的 forward 方法會覆蓋 __call__
特殊方法。
雖然前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。
單標籤分類示例
>>> import torch
>>> from transformers import AutoTokenizer, RoFormerForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> model = RoFormerForSequenceClassification.from_pretrained("junnyu/roformer_chinese_base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_id = logits.argmax().item()
>>> model.config.id2label[predicted_class_id]
...
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = RoFormerForSequenceClassification.from_pretrained("junnyu/roformer_chinese_base", num_labels=num_labels)
>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...
多標籤分類示例
>>> import torch
>>> from transformers import AutoTokenizer, RoFormerForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> model = RoFormerForSequenceClassification.from_pretrained("junnyu/roformer_chinese_base", problem_type="multi_label_classification")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = RoFormerForSequenceClassification.from_pretrained(
... "junnyu/roformer_chinese_base", num_labels=num_labels, problem_type="multi_label_classification"
... )
>>> labels = torch.sum(
... torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss
RoFormerForMultipleChoice
class transformers.RoFormerForMultipleChoice
< 原始碼 >( config )
引數
- config (RoFormerForMultipleChoice) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化時,不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。
Roformer 模型,其頂部帶有一個多項選擇分類頭(在池化輸出之上是一個線性層和一個 softmax 層),例如用於 RocStories/SWAG 任務。
此模型繼承自 PreTrainedModel。請查閱超類文件以瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪注意力頭等)。
此模型也是 PyTorch torch.nn.Module 的子類。可以像常規的 PyTorch Module 一樣使用它,並參考 PyTorch 文件瞭解所有與通用用法和行為相關的事項。
forward
< 原始碼 >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.MultipleChoiceModelOutput 或 tuple(torch.FloatTensor)
引數
- input_ids (
torch.LongTensor
,形狀為(batch_size, num_choices, sequence_length)
) — 詞彙表中輸入序列標記的索引。可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
,形狀為(batch_size, sequence_length)
,可選) — 用於避免對填充標記索引執行注意力的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示標記未被遮蓋,
- 0 表示標記已被遮蓋。
- token_type_ids (
torch.LongTensor
,形狀為(batch_size, num_choices, sequence_length)
,可選) — 用於指示輸入的第一和第二部分的段標記索引。索引在[0, 1]
中選擇:- 0 對應於 句子 A 的標記,
- 1 對應於 句子 B 的標記。
- head_mask (
torch.FloatTensor
,形狀為(num_heads,)
或(num_layers, num_heads)
,可選) — 用於使自注意力模組中選定的頭無效的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示頭未被遮蓋,
- 0 表示頭已被遮蓋。
- inputs_embeds (
torch.FloatTensor
,形狀為(batch_size, num_choices, sequence_length, hidden_size)
,可選) — 可選地,你可以不傳遞input_ids
,而是直接傳遞一個嵌入表示。如果你想比模型內部的嵌入查詢矩陣更多地控制如何將 input_ids 索引轉換為相關向量,這會很有用。 - labels (
torch.LongTensor
,形狀為(batch_size,)
,可選) — 用於計算多項選擇分類損失的標籤。索引應在[0, ..., num_choices-1]
範圍內,其中num_choices
是輸入張量第二維的大小。(參見上面的input_ids
) - output_attentions (
bool
,可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的attentions
。 - output_hidden_states (
bool
,可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的hidden_states
。 - return_dict (
bool
,可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。
返回
transformers.modeling_outputs.MultipleChoiceModelOutput 或 tuple(torch.FloatTensor)
一個 transformers.modeling_outputs.MultipleChoiceModelOutput 或一個 torch.FloatTensor
的元組(如果傳遞了 return_dict=False
或當 config.return_dict=False
時),根據配置 (RoFormerConfig) 和輸入,包含各種元素。
-
loss (形狀為 (1,) 的
torch.FloatTensor
,可選,當提供labels
時返回) — 分類損失。 -
logits (形狀為
(batch_size, num_choices)
的torch.FloatTensor
) — num_choices 是輸入張量的第二維大小。(請參閱上面的 input_ids)。分類分數(SoftMax 之前)。
-
hidden_states (
tuple(torch.FloatTensor)
,可選,當傳遞 `output_hidden_states=True` 或 `config.output_hidden_states=True` 時返回) — `torch.FloatTensor` 的元組(一個用於嵌入層的輸出,如果模型有嵌入層,+ 每個層的輸出),形狀為 `(batch_size, sequence_length, hidden_size)`。模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。
-
attentions (
tuple(torch.FloatTensor)
,可選,當傳遞 `output_attentions=True` 或 `config.output_attentions=True` 時返回) — `torch.FloatTensor` 的元組(每層一個),形狀為 `(batch_size, num_heads, sequence_length, sequence_length)`。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
RoFormerForMultipleChoice 的 forward 方法重寫了 __call__
特殊方法。
雖然前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。
示例
>>> from transformers import AutoTokenizer, RoFormerForMultipleChoice
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> model = RoFormerForMultipleChoice.from_pretrained("junnyu/roformer_chinese_base")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0) # choice0 is correct (according to Wikipedia ;)), batch size 1
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels) # batch size is 1
>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits
RoFormerForTokenClassification
class transformers.RoFormerForTokenClassification
< 原始碼 >( config )
引數
- config (RoFormerForTokenClassification) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化時,不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。
Roformer transformer,其頂部帶有一個標記分類頭(在隱藏狀態輸出之上是一個線性層),例如用於命名實體識別(NER)任務。
此模型繼承自 PreTrainedModel。請查閱超類文件以瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪注意力頭等)。
此模型也是 PyTorch torch.nn.Module 的子類。可以像常規的 PyTorch Module 一樣使用它,並參考 PyTorch 文件瞭解所有與通用用法和行為相關的事項。
forward
< 原始碼 >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
引數
- input_ids (
torch.LongTensor
,形狀為(batch_size, sequence_length)
,可選) — 詞彙表中輸入序列標記的索引。預設情況下,填充將被忽略。可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
,形狀為(batch_size, sequence_length)
,可選) — 用於避免對填充標記索引執行注意力的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示標記未被遮蓋,
- 0 表示標記已被遮蓋。
- token_type_ids (
torch.LongTensor
,形狀為(batch_size, sequence_length)
,可選) — 用於指示輸入的第一和第二部分的段標記索引。索引在[0, 1]
中選擇:- 0 對應於 句子 A 的標記,
- 1 對應於 句子 B 的標記。
- head_mask (
torch.FloatTensor
,形狀為(num_heads,)
或(num_layers, num_heads)
,可選) — 用於使自注意力模組中選定的頭無效的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示頭未被遮蓋,
- 0 表示頭已被遮蓋。
- inputs_embeds (
torch.FloatTensor
,形狀為(batch_size, sequence_length, hidden_size)
,可選) — 可選地,你可以不傳遞input_ids
,而是直接傳遞一個嵌入表示。如果你想比模型內部的嵌入查詢矩陣更多地控制如何將input_ids
索引轉換為相關向量,這會很有用。 - labels (
torch.LongTensor
,形狀為(batch_size, sequence_length)
,可選) — 用於計算標記分類損失的標籤。索引應在[0, ..., config.num_labels - 1]
範圍內。 - output_attentions (
bool
,可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的attentions
。 - output_hidden_states (
bool
,可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的hidden_states
。 - return_dict (
bool
,可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。
返回
transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
一個 transformers.modeling_outputs.TokenClassifierOutput 或一個 torch.FloatTensor
的元組(如果傳遞了 return_dict=False
或當 config.return_dict=False
時),根據配置 (RoFormerConfig) 和輸入,包含各種元素。
-
loss (形狀為
(1,)
的torch.FloatTensor
,可選,當提供labels
時返回) — 分類損失。 -
logits (形狀為
(batch_size, sequence_length, config.num_labels)
的torch.FloatTensor
) — 分類分數(SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
,可選,當傳遞 `output_hidden_states=True` 或 `config.output_hidden_states=True` 時返回) — `torch.FloatTensor` 的元組(一個用於嵌入層的輸出,如果模型有嵌入層,+ 每個層的輸出),形狀為 `(batch_size, sequence_length, hidden_size)`。模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。
-
attentions (
tuple(torch.FloatTensor)
,可選,當傳遞 `output_attentions=True` 或 `config.output_attentions=True` 時返回) — `torch.FloatTensor` 的元組(每層一個),形狀為 `(batch_size, num_heads, sequence_length, sequence_length)`。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
RoFormerForTokenClassification 的 forward 方法重寫了 __call__
特殊方法。
雖然前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。
示例
>>> from transformers import AutoTokenizer, RoFormerForTokenClassification
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> model = RoFormerForTokenClassification.from_pretrained("junnyu/roformer_chinese_base")
>>> inputs = tokenizer(
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_token_class_ids = logits.argmax(-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> predicted_tokens_classes
...
>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...
RoFormerForQuestionAnswering
class transformers.RoFormerForQuestionAnswering
< 原始碼 >( config )
引數
- config (RoFormerForQuestionAnswering) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化時,不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。
Roformer transformer,其頂部帶有一個用於抽取式問答任務(如 SQuAD)的跨度分類頭(在隱藏狀態輸出之上是一個線性層,用於計算 `span start logits` 和 `span end logits`)。
此模型繼承自 PreTrainedModel。請查閱超類文件以瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪注意力頭等)。
此模型也是 PyTorch torch.nn.Module 的子類。可以像常規的 PyTorch Module 一樣使用它,並參考 PyTorch 文件瞭解所有與通用用法和行為相關的事項。
forward
< 原始碼 >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None start_positions: typing.Optional[torch.LongTensor] = None end_positions: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.QuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)
引數
- input_ids (
torch.LongTensor
,形狀為(batch_size, sequence_length)
,可選) — 詞彙表中輸入序列標記的索引。預設情況下,填充將被忽略。可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
,形狀為(batch_size, sequence_length)
,可選) — 用於避免對填充標記索引執行注意力的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示標記未被遮蓋,
- 0 表示標記已被遮蓋。
- token_type_ids (
torch.LongTensor
,形狀為(batch_size, sequence_length)
,可選) — 用於指示輸入的第一和第二部分的段標記索引。索引在[0, 1]
中選擇:- 0 對應於 句子 A 的標記,
- 1 對應於 句子 B 的標記。
- head_mask (
torch.FloatTensor
,形狀為(num_heads,)
或(num_layers, num_heads)
,可選) — 用於使自注意力模組中選定的頭無效的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示頭未被遮蓋,
- 0 表示頭已被遮蓋。
- inputs_embeds (
torch.FloatTensor
,形狀為(batch_size, sequence_length, hidden_size)
,可選) — 可選地,你可以不傳遞input_ids
,而是直接傳遞一個嵌入表示。如果你想比模型內部的嵌入查詢矩陣更多地控制如何將input_ids
索引轉換為相關向量,這會很有用。 - start_positions (
torch.LongTensor
,形狀為(batch_size,)
,可選) — 標記的跨度開始位置(索引)的標籤,用於計算標記分類損失。位置被限制在序列長度(sequence_length
)內。序列之外的位置在計算損失時不會被考慮。 - end_positions (
torch.LongTensor
,形狀為(batch_size,)
,可選) — 標記的跨度結束位置(索引)的標籤,用於計算標記分類損失。位置被限制在序列長度(sequence_length
)內。序列之外的位置在計算損失時不會被考慮。 - output_attentions (
bool
,可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的attentions
。 - output_hidden_states (
bool
,可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的hidden_states
。 - return_dict (
bool
,可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。
返回
transformers.modeling_outputs.QuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)
一個 transformers.modeling_outputs.QuestionAnsweringModelOutput 或一個 torch.FloatTensor
的元組(如果傳遞了 return_dict=False
或當 config.return_dict=False
時),根據配置 (RoFormerConfig) 和輸入,包含各種元素。
-
loss (
torch.FloatTensor
of shape(1,)
, 可選, 當提供labels
時返回) — 總範圍提取損失是起始位置和結束位置的交叉熵之和。 -
start_logits (
torch.FloatTensor
of shape(batch_size, sequence_length)
) — 範圍起始分數(SoftMax 之前)。 -
end_logits (
torch.FloatTensor
of shape(batch_size, sequence_length)
) — 範圍結束分數(SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
,可選,當傳遞 `output_hidden_states=True` 或 `config.output_hidden_states=True` 時返回) — `torch.FloatTensor` 的元組(一個用於嵌入層的輸出,如果模型有嵌入層,+ 每個層的輸出),形狀為 `(batch_size, sequence_length, hidden_size)`。模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。
-
attentions (
tuple(torch.FloatTensor)
,可選,當傳遞 `output_attentions=True` 或 `config.output_attentions=True` 時返回) — `torch.FloatTensor` 的元組(每層一個),形狀為 `(batch_size, num_heads, sequence_length, sequence_length)`。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
RoFormerForQuestionAnswering 的 forward 方法重寫了 __call__
特殊方法。
雖然前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。
示例
>>> from transformers import AutoTokenizer, RoFormerForQuestionAnswering
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> model = RoFormerForQuestionAnswering.from_pretrained("junnyu/roformer_chinese_base")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> tokenizer.decode(predict_answer_tokens, skip_special_tokens=True)
...
>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])
>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss
>>> round(loss.item(), 2)
...
TFRoFormerModel
class transformers.TFRoFormerModel
< 原始碼 >( config: RoFormerConfig *inputs **kwargs )
引數
- config (RoFormerConfig) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化時,不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。
裸的 RoFormer 模型轉換器,輸出原始的隱藏狀態,沒有任何特定的頭在其之上。
該模型繼承自 TFPreTrainedModel。請檢視超類文件以瞭解庫為所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭部等)。
該模型也是一個 keras.Model 子類。可以像常規的 TF 2.0 Keras 模型一樣使用它,並參考 TF 2.0 文件瞭解所有與一般用法和行為相關的事項。
transformers
中的 TensorFlow 模型和層接受兩種輸入格式
- 所有輸入作為關鍵字引數(如 PyTorch 模型),或
- 所有輸入作為第一個位置引數中的列表、元組或字典。
支援第二種格式的原因是,Keras 方法在將輸入傳遞給模型和層時更喜歡這種格式。由於這種支援,當使用像 model.fit()
這樣的方法時,事情應該會“自然而然”地為你工作——只需以 model.fit()
支援的任何格式傳遞你的輸入和標籤!然而,如果你想在 Keras 方法(如 fit()
和 predict()
)之外使用第二種格式,例如在使用 Keras Functional
API 建立自己的層或模型時,有三種可能性可以用來將所有輸入張量收集到第一個位置引數中
- 只有一個
input_ids
的單個張量,沒有其他:model(input_ids)
- 長度可變的列表,包含一個或多個輸入張量,按文件字串中給出的順序:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一個字典,其中包含一個或多個與文件字串中給出的輸入名稱關聯的輸入張量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
請注意,當使用子類化建立模型和層時,您無需擔心這些問題,因為您可以像呼叫任何其他 Python 函式一樣傳遞輸入!
呼叫
< 原始碼 >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: Optional[bool] = False ) → transformers.modeling_tf_outputs.TFBaseModelOutputWithPooling 或 tuple(tf.Tensor)
引數
- input_ids (
np.ndarray
,tf.Tensor
,list[tf.Tensor]
`dict[str, tf.Tensor]
或dict[str, np.ndarray]
且每個示例必須具有形狀(batch_size, sequence_length)
) — 詞彙表中輸入序列標記的索引。可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.call() 和 PreTrainedTokenizer.encode()。
- attention_mask (
np.ndarray
或tf.Tensor
,形狀為(batch_size, sequence_length)
,可選) — 用於避免對填充標記索引執行注意力的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示標記未被遮蓋,
- 0 表示標記已被遮蓋。
- token_type_ids (
np.ndarray
或tf.Tensor
,形狀為(batch_size, sequence_length)
,可選) — 用於指示輸入的第一和第二部分的段標記索引。索引在[0, 1]
中選擇:- 0 對應於 句子 A 的標記,
- 1 對應於 句子 B 的標記。
- head_mask (
np.ndarray
或tf.Tensor
,形狀為(num_heads,)
或(num_layers, num_heads)
,可選) — 用於使自注意力模組中選定的頭無效的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示頭未被遮蓋,
- 0 表示頭已被遮蓋。
- inputs_embeds (
np.ndarray
或tf.Tensor
,形狀為(batch_size, sequence_length, hidden_size)
, 可選) — 可選地,你可以不傳遞input_ids
,而是選擇直接傳遞嵌入式表示。如果你想比模型內部的嵌入查詢矩陣更好地控制如何將input_ids
索引轉換為相關聯的向量,這會很有用。 - output_attentions (
bool
, 可選) — 是否返回所有注意力層的注意力張量。更多細節請參閱返回張量下的attentions
。此引數只能在 Eager 模式下使用,在圖模式下將使用配置中的值。 - output_hidden_states (
bool
, 可選) — 是否返回所有層的隱藏狀態。更多細節請參閱返回張量下的hidden_states
。此引數只能在 Eager 模式下使用,在圖模式下將使用配置中的值。 - return_dict (
bool
, 可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。此引數可以在 Eager 模式下使用,在圖模式下該值將始終設定為 True。 - training (
bool
, 可選, 預設為 `False`) — 是否以訓練模式使用模型(一些模組如 dropout 模組在訓練和評估之間有不同的行為)。
返回
transformers.modeling_tf_outputs.TFBaseModelOutputWithPooling 或 tuple(tf.Tensor)
一個 transformers.modeling_tf_outputs.TFBaseModelOutputWithPooling 或一個 tf.Tensor
的元組(如果傳遞了 return_dict=False
或當 config.return_dict=False
時),根據配置(RoFormerConfig)和輸入,包含各種元素。
-
last_hidden_state (
tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
) — 模型最後一層輸出的隱藏狀態序列。 -
pooler_output (
tf.Tensor
,形狀為(batch_size, hidden_size)
) — 序列的第一個詞元(分類詞元)的最後一層隱藏狀態,經過一個線性層和一個 Tanh 啟用函式進一步處理。線性層的權重是在預訓練期間從下一句預測(分類)目標中訓練的。此輸出通常不是輸入語義內容的良好摘要,通常最好對整個輸入序列的隱藏狀態進行平均或池化。
-
hidden_states (
tuple(tf.Tensor)
, 可選, 當傳遞output_hidden_states=True
或config.output_hidden_states=True
時返回) —tf.Tensor
的元組(一個用於嵌入層的輸出 + 一個用於每層的輸出),形狀為(batch_size, sequence_length, hidden_size)
。模型在每個層輸出的隱藏狀態加上初始嵌入輸出。
-
attentions (
tuple(tf.Tensor)
, 可選, 當傳遞output_attentions=True
或config.output_attentions=True
時返回) —tf.Tensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
TFRoFormerModel 的 forward 方法,重寫了 __call__
特殊方法。
雖然前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。
示例
>>> from transformers import AutoTokenizer, TFRoFormerModel
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> model = TFRoFormerModel.from_pretrained("junnyu/roformer_chinese_base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)
>>> last_hidden_states = outputs.last_hidden_state
TFRoFormerForMaskedLM
class transformers.TFRoFormerForMaskedLM
< 來源 >( config: RoFormerConfig *inputs **kwargs )
引數
- config (RoFormerConfig) — 模型配置類,包含模型的所有引數。使用配置檔案初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。
帶有 `語言建模` 頭的 RoFormer 模型。
該模型繼承自 TFPreTrainedModel。請檢視超類文件以瞭解庫為所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭部等)。
該模型也是一個 keras.Model 子類。可以像常規的 TF 2.0 Keras 模型一樣使用它,並參考 TF 2.0 文件瞭解所有與一般用法和行為相關的事項。
transformers
中的 TensorFlow 模型和層接受兩種輸入格式
- 所有輸入作為關鍵字引數(如 PyTorch 模型),或
- 所有輸入作為第一個位置引數中的列表、元組或字典。
支援第二種格式的原因是,Keras 方法在將輸入傳遞給模型和層時更喜歡這種格式。由於這種支援,當使用像 model.fit()
這樣的方法時,事情應該會“自然而然”地為你工作——只需以 model.fit()
支援的任何格式傳遞你的輸入和標籤!然而,如果你想在 Keras 方法(如 fit()
和 predict()
)之外使用第二種格式,例如在使用 Keras Functional
API 建立自己的層或模型時,有三種可能性可以用來將所有輸入張量收集到第一個位置引數中
- 只有一個
input_ids
的單個張量,沒有其他:model(input_ids)
- 長度可變的列表,包含一個或多個輸入張量,按文件字串中給出的順序:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一個字典,其中包含一個或多個與文件字串中給出的輸入名稱關聯的輸入張量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
請注意,當使用子類化建立模型和層時,您無需擔心這些問題,因為您可以像呼叫任何其他 Python 函式一樣傳遞輸入!
呼叫
< 來源 >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → transformers.modeling_tf_outputs.TFMaskedLMOutput 或 tuple(tf.Tensor)
引數
- input_ids (
np.ndarray
,tf.Tensor
,list[tf.Tensor]
`dict[str, tf.Tensor]
或dict[str, np.ndarray]
,每個樣本必須具有形狀(batch_size, sequence_length)
) — 詞彙表中輸入序列詞元的索引。可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.call() 和 PreTrainedTokenizer.encode()。
- attention_mask (
np.ndarray
或tf.Tensor
,形狀為(batch_size, sequence_length)
, 可選) — 用於避免對填充詞元索引執行注意力的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示詞元未被遮蓋,
- 0 表示詞元被遮蓋。
- token_type_ids (
np.ndarray
或tf.Tensor
,形狀為(batch_size, sequence_length)
, 可選) — 段詞元索引,用於指示輸入的第一和第二部分。索引在[0, 1]
中選擇:- 0 對應於 *句子 A* 的詞元,
- 1 對應於 *句子 B* 的詞元。
- head_mask (
np.ndarray
或tf.Tensor
,形狀為(num_heads,)
或(num_layers, num_heads)
, 可選) — 用於置零自注意力模組中選定頭的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示頭未被遮蓋,
- 0 表示頭被遮蓋。
- inputs_embeds (
np.ndarray
或tf.Tensor
,形狀為(batch_size, sequence_length, hidden_size)
, 可選) — 可選地,你可以不傳遞input_ids
,而是選擇直接傳遞嵌入式表示。如果你想比模型內部的嵌入查詢矩陣更好地控制如何將input_ids
索引轉換為相關聯的向量,這會很有用。 - output_attentions (
bool
, 可選) — 是否返回所有注意力層的注意力張量。更多細節請參閱返回張量下的attentions
。此引數只能在 Eager 模式下使用,在圖模式下將使用配置中的值。 - output_hidden_states (
bool
, 可選) — 是否返回所有層的隱藏狀態。更多細節請參閱返回張量下的hidden_states
。此引數只能在 Eager 模式下使用,在圖模式下將使用配置中的值。 - return_dict (
bool
, 可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。此引數可以在 Eager 模式下使用,在圖模式下該值將始終設定為 True。 - training (
bool
, 可選, 預設為 `False`) — 是否以訓練模式使用模型(一些模組如 dropout 模組在訓練和評估之間有不同的行為)。 - labels (
tf.Tensor
或np.ndarray
,形狀為(batch_size, sequence_length)
, 可選) — 用於計算掩碼語言建模損失的標籤。索引應在[-100, 0, ..., config.vocab_size]
範圍內(參見input_ids
文件字串)。索引設定為-100
的詞元將被忽略(遮蓋),損失僅對標籤在[0, ..., config.vocab_size]
範圍內的詞元進行計算。
返回
transformers.modeling_tf_outputs.TFMaskedLMOutput 或 tuple(tf.Tensor)
一個 transformers.modeling_tf_outputs.TFMaskedLMOutput 或一個 tf.Tensor
的元組(如果傳遞了 return_dict=False
或當 config.return_dict=False
時),根據配置(RoFormerConfig)和輸入,包含各種元素。
-
loss (
tf.Tensor
of shape(n,)
, 可選, 其中 n 是非掩碼標籤的數量,當提供labels
時返回) — 掩碼語言模型 (MLM) 損失。 -
logits (
tf.Tensor
of shape(batch_size, sequence_length, config.vocab_size)
) — 語言模型頭部的預測分數(SoftMax 之前每個詞彙標記的分數)。 -
hidden_states (
tuple(tf.Tensor)
, 可選, 當傳遞output_hidden_states=True
或config.output_hidden_states=True
時返回) —tf.Tensor
的元組(一個用於嵌入層的輸出 + 一個用於每層的輸出),形狀為(batch_size, sequence_length, hidden_size)
。模型在每個層輸出的隱藏狀態加上初始嵌入輸出。
-
attentions (
tuple(tf.Tensor)
, 可選, 當傳遞output_attentions=True
或config.output_attentions=True
時返回) —tf.Tensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
TFRoFormerForMaskedLM 的 forward 方法,重寫了 __call__
特殊方法。
雖然前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。
示例
>>> from transformers import AutoTokenizer, TFRoFormerForMaskedLM
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> model = TFRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base")
>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="tf")
>>> logits = model(**inputs).logits
>>> # retrieve index of [MASK]
>>> mask_token_index = tf.where((inputs.input_ids == tokenizer.mask_token_id)[0])
>>> selected_logits = tf.gather_nd(logits[0], indices=mask_token_index)
>>> predicted_token_id = tf.math.argmax(selected_logits, axis=-1)
TFRoFormerForCausalLM
class transformers.TFRoFormerForCausalLM
< 來源 >( config: RoFormerConfig *inputs **kwargs )
引數
- config (RoFormerConfig) — 模型配置類,包含模型的所有引數。使用配置檔案初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。
帶有 `language modeling` 頭的 RoFormer 模型,用於 CLM 微調。
該模型繼承自 TFPreTrainedModel。請檢視超類文件以瞭解庫為所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭部等)。
該模型也是一個 keras.Model 子類。可以像常規的 TF 2.0 Keras 模型一樣使用它,並參考 TF 2.0 文件瞭解所有與一般用法和行為相關的事項。
transformers
中的 TensorFlow 模型和層接受兩種輸入格式
- 所有輸入作為關鍵字引數(如 PyTorch 模型),或
- 所有輸入作為第一個位置引數中的列表、元組或字典。
支援第二種格式的原因是,Keras 方法在將輸入傳遞給模型和層時更喜歡這種格式。由於這種支援,當使用像 model.fit()
這樣的方法時,事情應該會“自然而然”地為你工作——只需以 model.fit()
支援的任何格式傳遞你的輸入和標籤!然而,如果你想在 Keras 方法(如 fit()
和 predict()
)之外使用第二種格式,例如在使用 Keras Functional
API 建立自己的層或模型時,有三種可能性可以用來將所有輸入張量收集到第一個位置引數中
- 只有一個
input_ids
的單個張量,沒有其他:model(input_ids)
- 長度可變的列表,包含一個或多個輸入張量,按文件字串中給出的順序:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一個字典,其中包含一個或多個與文件字串中給出的輸入名稱關聯的輸入張量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
請注意,當使用子類化建立模型和層時,您無需擔心這些問題,因為您可以像呼叫任何其他 Python 函式一樣傳遞輸入!
呼叫
< 來源 >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → transformers.modeling_tf_outputs.TFCausalLMOutput 或 tuple(tf.Tensor)
返回
transformers.modeling_tf_outputs.TFCausalLMOutput 或 tuple(tf.Tensor)
一個 transformers.modeling_tf_outputs.TFCausalLMOutput 或一個 tf.Tensor
的元組(如果傳遞了 return_dict=False
或當 config.return_dict=False
時),根據配置(RoFormerConfig)和輸入,包含各種元素。
-
loss (形狀為
(n,)
的tf.Tensor
,可選,其中n是非掩碼標籤的數量,當提供了labels
時返回) — 語言建模損失(用於下一標記預測)。 -
logits (
tf.Tensor
of shape(batch_size, sequence_length, config.vocab_size)
) — 語言模型頭部的預測分數(SoftMax 之前每個詞彙標記的分數)。 -
hidden_states (
tuple(tf.Tensor)
, 可選, 當傳遞output_hidden_states=True
或config.output_hidden_states=True
時返回) —tf.Tensor
的元組(一個用於嵌入層的輸出 + 一個用於每層的輸出),形狀為(batch_size, sequence_length, hidden_size)
。模型在每個層輸出的隱藏狀態加上初始嵌入輸出。
-
attentions (
tuple(tf.Tensor)
, 可選, 當傳遞output_attentions=True
或config.output_attentions=True
時返回) —tf.Tensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
labels (tf.Tensor
或 np.ndarray
,形狀為 (batch_size, sequence_length)
, 可選): 用於計算交叉熵分類損失的標籤。索引應在 [0, ..., config.vocab_size - 1]
範圍內。
示例
>>> from transformers import AutoTokenizer, TFRoFormerForCausalLM
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> model = TFRoFormerForCausalLM.from_pretrained("junnyu/roformer_chinese_base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)
>>> logits = outputs.logits
TFRoFormerForSequenceClassification
class transformers.TFRoFormerForSequenceClassification
< 來源 >( config: RoFormerConfig *inputs **kwargs )
引數
- config (RoFormerConfig) — 模型配置類,包含模型的所有引數。使用配置檔案初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。
RoFormer 模型 Transformer,頂部帶有序列分類/迴歸頭,例如用於 GLUE 任務。
該模型繼承自 TFPreTrainedModel。請檢視超類文件以瞭解庫為所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭部等)。
該模型也是一個 keras.Model 子類。可以像常規的 TF 2.0 Keras 模型一樣使用它,並參考 TF 2.0 文件瞭解所有與一般用法和行為相關的事項。
transformers
中的 TensorFlow 模型和層接受兩種輸入格式
- 所有輸入作為關鍵字引數(如 PyTorch 模型),或
- 所有輸入作為第一個位置引數中的列表、元組或字典。
支援第二種格式的原因是,Keras 方法在將輸入傳遞給模型和層時更喜歡這種格式。由於這種支援,當使用像 model.fit()
這樣的方法時,事情應該會“自然而然”地為你工作——只需以 model.fit()
支援的任何格式傳遞你的輸入和標籤!然而,如果你想在 Keras 方法(如 fit()
和 predict()
)之外使用第二種格式,例如在使用 Keras Functional
API 建立自己的層或模型時,有三種可能性可以用來將所有輸入張量收集到第一個位置引數中
- 只有一個
input_ids
的單個張量,沒有其他:model(input_ids)
- 長度可變的列表,包含一個或多個輸入張量,按文件字串中給出的順序:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一個字典,其中包含一個或多個與文件字串中給出的輸入名稱關聯的輸入張量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
請注意,當使用子類化建立模型和層時,您無需擔心這些問題,因為您可以像呼叫任何其他 Python 函式一樣傳遞輸入!
呼叫
< 來源 >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或 tuple(tf.Tensor)
引數
- input_ids (
np.ndarray
,tf.Tensor
,list[tf.Tensor]
`dict[str, tf.Tensor]
或dict[str, np.ndarray]
,每個樣本必須具有形狀(batch_size, sequence_length)
) — 詞彙表中輸入序列詞元的索引。可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.call() 和 PreTrainedTokenizer.encode()。
- attention_mask (
np.ndarray
或tf.Tensor
,形狀為(batch_size, sequence_length)
, 可選) — 用於避免對填充詞元索引執行注意力的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示詞元未被遮蓋,
- 0 表示詞元被遮蓋。
- token_type_ids (
np.ndarray
或tf.Tensor
,形狀為(batch_size, sequence_length)
, 可選) — 段詞元索引,用於指示輸入的第一和第二部分。索引在[0, 1]
中選擇:- 0 對應於 *句子 A* 的詞元,
- 1 對應於 *句子 B* 的詞元。
- head_mask (
np.ndarray
或tf.Tensor
,形狀為(num_heads,)
或(num_layers, num_heads)
, 可選) — 用於置零自注意力模組中選定頭的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示頭未被遮蓋,
- 0 表示頭被遮蓋。
- inputs_embeds (
np.ndarray
或tf.Tensor
,形狀為(batch_size, sequence_length, hidden_size)
, 可選) — 可選地,你可以不傳遞input_ids
,而是選擇直接傳遞嵌入式表示。如果你想比模型內部的嵌入查詢矩陣更好地控制如何將input_ids
索引轉換為相關聯的向量,這會很有用。 - output_attentions (
bool
, 可選) — 是否返回所有注意力層的注意力張量。更多細節請參閱返回張量下的attentions
。此引數只能在 Eager 模式下使用,在圖模式下將使用配置中的值。 - output_hidden_states (
bool
, 可選) — 是否返回所有層的隱藏狀態。更多細節請參閱返回張量下的hidden_states
。此引數只能在 Eager 模式下使用,在圖模式下將使用配置中的值。 - return_dict (
bool
, 可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。此引數可以在 Eager 模式下使用,在圖模式下該值將始終設定為 True。 - training (
bool
, 可選, 預設為 `False`) — 是否以訓練模式使用模型(一些模組如 dropout 模組在訓練和評估之間有不同的行為)。 - labels (
tf.Tensor
或np.ndarray
,形狀為(batch_size,)
, 可選) — 用於計算序列分類/迴歸損失的標籤。索引應在[0, ..., config.num_labels - 1]
範圍內。如果config.num_labels == 1
,則計算迴歸損失(均方損失),如果config.num_labels > 1
,則計算分類損失(交叉熵)。
返回
transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或 tuple(tf.Tensor)
一個 transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或一個 tf.Tensor
的元組(如果傳遞了 return_dict=False
或當 config.return_dict=False
時),根據配置(RoFormerConfig)和輸入,包含各種元素。
-
loss (
tf.Tensor
,形狀為(batch_size, )
,可選,當提供labels
時返回) — 分類損失(如果 config.num_labels==1,則為迴歸損失)。 -
logits (
tf.Tensor
,形狀為(batch_size, config.num_labels)
) — 分類(或迴歸,如果 config.num_labels==1)分數(SoftMax 之前)。 -
hidden_states (
tuple(tf.Tensor)
, 可選, 當傳遞output_hidden_states=True
或config.output_hidden_states=True
時返回) —tf.Tensor
的元組(一個用於嵌入層的輸出 + 一個用於每層的輸出),形狀為(batch_size, sequence_length, hidden_size)
。模型在每個層輸出的隱藏狀態加上初始嵌入輸出。
-
attentions (
tuple(tf.Tensor)
, 可選, 當傳遞output_attentions=True
或config.output_attentions=True
時返回) —tf.Tensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
TFRoFormerForSequenceClassification 的 forward 方法,重寫了 __call__
特殊方法。
雖然前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。
示例
>>> from transformers import AutoTokenizer, TFRoFormerForSequenceClassification
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> model = TFRoFormerForSequenceClassification.from_pretrained("junnyu/roformer_chinese_base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> logits = model(**inputs).logits
>>> predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0])
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = TFRoFormerForSequenceClassification.from_pretrained("junnyu/roformer_chinese_base", num_labels=num_labels)
>>> labels = tf.constant(1)
>>> loss = model(**inputs, labels=labels).loss
TFRoFormerForMultipleChoice
class transformers.TFRoFormerForMultipleChoice
< 來源 >( config: RoFormerConfig *inputs **kwargs )
引數
- config (RoFormerConfig) — 模型配置類,包含模型的所有引數。使用配置檔案初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。
帶有選擇題分類頭的 RoFormer 模型(在池化輸出之上有一個線性層和一個 softmax 層),例如用於 RocStories/SWAG 任務。
該模型繼承自 TFPreTrainedModel。請檢視超類文件以瞭解庫為所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭部等)。
該模型也是一個 keras.Model 子類。可以像常規的 TF 2.0 Keras 模型一樣使用它,並參考 TF 2.0 文件瞭解所有與一般用法和行為相關的事項。
transformers
中的 TensorFlow 模型和層接受兩種輸入格式
- 所有輸入作為關鍵字引數(如 PyTorch 模型),或
- 所有輸入作為第一個位置引數中的列表、元組或字典。
支援第二種格式的原因是,Keras 方法在將輸入傳遞給模型和層時更喜歡這種格式。由於這種支援,當使用像 model.fit()
這樣的方法時,事情應該會“自然而然”地為你工作——只需以 model.fit()
支援的任何格式傳遞你的輸入和標籤!然而,如果你想在 Keras 方法(如 fit()
和 predict()
)之外使用第二種格式,例如在使用 Keras Functional
API 建立自己的層或模型時,有三種可能性可以用來將所有輸入張量收集到第一個位置引數中
- 只有一個
input_ids
的單個張量,沒有其他:model(input_ids)
- 長度可變的列表,包含一個或多個輸入張量,按文件字串中給出的順序:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一個字典,其中包含一個或多個與文件字串中給出的輸入名稱關聯的輸入張量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
請注意,當使用子類化建立模型和層時,您無需擔心這些問題,因為您可以像呼叫任何其他 Python 函式一樣傳遞輸入!
呼叫
< 來源 >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput 或 tuple(tf.Tensor)
引數
- input_ids (
np.ndarray
,tf.Tensor
,list[tf.Tensor]
`dict[str, tf.Tensor]
或dict[str, np.ndarray]
,每個樣本必須具有形狀(batch_size, num_choices, sequence_length)
) — 詞彙表中輸入序列詞元的索引。可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.call() 和 PreTrainedTokenizer.encode()。
- attention_mask (
np.ndarray
或tf.Tensor
,形狀為(batch_size, num_choices, sequence_length)
, 可選) — 用於避免對填充詞元索引執行注意力的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示詞元未被遮蓋,
- 0 表示詞元被遮蓋。
- token_type_ids (
np.ndarray
或tf.Tensor
,形狀為(batch_size, num_choices, sequence_length)
, 可選) — 段詞元索引,用於指示輸入的第一和第二部分。索引在[0, 1]
中選擇:- 0 對應於 *句子 A* 的詞元,
- 1 對應於 *句子 B* 的詞元。
- head_mask (
np.ndarray
或tf.Tensor
,形狀為(num_heads,)
或(num_layers, num_heads)
, 可選) — 用於置零自注意力模組中選定頭的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示頭未被遮蓋,
- 0 表示頭被遮蓋。
- inputs_embeds (
np.ndarray
或tf.Tensor
,形狀為(batch_size, num_choices, sequence_length, hidden_size)
, 可選) — 可選地,你可以不傳遞input_ids
,而是選擇直接傳遞嵌入式表示。如果你想比模型內部的嵌入查詢矩陣更好地控制如何將input_ids
索引轉換為相關聯的向量,這會很有用。 - output_attentions (
bool
, 可選) — 是否返回所有注意力層的注意力張量。更多細節請參閱返回張量下的attentions
。此引數只能在 Eager 模式下使用,在圖模式下將使用配置中的值。 - output_hidden_states (
bool
, 可選) — 是否返回所有層的隱藏狀態。更多細節請參閱返回張量下的hidden_states
。此引數只能在 Eager 模式下使用,在圖模式下將使用配置中的值。 - return_dict (
bool
, 可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。此引數可在即時模式(eager mode)下使用,在圖模式(graph mode)下,該值將始終設定為 True。 - training (
bool
, 可選, 預設為 `False`) — 是否將模型用於訓練模式(某些模組如 dropout 模組在訓練和評估之間有不同的行為)。 - labels (
tf.Tensor
或np.ndarray
,形狀為(batch_size,)
, 可選) — 用於計算多項選擇分類損失的標籤。索引應在[0, ..., num_choices]
範圍內,其中num_choices
是輸入張量第二個維度的大小。(參見上面的input_ids
)
返回
transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput 或 tuple(tf.Tensor)
一個 transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput 或一個 tf.Tensor
的元組(如果傳遞了 return_dict=False
或當 config.return_dict=False
時),根據配置(RoFormerConfig)和輸入,包含各種元素。
-
loss (
tf.Tensor
,形狀為 (batch_size, ),可選,當提供labels
時返回) — 分類損失。 -
logits (
tf.Tensor
,形狀為(batch_size, num_choices)
) — num_choices 是輸入張量的第二維。(參見上面的 input_ids)。分類分數(SoftMax 之前)。
-
hidden_states (
tuple(tf.Tensor)
, 可選, 當傳遞output_hidden_states=True
或config.output_hidden_states=True
時返回) —tf.Tensor
的元組(一個用於嵌入層的輸出 + 一個用於每層的輸出),形狀為(batch_size, sequence_length, hidden_size)
。模型在每個層輸出的隱藏狀態加上初始嵌入輸出。
-
attentions (
tuple(tf.Tensor)
, 可選, 當傳遞output_attentions=True
或config.output_attentions=True
時返回) —tf.Tensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
TFRoFormerForMultipleChoice 的前向方法覆蓋了 __call__
特殊方法。
雖然前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。
示例
>>> from transformers import AutoTokenizer, TFRoFormerForMultipleChoice
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> model = TFRoFormerForMultipleChoice.from_pretrained("junnyu/roformer_chinese_base")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="tf", padding=True)
>>> inputs = {k: tf.expand_dims(v, 0) for k, v in encoding.items()}
>>> outputs = model(inputs) # batch size is 1
>>> # the linear classifier still needs to be trained
>>> logits = outputs.logits
TFRoFormerForTokenClassification
class transformers.TFRoFormerForTokenClassification
< 原始碼 >( config: RoFormerConfig *inputs **kwargs )
引數
- config (RoFormerConfig) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法以載入模型權重。
帶有詞元分類頭的 RoFormer 模型(在隱藏狀態輸出之上加一個線性層),例如用於命名實體識別(NER)任務。
該模型繼承自 TFPreTrainedModel。請檢視超類文件以瞭解庫為所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭部等)。
該模型也是一個 keras.Model 子類。可以像常規的 TF 2.0 Keras 模型一樣使用它,並參考 TF 2.0 文件瞭解所有與一般用法和行為相關的事項。
transformers
中的 TensorFlow 模型和層接受兩種輸入格式
- 所有輸入作為關鍵字引數(如 PyTorch 模型),或
- 所有輸入作為第一個位置引數中的列表、元組或字典。
支援第二種格式的原因是,Keras 方法在將輸入傳遞給模型和層時更喜歡這種格式。由於這種支援,當使用像 model.fit()
這樣的方法時,事情應該會“自然而然”地為你工作——只需以 model.fit()
支援的任何格式傳遞你的輸入和標籤!然而,如果你想在 Keras 方法(如 fit()
和 predict()
)之外使用第二種格式,例如在使用 Keras Functional
API 建立自己的層或模型時,有三種可能性可以用來將所有輸入張量收集到第一個位置引數中
- 只有一個
input_ids
的單個張量,沒有其他:model(input_ids)
- 長度可變的列表,包含一個或多個輸入張量,按文件字串中給出的順序:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一個字典,其中包含一個或多個與文件字串中給出的輸入名稱關聯的輸入張量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
請注意,當使用子類化建立模型和層時,您無需擔心這些問題,因為您可以像呼叫任何其他 Python 函式一樣傳遞輸入!
呼叫
< 原始碼 >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → transformers.modeling_tf_outputs.TFTokenClassifierOutput 或 tuple(tf.Tensor)
引數
- input_ids (
np.ndarray
、tf.Tensor
、list[tf.Tensor]
、`dict[str, tf.Tensor]
或dict[str, np.ndarray]
,每個示例的形狀必須為(batch_size, sequence_length)
) — 詞彙表中輸入序列詞元的索引。可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.call() 和 PreTrainedTokenizer.encode()。
- attention_mask (
np.ndarray
或tf.Tensor
,形狀為(batch_size, sequence_length)
, 可選) — 用於避免對填充詞元索引執行注意力計算的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示詞元未被遮蔽,
- 0 表示詞元被遮蔽。
- token_type_ids (
np.ndarray
或tf.Tensor
,形狀為(batch_size, sequence_length)
, 可選) — 用於指示輸入的第一和第二部分的片段詞元索引。索引在[0, 1]
中選擇:- 0 對應於*句子 A* 的詞元,
- 1 對應於*句子 B* 的詞元。
- head_mask (
np.ndarray
或tf.Tensor
,形狀為(num_heads,)
或(num_layers, num_heads)
, 可選) — 用於置零自注意力模組中選定頭的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示頭未被遮蔽,
- 0 表示頭被遮蔽。
- inputs_embeds (
np.ndarray
或tf.Tensor
,形狀為(batch_size, sequence_length, hidden_size)
, 可選) — 可以選擇直接傳遞嵌入表示,而不是傳遞input_ids
。如果你想比模型內部嵌入查詢矩陣更多地控制如何將input_ids
索引轉換為關聯向量,這會很有用。 - output_attentions (
bool
, 可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的attentions
。此引數只能在即時模式(eager mode)下使用,在圖模式(graph mode)下將使用配置中的值。 - output_hidden_states (
bool
, 可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的hidden_states
。此引數只能在即時模式(eager mode)下使用,在圖模式(graph mode)下將使用配置中的值。 - return_dict (
bool
, 可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。此引數可在即時模式(eager mode)下使用,在圖模式(graph mode)下,該值將始終設定為 True。 - training (
bool
, 可選, 預設為 `False`) — 是否將模型用於訓練模式(某些模組如 dropout 模組在訓練和評估之間有不同的行為)。 - labels (
tf.Tensor
或np.ndarray
,形狀為(batch_size, sequence_length)
, 可選) — 用於計算詞元分類損失的標籤。索引應在[0, ..., config.num_labels - 1]
範圍內。
返回
transformers.modeling_tf_outputs.TFTokenClassifierOutput 或 tuple(tf.Tensor)
一個 transformers.modeling_tf_outputs.TFTokenClassifierOutput 或一個 tf.Tensor
的元組(如果傳遞了 return_dict=False
或當 config.return_dict=False
時),根據配置(RoFormerConfig)和輸入,包含各種元素。
-
loss (
tf.Tensor
,形狀為(n,)
,可選,其中 n 是未被掩蓋的標籤數量,當提供labels
時返回) — 分類損失。 -
logits (
tf.Tensor
,形狀為(batch_size, sequence_length, config.num_labels)
) — 分類分數(SoftMax 之前)。 -
hidden_states (
tuple(tf.Tensor)
, 可選, 當傳遞output_hidden_states=True
或config.output_hidden_states=True
時返回) —tf.Tensor
的元組(一個用於嵌入層的輸出 + 一個用於每層的輸出),形狀為(batch_size, sequence_length, hidden_size)
。模型在每個層輸出的隱藏狀態加上初始嵌入輸出。
-
attentions (
tuple(tf.Tensor)
, 可選, 當傳遞output_attentions=True
或config.output_attentions=True
時返回) —tf.Tensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
TFRoFormerForTokenClassification 的前向方法覆蓋了 __call__
特殊方法。
雖然前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。
示例
>>> from transformers import AutoTokenizer, TFRoFormerForTokenClassification
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> model = TFRoFormerForTokenClassification.from_pretrained("junnyu/roformer_chinese_base")
>>> inputs = tokenizer(
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="tf"
... )
>>> logits = model(**inputs).logits
>>> predicted_token_class_ids = tf.math.argmax(logits, axis=-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t] for t in predicted_token_class_ids[0].numpy().tolist()]
TFRoFormerForQuestionAnswering
class transformers.TFRoFormerForQuestionAnswering
< 原始碼 >( config: RoFormerConfig *inputs **kwargs )
引數
- config (RoFormerConfig) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法以載入模型權重。
RoFormer 模型,頂部帶有一個片段分類頭,用於像 SQuAD 這樣的抽取式問答任務(在隱藏狀態輸出之上加一個線性層,以計算 `span start logits` 和 `span end logits`)。
該模型繼承自 TFPreTrainedModel。請檢視超類文件以瞭解庫為所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭部等)。
該模型也是一個 keras.Model 子類。可以像常規的 TF 2.0 Keras 模型一樣使用它,並參考 TF 2.0 文件瞭解所有與一般用法和行為相關的事項。
transformers
中的 TensorFlow 模型和層接受兩種輸入格式
- 所有輸入作為關鍵字引數(如 PyTorch 模型),或
- 所有輸入作為第一個位置引數中的列表、元組或字典。
支援第二種格式的原因是,Keras 方法在將輸入傳遞給模型和層時更喜歡這種格式。由於這種支援,當使用像 model.fit()
這樣的方法時,事情應該會“自然而然”地為你工作——只需以 model.fit()
支援的任何格式傳遞你的輸入和標籤!然而,如果你想在 Keras 方法(如 fit()
和 predict()
)之外使用第二種格式,例如在使用 Keras Functional
API 建立自己的層或模型時,有三種可能性可以用來將所有輸入張量收集到第一個位置引數中
- 只有一個
input_ids
的單個張量,沒有其他:model(input_ids)
- 長度可變的列表,包含一個或多個輸入張量,按文件字串中給出的順序:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一個字典,其中包含一個或多個與文件字串中給出的輸入名稱關聯的輸入張量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
請注意,當使用子類化建立模型和層時,您無需擔心這些問題,因為您可以像呼叫任何其他 Python 函式一樣傳遞輸入!
呼叫
< 原始碼 >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None start_positions: np.ndarray | tf.Tensor | None = None end_positions: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput 或 tuple(tf.Tensor)
引數
- input_ids (
np.ndarray
、tf.Tensor
、list[tf.Tensor]
、`dict[str, tf.Tensor]
或dict[str, np.ndarray]
,每個示例的形狀必須為(batch_size, sequence_length)
) — 詞彙表中輸入序列詞元的索引。可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.call() 和 PreTrainedTokenizer.encode()。
- attention_mask (
np.ndarray
或tf.Tensor
,形狀為(batch_size, sequence_length)
, 可選) — 用於避免對填充詞元索引執行注意力計算的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示詞元未被遮蔽,
- 0 表示詞元被遮蔽。
- token_type_ids (
np.ndarray
或tf.Tensor
,形狀為(batch_size, sequence_length)
, 可選) — 用於指示輸入的第一和第二部分的片段詞元索引。索引在[0, 1]
中選擇:- 0 對應於*句子 A* 的詞元,
- 1 對應於*句子 B* 的詞元。
- head_mask (
np.ndarray
或tf.Tensor
,形狀為(num_heads,)
或(num_layers, num_heads)
, 可選) — 用於置零自注意力模組中選定頭的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示頭未被遮蔽,
- 0 表示頭被遮蔽。
- inputs_embeds (
np.ndarray
或tf.Tensor
,形狀為(batch_size, sequence_length, hidden_size)
, 可選) — 可以選擇直接傳遞嵌入表示,而不是傳遞input_ids
。如果你想比模型內部嵌入查詢矩陣更多地控制如何將input_ids
索引轉換為關聯向量,這會很有用。 - output_attentions (
bool
, 可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的attentions
。此引數只能在即時模式(eager mode)下使用,在圖模式(graph mode)下將使用配置中的值。 - output_hidden_states (
bool
, 可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的hidden_states
。此引數只能在即時模式(eager mode)下使用,在圖模式(graph mode)下將使用配置中的值。 - return_dict (
bool
, 可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。此引數可在即時模式(eager mode)下使用,在圖模式(graph mode)下,該值將始終設定為 True。 - training (
bool
, 可選, 預設為 `False`) — 是否將模型用於訓練模式(某些模組如 dropout 模組在訓練和評估之間有不同的行為)。 - start_positions (
tf.Tensor
或np.ndarray
,形狀為(batch_size,)
, 可選) — 標記片段開始位置(索引)的標籤,用於計算詞元分類損失。位置被限制在序列長度(sequence_length
)內。序列之外的位置在計算損失時不予考慮。 - end_positions (
tf.Tensor
或np.ndarray
,形狀為(batch_size,)
, 可選) — 標記片段結束位置(索引)的標籤,用於計算詞元分類損失。位置被限制在序列長度(sequence_length
)內。序列之外的位置在計算損失時不予考慮。
返回
transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput 或 tuple(tf.Tensor)
一個 transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput 或一個 tf.Tensor
的元組(如果傳遞了 return_dict=False
或當 config.return_dict=False
時),根據配置(RoFormerConfig)和輸入,包含各種元素。
-
loss (
tf.Tensor
,形狀為(batch_size, )
, 可選, 當提供了start_positions
和end_positions
時返回) — 總片段抽取損失是起始位置和結束位置的交叉熵損失之和。 -
start_logits (形狀為
(batch_size, sequence_length)
的tf.Tensor
) — 跨度起始分數(SoftMax 之前)。 -
end_logits (形狀為
(batch_size, sequence_length)
的tf.Tensor
) — 跨度結束分數(SoftMax 之前)。 -
hidden_states (
tuple(tf.Tensor)
, 可選, 當傳遞output_hidden_states=True
或config.output_hidden_states=True
時返回) —tf.Tensor
的元組(一個用於嵌入層的輸出 + 一個用於每層的輸出),形狀為(batch_size, sequence_length, hidden_size)
。模型在每個層輸出的隱藏狀態加上初始嵌入輸出。
-
attentions (
tuple(tf.Tensor)
, 可選, 當傳遞output_attentions=True
或config.output_attentions=True
時返回) —tf.Tensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
TFRoFormerForQuestionAnswering 的前向方法覆蓋了 __call__
特殊方法。
雖然前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。
示例
>>> from transformers import AutoTokenizer, TFRoFormerForQuestionAnswering
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> model = TFRoFormerForQuestionAnswering.from_pretrained("junnyu/roformer_chinese_base")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="tf")
>>> outputs = model(**inputs)
>>> answer_start_index = int(tf.math.argmax(outputs.start_logits, axis=-1)[0])
>>> answer_end_index = int(tf.math.argmax(outputs.end_logits, axis=-1)[0])
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
FlaxRoFormerModel
class transformers.FlaxRoFormerModel
< 原始碼 >( config: RoFormerConfig input_shape: tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
引數
- config (RoFormerConfig) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法以載入模型權重。
- dtype (
jax.numpy.dtype
, 可選, 預設為jax.numpy.float32
) — 計算的資料型別。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上) 和jax.numpy.bfloat16
(在 TPU 上) 中的一種。這可用於在 GPU 或 TPU 上啟用混合精度訓練或半精度推理。如果指定,所有計算都將使用給定的
dtype
執行。請注意,這僅指定計算的 dtype,不影響模型引數的 dtype。
裸的 RoFormer 模型轉換器,輸出原始的隱藏狀態,沒有任何特定的頭在其之上。
此模型繼承自 FlaxPreTrainedModel。請檢視超類文件,瞭解庫為所有模型實現的通用方法(例如下載、儲存和從 PyTorch 模型轉換權重)。
此模型也是 flax.linen.Module 的子類。請將其用作常規的 Flax linen 模組,並參考 Flax 文件瞭解所有與一般用法和行為相關的事項。
最後,此模型支援固有的 JAX 功能,例如
__call__
< 原始碼 >( input_ids attention_mask = None token_type_ids = None head_mask = None params: typing.Optional[dict] = None dropout_rng: <function PRNGKey at 0x7effc7ad3a30> = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_flax_outputs.FlaxBaseModelOutput 或 tuple(torch.FloatTensor)
引數
- input_ids (
numpy.ndarray
,形狀為(batch_size, sequence_length)
) — 詞彙表中輸入序列詞元的索引。可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
numpy.ndarray
,形狀為(batch_size, sequence_length)
, 可選) — 用於避免對填充詞元索引執行注意力計算的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示詞元未被遮蔽,
- 0 表示詞元被遮蔽。
- token_type_ids (
numpy.ndarray
,形狀為(batch_size, sequence_length)
, 可選) — 用於指示輸入的第一和第二部分的片段詞元索引。索引在[0, 1]
中選擇:- 0 對應於*句子 A* 的詞元,
- 1 對應於*句子 B* 的詞元。
- position_ids (
numpy.ndarray
,形狀為(batch_size, sequence_length)
, 可選) — 每個輸入序列詞元在位置嵌入中的位置索引。在[0, config.max_position_embeddings - 1]
範圍內選擇。 - head_mask (
numpy.ndarray
,形狀為(batch_size, sequence_length)
,可選) -- 用於置零注意力模組中選定頭的掩碼。掩碼值在
[0, 1]` 中選擇:- 1 表示頭未被遮蔽,
- 0 表示頭被遮蔽。
- return_dict (
bool
, 可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。
返回
transformers.modeling_flax_outputs.FlaxBaseModelOutput 或 tuple(torch.FloatTensor)
一個 transformers.modeling_flax_outputs.FlaxBaseModelOutput 或一個 torch.FloatTensor
的元組(如果傳遞了 return_dict=False
或當 config.return_dict=False
時),根據配置(RoFormerConfig)和輸入,包含各種元素。
-
last_hidden_state (形狀為
(batch_size, sequence_length, hidden_size)
的jnp.ndarray
) — 模型最後一層輸出的隱藏狀態序列。 -
hidden_states (
tuple(jnp.ndarray)
, 可選, 當傳遞output_hidden_states=True
或當config.output_hidden_states=True
時返回) —jnp.ndarray
的元組(一個是嵌入層的輸出,另一個是每一層的輸出),形狀為(batch_size, sequence_length, hidden_size)
。模型在每個層輸出的隱藏狀態加上初始嵌入輸出。
-
attentions (
tuple(jnp.ndarray)
, 可選, 當傳遞output_attentions=True
或當config.output_attentions=True
時返回) —jnp.ndarray
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
FlaxRoFormerPreTrainedModel
的前向方法覆蓋了 __call__
特殊方法。
雖然前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。
示例
>>> from transformers import AutoTokenizer, FlaxRoFormerModel
>>> tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> model = FlaxRoFormerModel.from_pretrained("junnyu/roformer_chinese_base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
FlaxRoFormerForMaskedLM
class transformers.FlaxRoFormerForMaskedLM
< 原始碼 >( config: RoFormerConfig input_shape: tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
引數
- config (RoFormerConfig) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法以載入模型權重。
- dtype (
jax.numpy.dtype
, 可選, 預設為jax.numpy.float32
) — 計算的資料型別。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上) 和jax.numpy.bfloat16
(在 TPU 上) 中的一種。這可用於在 GPU 或 TPU 上啟用混合精度訓練或半精度推理。如果指定,所有計算都將使用給定的
dtype
執行。請注意,這僅指定計算的 dtype,不影響模型引數的 dtype。
帶有 `語言建模` 頭的 RoFormer 模型。
此模型繼承自 FlaxPreTrainedModel。請檢視超類文件,瞭解庫為所有模型實現的通用方法(例如下載、儲存和從 PyTorch 模型轉換權重)。
此模型也是 flax.linen.Module 的子類。請將其用作常規的 Flax linen 模組,並參考 Flax 文件瞭解所有與一般用法和行為相關的事項。
最後,此模型支援固有的 JAX 功能,例如
__call__
< 原始碼 >( input_ids attention_mask = None token_type_ids = None head_mask = None params: typing.Optional[dict] = None dropout_rng: <function PRNGKey at 0x7effc7ad3a30> = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_flax_outputs.FlaxMaskedLMOutput 或 tuple(torch.FloatTensor)
引數
- input_ids (
numpy.ndarray
,形狀為(batch_size, sequence_length)
) — 詞彙表中輸入序列標記的索引。索引可以使用 AutoTokenizer 獲得。詳情請參閱 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
numpy.ndarray
,形狀為(batch_size, sequence_length)
,可選) — 掩碼,用於避免在填充標記索引上執行注意力機制。掩碼值在[0, 1]
中選擇:- 1 表示標記未被掩碼,
- 0 表示標記被掩碼。
- token_type_ids (
numpy.ndarray
,形狀為(batch_size, sequence_length)
,可選) — 片段標記索引,用於指示輸入的第一部分和第二部分。索引在[0, 1]
中選擇:- 0 對應於 *A 句子* 標記,
- 1 對應於 *B 句子* 標記。
- position_ids (
numpy.ndarray
,形狀為(batch_size, sequence_length)
,可選) — 位置嵌入中每個輸入序列標記的位置索引。在[0, config.max_position_embeddings - 1]
範圍內選擇。 - head_mask (
numpy.ndarray
,形狀為(batch_size, sequence_length)
,可選) -- 用於置零注意力模組中選定頭的掩碼。掩碼值在
[0, 1]` 中選擇:- 1 表示頭未被掩碼,
- 0 表示頭被掩碼。
- return_dict (
bool
,可選) — 是否返回 ModelOutput 而不是普通的元組。
返回
transformers.modeling_flax_outputs.FlaxMaskedLMOutput 或 tuple(torch.FloatTensor)
一個 transformers.modeling_flax_outputs.FlaxMaskedLMOutput 或一個 torch.FloatTensor
元組 (如果傳遞了 return_dict=False
或 config.return_dict=False
),包含根據配置 (RoFormerConfig) 和輸入的不同元素。
-
logits (形狀為
(batch_size, sequence_length, config.vocab_size)
的jnp.ndarray
) — 語言建模頭的預測分數(SoftMax 之前每個詞彙 token 的分數)。 -
hidden_states (
tuple(jnp.ndarray)
, 可選, 當傳遞output_hidden_states=True
或當config.output_hidden_states=True
時返回) —jnp.ndarray
的元組(一個是嵌入層的輸出,另一個是每一層的輸出),形狀為(batch_size, sequence_length, hidden_size)
。模型在每個層輸出的隱藏狀態加上初始嵌入輸出。
-
attentions (
tuple(jnp.ndarray)
, 可選, 當傳遞output_attentions=True
或當config.output_attentions=True
時返回) —jnp.ndarray
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
FlaxRoFormerPreTrainedModel
的前向方法覆蓋了 __call__
特殊方法。
雖然前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。
示例
>>> from transformers import AutoTokenizer, FlaxRoFormerForMaskedLM
>>> tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> model = FlaxRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base")
>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="jax")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
FlaxRoFormerForSequenceClassification
class transformers.FlaxRoFormerForSequenceClassification
< 原始碼 >( config: RoFormerConfig input_shape: tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
引數
- config (RoFormerConfig) — 包含模型所有引數的模型配置類。使用配置檔案初始化不會載入與模型相關的權重,只會載入配置。要載入模型權重,請檢視 from_pretrained() 方法。
- dtype (
jax.numpy.dtype
,可選,預設為jax.numpy.float32
) — 計算的資料型別。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上) 和jax.numpy.bfloat16
(在 TPU 上) 之一。這可用於在 GPU 或 TPU 上啟用混合精度訓練或半精度推理。如果指定,所有計算都將使用給定的 `dtype` 執行。
請注意,這僅指定計算的 dtype,不影響模型引數的 dtype。
RoFormer 模型,帶有一個序列分類/迴歸頭(即在池化輸出之上加一個線性層),例如用於 GLUE 任務。
此模型繼承自 FlaxPreTrainedModel。請檢視超類文件,瞭解庫為所有模型實現的通用方法(例如下載、儲存和從 PyTorch 模型轉換權重)。
此模型也是 flax.linen.Module 的子類。請將其用作常規的 Flax linen 模組,並參考 Flax 文件瞭解所有與一般用法和行為相關的事項。
最後,此模型支援固有的 JAX 功能,例如
__call__
< 原始碼 >( input_ids attention_mask = None token_type_ids = None head_mask = None params: typing.Optional[dict] = None dropout_rng: <function PRNGKey at 0x7effc7ad3a30> = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput 或 tuple(torch.FloatTensor)
引數
- input_ids (
numpy.ndarray
,形狀為(batch_size, sequence_length)
) — 詞彙表中輸入序列標記的索引。索引可以使用 AutoTokenizer 獲得。詳情請參閱 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
numpy.ndarray
,形狀為(batch_size, sequence_length)
,可選) — 掩碼,用於避免在填充標記索引上執行注意力機制。掩碼值在[0, 1]
中選擇:- 1 表示標記未被掩碼,
- 0 表示標記被掩碼。
- token_type_ids (
numpy.ndarray
,形狀為(batch_size, sequence_length)
,可選) — 片段標記索引,用於指示輸入的第一部分和第二部分。索引在[0, 1]
中選擇:- 0 對應於 *A 句子* 標記,
- 1 對應於 *B 句子* 標記。
- position_ids (
numpy.ndarray
,形狀為(batch_size, sequence_length)
,可選) — 位置嵌入中每個輸入序列標記的位置索引。在[0, config.max_position_embeddings - 1]
範圍內選擇。 - head_mask (
numpy.ndarray
,形狀為(batch_size, sequence_length)
,可選) -- 用於置零注意力模組中選定頭的掩碼。掩碼值在
[0, 1]` 中選擇:- 1 表示頭未被掩碼,
- 0 表示頭被掩碼。
- return_dict (
bool
,可選) — 是否返回 ModelOutput 而不是普通的元組。
返回
transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput 或 tuple(torch.FloatTensor)
一個 transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput 或一個 torch.FloatTensor
元組 (如果傳遞了 return_dict=False
或 config.return_dict=False
),包含根據配置 (RoFormerConfig) 和輸入的不同元素。
-
logits (形狀為
(batch_size, config.num_labels)
的jnp.ndarray
) — 分類(如果 config.num_labels==1,則為迴歸)分數(SoftMax 之前)。 -
hidden_states (
tuple(jnp.ndarray)
, 可選, 當傳遞output_hidden_states=True
或當config.output_hidden_states=True
時返回) —jnp.ndarray
的元組(一個是嵌入層的輸出,另一個是每一層的輸出),形狀為(batch_size, sequence_length, hidden_size)
。模型在每個層輸出的隱藏狀態加上初始嵌入輸出。
-
attentions (
tuple(jnp.ndarray)
, 可選, 當傳遞output_attentions=True
或當config.output_attentions=True
時返回) —jnp.ndarray
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
FlaxRoFormerPreTrainedModel
的前向方法覆蓋了 __call__
特殊方法。
雖然前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。
示例
>>> from transformers import AutoTokenizer, FlaxRoFormerForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> model = FlaxRoFormerForSequenceClassification.from_pretrained("junnyu/roformer_chinese_base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
FlaxRoFormerForMultipleChoice
class transformers.FlaxRoFormerForMultipleChoice
< 原始碼 >( config: RoFormerConfig input_shape: tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
引數
- config (RoFormerConfig) — 包含模型所有引數的模型配置類。使用配置檔案初始化不會載入與模型相關的權重,只會載入配置。要載入模型權重,請檢視 from_pretrained() 方法。
- dtype (
jax.numpy.dtype
,可選,預設為jax.numpy.float32
) — 計算的資料型別。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上) 和jax.numpy.bfloat16
(在 TPU 上) 之一。這可用於在 GPU 或 TPU 上啟用混合精度訓練或半精度推理。如果指定,所有計算都將使用給定的 `dtype` 執行。
請注意,這僅指定計算的 dtype,不影響模型引數的 dtype。
帶有選擇題分類頭的 RoFormer 模型(在池化輸出之上有一個線性層和一個 softmax 層),例如用於 RocStories/SWAG 任務。
此模型繼承自 FlaxPreTrainedModel。請檢視超類文件,瞭解庫為所有模型實現的通用方法(例如下載、儲存和從 PyTorch 模型轉換權重)。
此模型也是 flax.linen.Module 的子類。請將其用作常規的 Flax linen 模組,並參考 Flax 文件瞭解所有與一般用法和行為相關的事項。
最後,此模型支援固有的 JAX 功能,例如
__call__
< 原始碼 >( input_ids attention_mask = None token_type_ids = None head_mask = None params: typing.Optional[dict] = None dropout_rng: <function PRNGKey at 0x7effc7ad3a30> = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput 或 tuple(torch.FloatTensor)
引數
- input_ids (
numpy.ndarray
,形狀為(batch_size, num_choices, sequence_length)
) — 詞彙表中輸入序列標記的索引。索引可以使用 AutoTokenizer 獲得。詳情請參閱 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
numpy.ndarray
,形狀為(batch_size, num_choices, sequence_length)
,可選) — 掩碼,用於避免在填充標記索引上執行注意力機制。掩碼值在[0, 1]
中選擇:- 1 表示標記未被掩碼,
- 0 表示標記被掩碼。
- token_type_ids (
numpy.ndarray
,形狀為(batch_size, num_choices, sequence_length)
,可選) — 片段標記索引,用於指示輸入的第一部分和第二部分。索引在[0, 1]
中選擇:- 0 對應於 *A 句子* 標記,
- 1 對應於 *B 句子* 標記。
- position_ids (
numpy.ndarray
,形狀為(batch_size, num_choices, sequence_length)
,可選) — 位置嵌入中每個輸入序列標記的位置索引。在[0, config.max_position_embeddings - 1]
範圍內選擇。 - head_mask (
numpy.ndarray
,形狀為(batch_size, num_choices, sequence_length)
,可選) -- 用於置零注意力模組中選定頭的掩碼。掩碼值在
[0, 1]` 中選擇:- 1 表示頭未被掩碼,
- 0 表示頭被掩碼。
- return_dict (
bool
,可選) — 是否返回 ModelOutput 而不是普通的元組。
返回
transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput 或 tuple(torch.FloatTensor)
一個 transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput 或一個 torch.FloatTensor
元組 (如果傳遞了 return_dict=False
或 config.return_dict=False
),包含根據配置 (RoFormerConfig) 和輸入的不同元素。
-
logits (形狀為
(batch_size, num_choices)
的jnp.ndarray
) — num_choices 是輸入張量的第二個維度。(請參閱上面的 input_ids)。分類分數(SoftMax 之前)。
-
hidden_states (
tuple(jnp.ndarray)
, 可選, 當傳遞output_hidden_states=True
或當config.output_hidden_states=True
時返回) —jnp.ndarray
的元組(一個是嵌入層的輸出,另一個是每一層的輸出),形狀為(batch_size, sequence_length, hidden_size)
。模型在每個層輸出的隱藏狀態加上初始嵌入輸出。
-
attentions (
tuple(jnp.ndarray)
, 可選, 當傳遞output_attentions=True
或當config.output_attentions=True
時返回) —jnp.ndarray
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
FlaxRoFormerPreTrainedModel
的前向方法覆蓋了 __call__
特殊方法。
雖然前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。
示例
>>> from transformers import AutoTokenizer, FlaxRoFormerForMultipleChoice
>>> tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> model = FlaxRoFormerForMultipleChoice.from_pretrained("junnyu/roformer_chinese_base")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="jax", padding=True)
>>> outputs = model(**{k: v[None, :] for k, v in encoding.items()})
>>> logits = outputs.logits
FlaxRoFormerForTokenClassification
class transformers.FlaxRoFormerForTokenClassification
< 原始碼 >( config: RoFormerConfig input_shape: tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
引數
- config (RoFormerConfig) — 包含模型所有引數的模型配置類。使用配置檔案初始化不會載入與模型相關的權重,只會載入配置。要載入模型權重,請檢視 from_pretrained() 方法。
- dtype (
jax.numpy.dtype
,可選,預設為jax.numpy.float32
) — 計算的資料型別。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上) 和jax.numpy.bfloat16
(在 TPU 上) 之一。這可用於在 GPU 或 TPU 上啟用混合精度訓練或半精度推理。如果指定,所有計算都將使用給定的 `dtype` 執行。
請注意,這僅指定計算的 dtype,不影響模型引數的 dtype。
帶有詞元分類頭的 RoFormer 模型(在隱藏狀態輸出之上加一個線性層),例如用於命名實體識別(NER)任務。
此模型繼承自 FlaxPreTrainedModel。請檢視超類文件,瞭解庫為所有模型實現的通用方法(例如下載、儲存和從 PyTorch 模型轉換權重)。
此模型也是 flax.linen.Module 的子類。請將其用作常規的 Flax linen 模組,並參考 Flax 文件瞭解所有與一般用法和行為相關的事項。
最後,此模型支援固有的 JAX 功能,例如
__call__
< 原始碼 >( input_ids attention_mask = None token_type_ids = None head_mask = None params: typing.Optional[dict] = None dropout_rng: <function PRNGKey at 0x7effc7ad3a30> = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_flax_outputs.FlaxTokenClassifierOutput 或 tuple(torch.FloatTensor)
引數
- input_ids (
numpy.ndarray
,形狀為(batch_size, sequence_length)
) — 詞彙表中輸入序列標記的索引。索引可以使用 AutoTokenizer 獲得。詳情請參閱 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
numpy.ndarray
,形狀為(batch_size, sequence_length)
,可選) — 掩碼,用於避免在填充標記索引上執行注意力機制。掩碼值在[0, 1]
中選擇:- 1 表示標記未被掩碼,
- 0 表示標記被掩碼。
- token_type_ids (
numpy.ndarray
,形狀為(batch_size, sequence_length)
,可選) — 片段標記索引,用於指示輸入的第一部分和第二部分。索引在[0, 1]
中選擇:- 0 對應於 *A 句子* 標記,
- 1 對應於 *B 句子* 標記。
- position_ids (
numpy.ndarray
,形狀為(batch_size, sequence_length)
,可選) — 位置嵌入中每個輸入序列標記的位置索引。在[0, config.max_position_embeddings - 1]
範圍內選擇。 - head_mask (
numpy.ndarray
,形狀為(batch_size, sequence_length)
,可選) -- 用於置零注意力模組中選定頭的掩碼。掩碼值在
[0, 1]` 中選擇:- 1 表示頭未被掩碼,
- 0 表示頭被掩碼。
- return_dict (
bool
,可選) — 是否返回 ModelOutput 而不是普通的元組。
返回
transformers.modeling_flax_outputs.FlaxTokenClassifierOutput 或 tuple(torch.FloatTensor)
一個 transformers.modeling_flax_outputs.FlaxTokenClassifierOutput 或一個 torch.FloatTensor
元組 (如果傳遞了 return_dict=False
或 config.return_dict=False
),包含根據配置 (RoFormerConfig) 和輸入的不同元素。
-
logits (
jnp.ndarray
,形狀為(batch_size, sequence_length, config.num_labels)
) — 分類得分(SoftMax 之前)。 -
hidden_states (
tuple(jnp.ndarray)
, 可選, 當傳遞output_hidden_states=True
或當config.output_hidden_states=True
時返回) —jnp.ndarray
的元組(一個是嵌入層的輸出,另一個是每一層的輸出),形狀為(batch_size, sequence_length, hidden_size)
。模型在每個層輸出的隱藏狀態加上初始嵌入輸出。
-
attentions (
tuple(jnp.ndarray)
, 可選, 當傳遞output_attentions=True
或當config.output_attentions=True
時返回) —jnp.ndarray
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
FlaxRoFormerPreTrainedModel
的前向方法覆蓋了 __call__
特殊方法。
雖然前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。
示例
>>> from transformers import AutoTokenizer, FlaxRoFormerForTokenClassification
>>> tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> model = FlaxRoFormerForTokenClassification.from_pretrained("junnyu/roformer_chinese_base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
FlaxRoFormerForQuestionAnswering
class transformers.FlaxRoFormerForQuestionAnswering
< 原始碼 >( config: RoFormerConfig input_shape: tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
引數
- config (RoFormerConfig) — 包含模型所有引數的模型配置類。使用配置檔案初始化不會載入與模型相關的權重,只會載入配置。要載入模型權重,請檢視 from_pretrained() 方法。
- dtype (
jax.numpy.dtype
,可選,預設為jax.numpy.float32
) — 計算的資料型別。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上) 和jax.numpy.bfloat16
(在 TPU 上) 之一。這可用於在 GPU 或 TPU 上啟用混合精度訓練或半精度推理。如果指定,所有計算都將使用給定的 `dtype` 執行。
請注意,這僅指定計算的 dtype,不影響模型引數的 dtype。
RoFormer 模型,帶有一個用於抽取式問答任務(如 SQuAD)的片段分類頭(在 hidden-states 輸出之上新增一個線性層以計算 `span start logits` 和 `span end logits`)。
此模型繼承自 FlaxPreTrainedModel。請檢視超類文件,瞭解庫為所有模型實現的通用方法(例如下載、儲存和從 PyTorch 模型轉換權重)。
此模型也是 flax.linen.Module 的子類。請將其用作常規的 Flax linen 模組,並參考 Flax 文件瞭解所有與一般用法和行為相關的事項。
最後,此模型支援固有的 JAX 功能,例如
__call__
< 原始碼 >( input_ids attention_mask = None token_type_ids = None head_mask = None params: typing.Optional[dict] = None dropout_rng: <function PRNGKey at 0x7effc7ad3a30> = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)
引數
- input_ids (
numpy.ndarray
,形狀為(batch_size, sequence_length)
) — 詞彙表中輸入序列標記的索引。索引可以使用 AutoTokenizer 獲得。詳情請參閱 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
numpy.ndarray
,形狀為(batch_size, sequence_length)
,可選) — 掩碼,用於避免在填充標記索引上執行注意力機制。掩碼值在[0, 1]
中選擇:- 1 表示標記未被掩碼,
- 0 表示標記被掩碼。
- token_type_ids (
numpy.ndarray
,形狀為(batch_size, sequence_length)
,可選) — 片段標記索引,用於指示輸入的第一部分和第二部分。索引在[0, 1]
中選擇:- 0 對應於 句子 A 的標記,
- 1 對應於 句子 B 的標記。
- position_ids (
numpy.ndarray
,形狀為(batch_size, sequence_length)
,可選) — 每個輸入序列標記在位置嵌入中的位置索引。在[0, config.max_position_embeddings - 1]
範圍內選擇。 - head_mask (
numpy.ndarray
,形狀為(batch_size, sequence_length)
,可選) — 用於將注意力模組中選定的頭置空的掩碼。掩碼值在 `[0, 1]` 中選擇:- 1 表示頭未被遮蔽,
- 0 表示頭被遮蔽。
- return_dict (
bool
, 可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。
返回
transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)
transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput 或一個 torch.FloatTensor
元組(如果傳遞了 return_dict=False
或當 config.return_dict=False
時),根據配置(RoFormerConfig)和輸入,包含不同的元素。
-
start_logits (
jnp.ndarray
,形狀為(batch_size, sequence_length)
) — 跨度開始得分(SoftMax 之前)。 -
end_logits (
jnp.ndarray
,形狀為(batch_size, sequence_length)
) — 跨度結束得分(SoftMax 之前)。 -
hidden_states (
tuple(jnp.ndarray)
, 可選, 當傳遞output_hidden_states=True
或當config.output_hidden_states=True
時返回) —jnp.ndarray
的元組(一個是嵌入層的輸出,另一個是每一層的輸出),形狀為(batch_size, sequence_length, hidden_size)
。模型在每個層輸出的隱藏狀態加上初始嵌入輸出。
-
attentions (
tuple(jnp.ndarray)
, 可選, 當傳遞output_attentions=True
或當config.output_attentions=True
時返回) —jnp.ndarray
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
FlaxRoFormerPreTrainedModel
的前向方法覆蓋了 __call__
特殊方法。
雖然前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。
示例
>>> from transformers import AutoTokenizer, FlaxRoFormerForQuestionAnswering
>>> tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> model = FlaxRoFormerForQuestionAnswering.from_pretrained("junnyu/roformer_chinese_base")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="jax")
>>> outputs = model(**inputs)
>>> start_scores = outputs.start_logits
>>> end_scores = outputs.end_logits