Transformers 文件

RoFormer

Hugging Face's logo
加入 Hugging Face 社群

並獲得增強的文件體驗

開始使用

PyTorch TensorFlow Flax

RoFormer

RoFormer 引入了旋轉位置嵌入(Rotary Position Embedding, RoPE)技術,透過在二維空間中旋轉輸入來編碼詞元位置。這使得模型能夠追蹤絕對位置並建模相對關係。RoPE 可以擴充套件到更長的序列,考慮到了詞元依賴性的自然衰減,並能與更高效的線性自注意力機制協同工作。

你可以在 Hub 上找到所有 RoFormer 的檢查點。

點選右側邊欄中的 RoFormer 模型,檢視更多關於如何將 RoFormer 應用於不同語言任務的示例。

下面的示例演示瞭如何使用 PipelineAutoModel 以及從命令列預測 [MASK] 詞元。

流水線
自動模型
Transformers CLI
# uncomment to install rjieba which is needed for the tokenizer
# !pip install rjieba
import torch
from transformers import pipeline

pipe = pipeline(
    task="fill-mask",
    model="junnyu/roformer_chinese_base",
    torch_dtype=torch.float16,
    device=0
)
output = pipe("水在零度時會[MASK]")
print(output)

注意

RoFormerConfig

class transformers.RoFormerConfig

< >

( vocab_size = 50000 embedding_size = None hidden_size = 768 num_hidden_layers = 12 num_attention_heads = 12 intermediate_size = 3072 hidden_act = 'gelu' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 1536 type_vocab_size = 2 initializer_range = 0.02 layer_norm_eps = 1e-12 pad_token_id = 0 rotary_value = False use_cache = True **kwargs )

引數

  • vocab_size (int, 可選, 預設為 50000) — RoFormer 模型的詞彙表大小。定義了在呼叫 RoFormerModelTFRoFormerModel 時,可以透過 inputs_ids 表示的不同詞元的數量。
  • embedding_size (int, 可選, 預設為 None) — 編碼器層和池化層的維度。如果未提供,則預設為 hidden_size
  • hidden_size (int, 可選, 預設為 768) — 編碼器層和池化層的維度。
  • num_hidden_layers (int, 可選, 預設為 12) — Transformer 編碼器中的隱藏層數量。
  • num_attention_heads (int, 可選, 預設為 12) — Transformer 編碼器中每個注意力層的注意力頭數量。
  • intermediate_size (int, 可選, 預設為 3072) — Transformer 編碼器中“中間”(即前饋)層的維度。
  • hidden_act (str or function, 可選, 預設為 "gelu") — 編碼器和池化器中的非線性啟用函式(函式或字串)。如果為字串,支援 "gelu""relu""selu""gelu_new"
  • hidden_dropout_prob (float, 可選, 預設為 0.1) — 嵌入層、編碼器和池化器中所有全連線層的丟棄機率。
  • attention_probs_dropout_prob (float, 可選, 預設為 0.1) — 注意力機率的丟棄率。
  • max_position_embeddings (int, 可選, 預設為 1536) — 該模型可能使用的最大序列長度。通常將其設定為一個較大的值以防萬一(例如 512、1024 或 1536)。
  • type_vocab_size (int, 可選, 預設為 2) — 在呼叫 RoFormerModelTFRoFormerModel 時傳入的 token_type_ids 的詞彙表大小。
  • initializer_range (float, 可選, 預設為 0.02) — 用於初始化所有權重矩陣的 truncated_normal_initializer 的標準差。
  • layer_norm_eps (float, 可選, 預設為 1e-12) — 層歸一化層使用的 epsilon 值。
  • is_decoder (bool, 可選, 預設為 False) — 模型是否用作解碼器。如果為 False,則模型用作編碼器。
  • use_cache (bool, 可選, 預設為 True) — 模型是否應返回最後一個鍵/值注意力(並非所有模型都使用)。僅在 config.is_decoder=True 時相關。
  • rotary_value (bool, 可選, 預設為 False) — 是否在值層上應用旋轉位置嵌入。

這是用於儲存 RoFormerModel 配置的配置類。它用於根據指定的引數例項化一個 RoFormer 模型,定義模型架構。使用預設值例項化配置將產生與 RoFormer junnyu/roformer_chinese_base 架構類似的配置。

配置物件繼承自 PretrainedConfig,可用於控制模型輸出。更多資訊請參閱 PretrainedConfig 的文件。

示例

>>> from transformers import RoFormerModel, RoFormerConfig

>>> # Initializing a RoFormer junnyu/roformer_chinese_base style configuration
>>> configuration = RoFormerConfig()

>>> # Initializing a model (with random weights) from the junnyu/roformer_chinese_base style configuration
>>> model = RoFormerModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

RoFormerTokenizer

class transformers.RoFormerTokenizer

< >

( vocab_file do_lower_case = True do_basic_tokenize = True never_split = None unk_token = '[UNK]' sep_token = '[SEP]' pad_token = '[PAD]' cls_token = '[CLS]' mask_token = '[MASK]' tokenize_chinese_chars = True strip_accents = None **kwargs )

引數

  • vocab_file (str) — 包含詞彙表的檔案。
  • do_lower_case (bool, 可選, 預設為 True) — 是否在分詞時將輸入轉換為小寫。
  • do_basic_tokenize (bool, 可選, 預設為 True) — 是否在 WordPiece 之前進行基本分詞。
  • never_split (Iterable, 可選) — 在分詞過程中永遠不會被分割的詞元集合。僅在 do_basic_tokenize=True 時有效。
  • unk_token (str, 可選, 預設為 "[UNK]") — 未知詞元。不在詞彙表中的詞元無法轉換為 ID,將被設定為此詞元。
  • sep_token (str, 可選, 預設為 "[SEP]") — 分隔符詞元,用於從多個序列構建一個序列,例如用於序列分類的兩個序列,或用於問答的文字和問題。它也用作使用特殊詞元構建的序列的最後一個詞元。
  • pad_token (str, 可選, 預設為 "[PAD]") — 用於填充的詞元,例如在批處理不同長度的序列時使用。
  • cls_token (str, 可選, 預設為 "[CLS]") — 分類器詞元,用於進行序列分類(對整個序列而不是逐個詞元進行分類)。當使用特殊詞元構建序列時,它是序列的第一個詞元。
  • mask_token (str, 可選, 預設為 "[MASK]") — 用於掩碼值的詞元。這是在使用掩碼語言建模訓練此模型時使用的詞元。這是模型將嘗試預測的詞元。
  • tokenize_chinese_chars (bool, 可選, 預設為 True) — 是否對中文字元進行分詞。

    對於日語,這可能需要停用(請參閱此 問題)。

  • strip_accents (bool, 可選) — 是否移除所有重音符號。如果未指定此選項,則將由 lowercase 的值決定(與原始 BERT 中一樣)。

構建一個 RoFormer 分詞器。基於 Rust Jieba

此分詞器繼承自 PreTrainedTokenizer,它包含了大部分主要方法。使用者應參考此超類以獲取有關這些方法的更多資訊。

示例

>>> from transformers import RoFormerTokenizer

>>> tokenizer = RoFormerTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> tokenizer.tokenize("今天天氣非常好。")
['今', '天', '天', '氣', '非常', '好', '。']

build_inputs_with_special_tokens

< >

( token_ids_0: list token_ids_1: typing.Optional[list[int]] = None ) List[int]

引數

  • token_ids_0 (List[int]) — 將要新增特殊標記的 ID 列表。
  • token_ids_1 (List[int], 可選) — 可選的用於序列對的第二個 ID 列表。

返回

List[int]

帶有適當特殊標記的輸入ID列表。

透過拼接和新增特殊標記,從一個序列或一對序列為序列分類任務構建模型輸入。一個 RoFormer 序列具有以下格式:

  • 單個序列:[CLS] X [SEP]
  • 序列對:[CLS] A [SEP] B [SEP]

get_special_tokens_mask

< >

( token_ids_0: list token_ids_1: typing.Optional[list[int]] = None already_has_special_tokens: bool = False ) List[int]

引數

  • token_ids_0 (List[int]) — ID 列表。
  • token_ids_1 (List[int], 可選) — 可選的用於序列對的第二個 ID 列表。
  • already_has_special_tokens (bool, 可選, 預設為 False) — 標記列表是否已經為模型格式化了特殊標記。

返回

List[int]

一個範圍為 [0, 1] 的整數列表:1 表示特殊標記,0 表示序列標記。

從沒有新增特殊標記的標記列表中檢索序列ID。此方法在使用分詞器prepare_for_model方法新增特殊標記時呼叫。

create_token_type_ids_from_sequences

< >

( token_ids_0: list token_ids_1: typing.Optional[list[int]] = None ) list[int]

引數

  • token_ids_0 (list[int]) — 第一個分詞後的序列。
  • token_ids_1 (list[int], 可選) — 第二個分詞後的序列。

返回

list[int]

標記型別 ID。

建立與傳入序列對應的標記型別 ID。什麼是標記型別 ID?

如果模型有特殊的構建方式,應在子類中重寫此方法。

save_vocabulary

< >

( save_directory: str filename_prefix: typing.Optional[str] = None )

RoFormerTokenizerFast

class transformers.RoFormerTokenizerFast

< >

( vocab_file = None tokenizer_file = None do_lower_case = True unk_token = '[UNK]' sep_token = '[SEP]' pad_token = '[PAD]' cls_token = '[CLS]' mask_token = '[MASK]' tokenize_chinese_chars = True strip_accents = None **kwargs )

構建一個“快速”的 RoFormer 分詞器(由 HuggingFace 的 tokenizers 庫支援)。

RoFormerTokenizerFast 幾乎與 BertTokenizerFast 相同,並執行端到端的分詞:標點符號分割和詞元化。在對中文進行分詞時,它們之間存在一些差異。

此分詞器繼承自 PreTrainedTokenizerFast,它包含了大部分主要方法。使用者應參考此超類以獲取有關這些方法的更多資訊。

示例

>>> from transformers import RoFormerTokenizerFast

>>> tokenizer = RoFormerTokenizerFast.from_pretrained("junnyu/roformer_chinese_base")
>>> tokenizer.tokenize("今天天氣非常好。")
['今', '天', '天', '氣', '非常', '好', '。']

build_inputs_with_special_tokens

< >

( token_ids_0 token_ids_1 = None ) List[int]

引數

  • token_ids_0 (List[int]) — 將要新增特殊標記的 ID 列表。
  • token_ids_1 (List[int], 可選) — 可選的用於序列對的第二個 ID 列表。

返回

List[int]

帶有適當特殊標記的輸入ID列表。

透過拼接和新增特殊標記,從一個序列或一對序列為序列分類任務構建模型輸入。一個 RoFormer 序列具有以下格式:

  • 單個序列:[CLS] X [SEP]
  • 序列對:[CLS] A [SEP] B [SEP]
Pytorch
隱藏 Pytorch 內容

RoFormerModel

class transformers.RoFormerModel

< >

( config )

引數

  • config (RoFormerModel) — 包含模型所有引數的模型配置類。使用配置檔案初始化不會載入與模型相關的權重,只會載入配置。請查閱 from_pretrained() 方法來載入模型權重。

該模型既可以作為編碼器(僅使用自注意力),也可以作為解碼器。在作為解碼器的情況下,在自注意力層之間會增加一個交叉注意力層,遵循 Attention is all you need(作者:Ashish Vaswani、Noam Shazeer、Niki Parmar、Jakob Uszkoreit、Llion Jones、Aidan N. Gomez、Lukasz Kaiser 和 Illia Polosukhin)中描述的架構。

要作為解碼器使用,模型需要在初始化時將配置的 `is_decoder` 引數設定為 `True`。要在 Seq2Seq 模型中使用,模型需要在初始化時將 `is_decoder` 和 `add_cross_attention` 引數都設定為 `True`;此時,前向傳播中需要輸入 `encoder_hidden_states`。

此模型繼承自 PreTrainedModel。請查閱超類文件以瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪注意力頭等)。

此模型也是 PyTorch torch.nn.Module 的子類。可以像常規的 PyTorch Module 一樣使用它,並參考 PyTorch 文件瞭解所有與通用用法和行為相關的事項。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None encoder_hidden_states: typing.Optional[torch.FloatTensor] = None encoder_attention_mask: typing.Optional[torch.FloatTensor] = None past_key_values: typing.Optional[tuple[tuple[torch.FloatTensor]]] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentionstuple(torch.FloatTensor)

引數

  • input_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 詞彙表中輸入序列標記的索引。預設情況下,填充將被忽略。

    索引可以使用 AutoTokenizer 獲得。詳情請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (torch.FloatTensor,形狀為 (batch_size, sequence_length)可選) — 用於避免對填充標記索引執行注意力的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示標記未被遮蓋
    • 0 表示標記被遮蓋

    什麼是注意力掩碼?

  • token_type_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 段標記索引,用於指示輸入的第一部分和第二部分。索引在 [0, 1] 中選擇:

    • 0 對應於 句子 A 的標記,
    • 1 對應於 句子 B 的標記。

    什麼是標記型別 ID?

  • head_mask (torch.FloatTensor,形狀為 (num_heads,)(num_layers, num_heads)可選) — 用於置零自注意力模組中選定頭的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示頭未被遮蓋
    • 0 表示頭被遮蓋
  • inputs_embeds (torch.FloatTensor,形狀為 (batch_size, sequence_length, hidden_size)可選) — 可選地,你可以選擇直接傳遞嵌入表示,而不是傳遞 `input_ids`。如果你想比模型內部的嵌入查詢矩陣更好地控制如何將 `input_ids` 索引轉換為相關向量,這會很有用。
  • encoder_hidden_states (torch.FloatTensor,形狀為 (batch_size, sequence_length, hidden_size)可選) — 編碼器最後一層輸出的隱藏狀態序列。如果模型被配置為解碼器,則用於交叉注意力。
  • encoder_attention_mask (torch.FloatTensor,形狀為 (batch_size, sequence_length)可選) — 用於避免對編碼器輸入的填充標記索引執行注意力的掩碼。如果模型被配置為解碼器,則該掩碼用於交叉注意力。掩碼值在 [0, 1] 中選擇:

    • 1 表示標記未被遮蓋
    • 0 表示標記被遮蓋
  • past_key_values (tuple[tuple[torch.FloatTensor]], 可選) — 預先計算的隱藏狀態(自注意力塊和交叉注意力塊中的鍵和值),可用於加速序列解碼。這通常包括在解碼的先前階段由模型返回的 `past_key_values`,當 `use_cache=True` 或 `config.use_cache=True` 時。

    允許兩種格式:

    • Cache 例項,請參閱我們的 kv 快取指南
    • 長度為 `config.n_layers` 的 `tuple(torch.FloatTensor)` 元組,每個元組有兩個形狀為 `(batch_size, num_heads, sequence_length, embed_size_per_head)` 的張量。這也稱為舊版快取格式。

    模型將輸出與輸入相同的快取格式。如果未傳遞 `past_key_values`,則將返回舊版快取格式。

    如果使用 `past_key_values`,使用者可以選擇只輸入最後一個 `input_ids`(那些沒有為其提供過去鍵值狀態的 `input_ids`),形狀為 `(batch_size, 1)`,而不是所有形狀為 `(batch_size, sequence_length)` 的 `input_ids`。

  • use_cache (bool, 可選) — 如果設定為 `True`,則返回 `past_key_values` 鍵值狀態,可用於加速解碼(參見 `past_key_values`)。
  • output_attentions (bool, 可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的 `attentions`。
  • output_hidden_states (bool, 可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的 `hidden_states`。
  • return_dict (bool, 可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。

返回

transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentionstuple(torch.FloatTensor)

一個 transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentions 或一個 `torch.FloatTensor` 的元組(如果傳遞了 `return_dict=False` 或者 `config.return_dict=False`),包含根據配置(RoFormerConfig)和輸入的不同元素。

  • last_hidden_state (torch.FloatTensor, 形狀為 (batch_size, sequence_length, hidden_size)) — 模型最後一層輸出的隱藏狀態序列。

    如果使用了 past_key_values,則只輸出形狀為 (batch_size, 1, hidden_size) 的序列的最後一個隱藏狀態。

  • past_key_values (Cache可選,當傳遞 `use_cache=True` 或 `config.use_cache=True` 時返回) — 這是一個 Cache 例項。更多詳情,請參閱我們的 kv 快取指南

    包含預先計算的隱藏狀態(自注意力塊中的鍵和值,以及當 `config.is_encoder_decoder=True` 時交叉注意力塊中的鍵和值),可用於(參見 `past_key_values` 輸入)加速序列解碼。

  • hidden_states (tuple(torch.FloatTensor)可選,當傳遞 `output_hidden_states=True` 或 `config.output_hidden_states=True` 時返回) — `torch.FloatTensor` 的元組(一個用於嵌入層的輸出,如果模型有嵌入層,+ 每個層的輸出),形狀為 `(batch_size, sequence_length, hidden_size)`。

    模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。

  • attentions (tuple(torch.FloatTensor)可選,當傳遞 `output_attentions=True` 或 `config.output_attentions=True` 時返回) — `torch.FloatTensor` 的元組(每層一個),形狀為 `(batch_size, num_heads, sequence_length, sequence_length)`。

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

  • cross_attentions (tuple(torch.FloatTensor)可選,當傳遞 `output_attentions=True` 和 `config.add_cross_attention=True` 或 `config.output_attentions=True` 時返回) — `torch.FloatTensor` 的元組(每層一個),形狀為 `(batch_size, num_heads, sequence_length, sequence_length)`。

    解碼器交叉注意力層的注意力權重,在注意力 softmax 之後,用於計算交叉注意力頭中的加權平均。

RoFormerModel 的前向方法重寫了 `__call__` 特殊方法。

雖然前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

RoFormerForCausalLM

class transformers.RoFormerForCausalLM

< >

( config )

引數

  • config (RoFormerForCausalLM) — 包含模型所有引數的模型配置類。使用配置檔案初始化不會載入與模型相關的權重,只會載入配置。請查閱 from_pretrained() 方法來載入模型權重。

帶有 `language modeling` 頭的 RoFormer 模型,用於 CLM 微調。

此模型繼承自 PreTrainedModel。請查閱超類文件以瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪注意力頭等)。

此模型也是 PyTorch torch.nn.Module 的子類。可以像常規的 PyTorch Module 一樣使用它,並參考 PyTorch 文件瞭解所有與通用用法和行為相關的事項。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None encoder_hidden_states: typing.Optional[torch.FloatTensor] = None encoder_attention_mask: typing.Optional[torch.FloatTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None cross_attn_head_mask: typing.Optional[torch.Tensor] = None past_key_values: typing.Optional[tuple[tuple[torch.FloatTensor]]] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None **kwargs ) transformers.modeling_outputs.CausalLMOutputWithCrossAttentionstuple(torch.FloatTensor)

引數

  • input_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 詞彙表中輸入序列標記的索引。預設情況下將忽略填充(Padding)。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (torch.FloatTensor,形狀為 (batch_size, sequence_length)可選) — 用於避免對填充(padding)標記索引執行注意力(attention)計算的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示標記未被遮蓋
    • 0 表示標記已被遮蓋

    什麼是注意力掩碼?

  • token_type_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 片段標記索引,用於指示輸入的第一和第二部分。索引在 [0, 1] 中選擇:

    • 0 對應於 句子 A 的標記,
    • 1 對應於 句子 B 的標記。

    什麼是標記型別 ID?

  • inputs_embeds (torch.FloatTensor,形狀為 (batch_size, sequence_length, hidden_size)可選) — 可選地,你可以選擇直接傳遞嵌入表示,而不是傳遞 input_ids。如果你想比模型內部的嵌入查詢矩陣更好地控制如何將 input_ids 索引轉換為關聯向量,這會非常有用。
  • encoder_hidden_states (torch.FloatTensor,形狀為 (batch_size, sequence_length, hidden_size)可選) — 編碼器最後一層輸出的隱藏狀態序列。如果模型配置為解碼器,則在交叉注意力(cross-attention)中使用。
  • encoder_attention_mask (torch.FloatTensor,形狀為 (batch_size, sequence_length)可選) — 用於避免對編碼器輸入的填充標記索引執行注意力計算的掩碼。如果模型配置為解碼器,則此掩碼用於交叉注意力(cross-attention)。掩碼值在 [0, 1] 中選擇:

    • 1 表示標記未被遮蓋
    • 0 表示標記已被遮蓋
  • head_mask (torch.FloatTensor,形狀為 (num_heads,)(num_layers, num_heads)可選) — 用於使自注意力(self-attention)模組的選定頭無效的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示該頭未被遮蓋
    • 0 表示該頭已被遮蓋
  • cross_attn_head_mask (torch.Tensor,形狀為 (num_layers, num_heads)可選) — 用於使交叉注意力(cross-attention)模組的選定頭無效的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示該頭未被遮蓋
    • 0 表示該頭已被遮蓋
  • past_key_values (tuple[tuple[torch.FloatTensor]]可選) — 預先計算的隱藏狀態(自注意力和交叉注意力塊中的鍵和值),可用於加速順序解碼。這通常是在解碼的前一階段,當 use_cache=Trueconfig.use_cache=True 時,由模型返回的 past_key_values

    允許兩種格式:

    • Cache 例項,請參閱我們的 KV 快取指南
    • 長度為 config.n_layerstuple(torch.FloatTensor) 元組,每個元組包含 2 個形狀為 (batch_size, num_heads, sequence_length, embed_size_per_head) 的張量。這也稱為傳統快取格式。

    模型將輸出與輸入相同的快取格式。如果未傳遞 past_key_values,則將返回傳統快取格式。

    如果使用 past_key_values,使用者可以選擇僅輸入最後一個 input_ids(那些沒有為其提供過去鍵值狀態的 ID),形狀為 (batch_size, 1),而不是所有形狀為 (batch_size, sequence_length)input_ids

  • labels (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 用於計算從左到右語言建模損失(下一個詞預測)的標籤。索引應在 [-100, 0, ..., config.vocab_size] 範圍內(請參閱 input_ids 文件)。索引設定為 -100 的標記將被忽略(遮蓋),損失僅對標籤在 [0, ..., config.vocab_size] 範圍內的標記進行計算。
  • use_cache (bool可選) — 如果設定為 True,則返回 past_key_values 鍵值狀態,可用於加速解碼(請參閱 past_key_values)。
  • output_attentions (bool可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的 attentions
  • output_hidden_states (bool可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的 hidden_states
  • return_dict (bool可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。

返回

transformers.modeling_outputs.CausalLMOutputWithCrossAttentionstuple(torch.FloatTensor)

一個 transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或一個 torch.FloatTensor 的元組(如果傳遞了 return_dict=Falseconfig.return_dict=False),它包含各種元素,具體取決於配置(RoFormerConfig)和輸入。

  • loss (torch.FloatTensor 形狀為 (1,)可選,當提供 labels 時返回) — 語言建模損失(用於下一個 token 預測)。

  • logits (形狀為 (batch_size, sequence_length, config.vocab_size)torch.FloatTensor) — 語言建模頭部的預測分數(SoftMax 之前的每個詞彙標記的分數)。

  • hidden_states (tuple(torch.FloatTensor)可選,當傳遞 `output_hidden_states=True` 或 `config.output_hidden_states=True` 時返回) — `torch.FloatTensor` 的元組(一個用於嵌入層的輸出,如果模型有嵌入層,+ 每個層的輸出),形狀為 `(batch_size, sequence_length, hidden_size)`。

    模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。

  • attentions (tuple(torch.FloatTensor)可選,當傳遞 `output_attentions=True` 或 `config.output_attentions=True` 時返回) — `torch.FloatTensor` 的元組(每層一個),形狀為 `(batch_size, num_heads, sequence_length, sequence_length)`。

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

  • cross_attentions (tuple(torch.FloatTensor)可選,當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — torch.FloatTensor 的元組(每層一個),形狀為 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 後的交叉注意力權重,用於計算交叉注意力頭中的加權平均。

  • past_key_values (Cache可選,當傳遞 `use_cache=True` 或 `config.use_cache=True` 時返回) — 這是一個 Cache 例項。更多詳情,請參閱我們的 kv 快取指南

    包含預先計算的隱藏狀態(注意力塊中的鍵和值),可用於(參見 past_key_values 輸入)加速順序解碼。

RoFormerForCausalLM 的 forward 方法會覆蓋 __call__ 特殊方法。

雖然前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> from transformers import AutoTokenizer, RoFormerForCausalLM, RoFormerConfig
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> config = RoFormerConfig.from_pretrained("junnyu/roformer_chinese_base")
>>> config.is_decoder = True
>>> model = RoFormerForCausalLM.from_pretrained("junnyu/roformer_chinese_base", config=config)

>>> inputs = tokenizer("今天天氣非常好。", return_tensors="pt")
>>> outputs = model(**inputs)

>>> prediction_logits = outputs.logits

RoFormerForMaskedLM

class transformers.RoFormerForMaskedLM

< >

( config )

引數

  • config (RoFormerForMaskedLM) — 模型配置類,包含模型的所有引數。使用配置檔案初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。

帶有一個 `language modeling` 頭的 Roformer 模型。

此模型繼承自 PreTrainedModel。請查閱超類文件以瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪注意力頭等)。

此模型也是 PyTorch torch.nn.Module 的子類。可以像常規的 PyTorch Module 一樣使用它,並參考 PyTorch 文件瞭解所有與通用用法和行為相關的事項。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None encoder_hidden_states: typing.Optional[torch.FloatTensor] = None encoder_attention_mask: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.MaskedLMOutputtuple(torch.FloatTensor)

引數

  • input_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 詞彙表中輸入序列標記的索引。預設情況下將忽略填充(Padding)。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (torch.FloatTensor,形狀為 (batch_size, sequence_length)可選) — 用於避免對填充(padding)標記索引執行注意力(attention)計算的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示標記未被遮蓋
    • 0 表示標記已被遮蓋

    什麼是注意力掩碼?

  • token_type_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 片段標記索引,用於指示輸入的第一和第二部分。索引在 [0, 1] 中選擇:

    • 0 對應於 句子 A 的標記,
    • 1 對應於 句子 B 的標記。

    什麼是標記型別 ID?

  • head_mask (torch.FloatTensor,形狀為 (num_heads,)(num_layers, num_heads)可選) — 用於使自注意力(self-attention)模組的選定頭無效的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示該頭未被遮蓋
    • 0 表示該頭已被遮蓋
  • inputs_embeds (torch.FloatTensor,形狀為 (batch_size, sequence_length, hidden_size)可選) — 可選地,你可以選擇直接傳遞嵌入表示,而不是傳遞 input_ids。如果你想比模型內部的嵌入查詢矩陣更好地控制如何將 input_ids 索引轉換為關聯向量,這會非常有用。
  • encoder_hidden_states (torch.FloatTensor,形狀為 (batch_size, sequence_length, hidden_size)可選) — 編碼器最後一層輸出的隱藏狀態序列。如果模型配置為解碼器,則在交叉注意力(cross-attention)中使用。
  • encoder_attention_mask (torch.FloatTensor,形狀為 (batch_size, sequence_length)可選) — 用於避免對編碼器輸入的填充標記索引執行注意力計算的掩碼。如果模型配置為解碼器,則此掩碼用於交叉注意力(cross-attention)。掩碼值在 [0, 1] 中選擇:

    • 1 表示標記未被遮蓋
    • 0 表示標記已被遮蓋
  • labels (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 用於計算遮蓋語言建模損失的標籤。索引應在 [-100, 0, ..., config.vocab_size] 範圍內(請參閱 input_ids 文件)。索引設定為 -100 的標記將被忽略(遮蓋),損失僅對標籤在 [0, ..., config.vocab_size] 範圍內的標記進行計算。
  • output_attentions (bool可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的 attentions
  • output_hidden_states (bool可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的 hidden_states
  • return_dict (bool可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。

返回

transformers.modeling_outputs.MaskedLMOutputtuple(torch.FloatTensor)

一個 transformers.modeling_outputs.MaskedLMOutput 或一個 torch.FloatTensor 的元組(如果傳遞了 return_dict=Falseconfig.return_dict=False),它包含各種元素,具體取決於配置(RoFormerConfig)和輸入。

  • loss (形狀為 (1,)torch.FloatTensor可選,當提供 labels 時返回) — 掩碼語言建模 (MLM) 損失。

  • logits (形狀為 (batch_size, sequence_length, config.vocab_size)torch.FloatTensor) — 語言建模頭部的預測分數(SoftMax 之前的每個詞彙標記的分數)。

  • hidden_states (tuple(torch.FloatTensor)可選,當傳遞 `output_hidden_states=True` 或 `config.output_hidden_states=True` 時返回) — `torch.FloatTensor` 的元組(一個用於嵌入層的輸出,如果模型有嵌入層,+ 每個層的輸出),形狀為 `(batch_size, sequence_length, hidden_size)`。

    模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。

  • attentions (tuple(torch.FloatTensor)可選,當傳遞 `output_attentions=True` 或 `config.output_attentions=True` 時返回) — `torch.FloatTensor` 的元組(每層一個),形狀為 `(batch_size, num_heads, sequence_length, sequence_length)`。

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

RoFormerForMaskedLM 的 forward 方法會覆蓋 __call__ 特殊方法。

雖然前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> from transformers import AutoTokenizer, RoFormerForMaskedLM
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> model = RoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base")

>>> inputs = tokenizer("The capital of France is <mask>.", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> # retrieve index of <mask>
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]

>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
>>> tokenizer.decode(predicted_token_id)
...

>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
>>> # mask labels of non-<mask> tokens
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)

>>> outputs = model(**inputs, labels=labels)
>>> round(outputs.loss.item(), 2)
...

RoFormerForSequenceClassification

class transformers.RoFormerForSequenceClassification

< >

( config )

引數

RoFormer 模型,帶有一個序列分類/迴歸頭(即在池化輸出之上加一個線性層),例如用於 GLUE 任務。

此模型繼承自 PreTrainedModel。請查閱超類文件以瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪注意力頭等)。

此模型也是 PyTorch torch.nn.Module 的子類。可以像常規的 PyTorch Module 一樣使用它,並參考 PyTorch 文件瞭解所有與通用用法和行為相關的事項。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.SequenceClassifierOutputtuple(torch.FloatTensor)

引數

  • input_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 詞彙表中輸入序列標記的索引。預設情況下將忽略填充(Padding)。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (torch.FloatTensor,形狀為 (batch_size, sequence_length)可選) — 用於避免對填充(padding)標記索引執行注意力(attention)計算的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示標記未被遮蓋
    • 0 表示標記已被遮蓋

    什麼是注意力掩碼?

  • token_type_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 片段標記索引,用於指示輸入的第一和第二部分。索引在 [0, 1] 中選擇:

    • 0 對應於 句子 A 的標記,
    • 1 對應於 句子 B 的標記。

    什麼是標記型別 ID?

  • head_mask (torch.FloatTensor,形狀為 (num_heads,)(num_layers, num_heads)可選) — 用於使自注意力(self-attention)模組的選定頭無效的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示該頭未被遮蓋
    • 0 表示該頭已被遮蓋
  • inputs_embeds (torch.FloatTensor,形狀為 (batch_size, sequence_length, hidden_size)可選) — 可選地,你可以選擇直接傳遞嵌入表示,而不是傳遞 input_ids。如果你想比模型內部的嵌入查詢矩陣更好地控制如何將 input_ids 索引轉換為關聯向量,這會非常有用。
  • labels (torch.LongTensor,形狀為 (batch_size,)可選) — 用於計算序列分類/迴歸損失的標籤。索引應在 [0, ..., config.num_labels - 1] 範圍內。如果 config.num_labels == 1,則計算迴歸損失(均方損失),如果 config.num_labels > 1,則計算分類損失(交叉熵)。
  • output_attentions (bool可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的 attentions
  • output_hidden_states (bool可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的 hidden_states
  • return_dict (bool可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。

返回

transformers.modeling_outputs.SequenceClassifierOutputtuple(torch.FloatTensor)

一個 transformers.modeling_outputs.SequenceClassifierOutput 或一個 torch.FloatTensor 的元組(如果傳遞了 return_dict=Falseconfig.return_dict=False),它包含各種元素,具體取決於配置(RoFormerConfig)和輸入。

  • loss (形狀為 (1,)torch.FloatTensor可選,當提供 labels 時返回) — 分類損失(如果 config.num_labels==1,則為迴歸損失)。

  • logits (形狀為 (batch_size, config.num_labels)torch.FloatTensor) — 分類(如果 config.num_labels==1,則為迴歸)分數(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor)可選,當傳遞 `output_hidden_states=True` 或 `config.output_hidden_states=True` 時返回) — `torch.FloatTensor` 的元組(一個用於嵌入層的輸出,如果模型有嵌入層,+ 每個層的輸出),形狀為 `(batch_size, sequence_length, hidden_size)`。

    模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。

  • attentions (tuple(torch.FloatTensor)可選,當傳遞 `output_attentions=True` 或 `config.output_attentions=True` 時返回) — `torch.FloatTensor` 的元組(每層一個),形狀為 `(batch_size, num_heads, sequence_length, sequence_length)`。

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

RoFormerForSequenceClassification 的 forward 方法會覆蓋 __call__ 特殊方法。

雖然前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

單標籤分類示例

>>> import torch
>>> from transformers import AutoTokenizer, RoFormerForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> model = RoFormerForSequenceClassification.from_pretrained("junnyu/roformer_chinese_base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_id = logits.argmax().item()
>>> model.config.id2label[predicted_class_id]
...

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = RoFormerForSequenceClassification.from_pretrained("junnyu/roformer_chinese_base", num_labels=num_labels)

>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...

多標籤分類示例

>>> import torch
>>> from transformers import AutoTokenizer, RoFormerForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> model = RoFormerForSequenceClassification.from_pretrained("junnyu/roformer_chinese_base", problem_type="multi_label_classification")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = RoFormerForSequenceClassification.from_pretrained(
...     "junnyu/roformer_chinese_base", num_labels=num_labels, problem_type="multi_label_classification"
... )

>>> labels = torch.sum(
...     torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss

RoFormerForMultipleChoice

class transformers.RoFormerForMultipleChoice

< >

( config )

引數

  • config (RoFormerForMultipleChoice) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化時,不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。

Roformer 模型,其頂部帶有一個多項選擇分類頭(在池化輸出之上是一個線性層和一個 softmax 層),例如用於 RocStories/SWAG 任務。

此模型繼承自 PreTrainedModel。請查閱超類文件以瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪注意力頭等)。

此模型也是 PyTorch torch.nn.Module 的子類。可以像常規的 PyTorch Module 一樣使用它,並參考 PyTorch 文件瞭解所有與通用用法和行為相關的事項。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.MultipleChoiceModelOutputtuple(torch.FloatTensor)

引數

  • input_ids (torch.LongTensor,形狀為 (batch_size, num_choices, sequence_length)) — 詞彙表中輸入序列標記的索引。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (torch.FloatTensor,形狀為 (batch_size, sequence_length)可選) — 用於避免對填充標記索引執行注意力的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示標記未被遮蓋
    • 0 表示標記已被遮蓋

    什麼是注意力掩碼?

  • token_type_ids (torch.LongTensor,形狀為 (batch_size, num_choices, sequence_length)可選) — 用於指示輸入的第一和第二部分的段標記索引。索引在 [0, 1] 中選擇:

    • 0 對應於 句子 A 的標記,
    • 1 對應於 句子 B 的標記。

    什麼是標記型別 ID?

  • head_mask (torch.FloatTensor,形狀為 (num_heads,)(num_layers, num_heads)可選) — 用於使自注意力模組中選定的頭無效的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示頭未被遮蓋
    • 0 表示頭已被遮蓋
  • inputs_embeds (torch.FloatTensor,形狀為 (batch_size, num_choices, sequence_length, hidden_size)可選) — 可選地,你可以不傳遞 input_ids,而是直接傳遞一個嵌入表示。如果你想比模型內部的嵌入查詢矩陣更多地控制如何將 input_ids 索引轉換為相關向量,這會很有用。
  • labels (torch.LongTensor,形狀為 (batch_size,)可選) — 用於計算多項選擇分類損失的標籤。索引應在 [0, ..., num_choices-1] 範圍內,其中 num_choices 是輸入張量第二維的大小。(參見上面的 input_ids
  • output_attentions (bool可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的 attentions
  • output_hidden_states (bool可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的 hidden_states
  • return_dict (bool可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。

返回

transformers.modeling_outputs.MultipleChoiceModelOutputtuple(torch.FloatTensor)

一個 transformers.modeling_outputs.MultipleChoiceModelOutput 或一個 torch.FloatTensor 的元組(如果傳遞了 return_dict=False 或當 config.return_dict=False 時),根據配置 (RoFormerConfig) 和輸入,包含各種元素。

  • loss (形狀為 (1,)torch.FloatTensor可選,當提供 labels 時返回) — 分類損失。

  • logits (形狀為 (batch_size, num_choices)torch.FloatTensor) — num_choices 是輸入張量的第二維大小。(請參閱上面的 input_ids)。

    分類分數(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor)可選,當傳遞 `output_hidden_states=True` 或 `config.output_hidden_states=True` 時返回) — `torch.FloatTensor` 的元組(一個用於嵌入層的輸出,如果模型有嵌入層,+ 每個層的輸出),形狀為 `(batch_size, sequence_length, hidden_size)`。

    模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。

  • attentions (tuple(torch.FloatTensor)可選,當傳遞 `output_attentions=True` 或 `config.output_attentions=True` 時返回) — `torch.FloatTensor` 的元組(每層一個),形狀為 `(batch_size, num_heads, sequence_length, sequence_length)`。

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

RoFormerForMultipleChoice 的 forward 方法重寫了 __call__ 特殊方法。

雖然前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> from transformers import AutoTokenizer, RoFormerForMultipleChoice
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> model = RoFormerForMultipleChoice.from_pretrained("junnyu/roformer_chinese_base")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0)  # choice0 is correct (according to Wikipedia ;)), batch size 1

>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels)  # batch size is 1

>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits

RoFormerForTokenClassification

class transformers.RoFormerForTokenClassification

< >

( config )

引數

  • config (RoFormerForTokenClassification) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化時,不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。

Roformer transformer,其頂部帶有一個標記分類頭(在隱藏狀態輸出之上是一個線性層),例如用於命名實體識別(NER)任務。

此模型繼承自 PreTrainedModel。請查閱超類文件以瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪注意力頭等)。

此模型也是 PyTorch torch.nn.Module 的子類。可以像常規的 PyTorch Module 一樣使用它,並參考 PyTorch 文件瞭解所有與通用用法和行為相關的事項。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

引數

  • input_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 詞彙表中輸入序列標記的索引。預設情況下,填充將被忽略。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (torch.FloatTensor,形狀為 (batch_size, sequence_length)可選) — 用於避免對填充標記索引執行注意力的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示標記未被遮蓋
    • 0 表示標記已被遮蓋

    什麼是注意力掩碼?

  • token_type_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 用於指示輸入的第一和第二部分的段標記索引。索引在 [0, 1] 中選擇:

    • 0 對應於 句子 A 的標記,
    • 1 對應於 句子 B 的標記。

    什麼是標記型別 ID?

  • head_mask (torch.FloatTensor,形狀為 (num_heads,)(num_layers, num_heads)可選) — 用於使自注意力模組中選定的頭無效的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示頭未被遮蓋
    • 0 表示頭已被遮蓋
  • inputs_embeds (torch.FloatTensor,形狀為 (batch_size, sequence_length, hidden_size)可選) — 可選地,你可以不傳遞 input_ids,而是直接傳遞一個嵌入表示。如果你想比模型內部的嵌入查詢矩陣更多地控制如何將 input_ids 索引轉換為相關向量,這會很有用。
  • labels (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 用於計算標記分類損失的標籤。索引應在 [0, ..., config.num_labels - 1] 範圍內。
  • output_attentions (bool可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的 attentions
  • output_hidden_states (bool可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的 hidden_states
  • return_dict (bool可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。

返回

transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

一個 transformers.modeling_outputs.TokenClassifierOutput 或一個 torch.FloatTensor 的元組(如果傳遞了 return_dict=False 或當 config.return_dict=False 時),根據配置 (RoFormerConfig) 和輸入,包含各種元素。

  • loss (形狀為 (1,)torch.FloatTensor可選,當提供 labels 時返回) — 分類損失。

  • logits (形狀為 (batch_size, sequence_length, config.num_labels)torch.FloatTensor) — 分類分數(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor)可選,當傳遞 `output_hidden_states=True` 或 `config.output_hidden_states=True` 時返回) — `torch.FloatTensor` 的元組(一個用於嵌入層的輸出,如果模型有嵌入層,+ 每個層的輸出),形狀為 `(batch_size, sequence_length, hidden_size)`。

    模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。

  • attentions (tuple(torch.FloatTensor)可選,當傳遞 `output_attentions=True` 或 `config.output_attentions=True` 時返回) — `torch.FloatTensor` 的元組(每層一個),形狀為 `(batch_size, num_heads, sequence_length, sequence_length)`。

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

RoFormerForTokenClassification 的 forward 方法重寫了 __call__ 特殊方法。

雖然前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> from transformers import AutoTokenizer, RoFormerForTokenClassification
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> model = RoFormerForTokenClassification.from_pretrained("junnyu/roformer_chinese_base")

>>> inputs = tokenizer(
...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_token_class_ids = logits.argmax(-1)

>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> predicted_tokens_classes
...

>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...

RoFormerForQuestionAnswering

class transformers.RoFormerForQuestionAnswering

< >

( config )

引數

  • config (RoFormerForQuestionAnswering) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化時,不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。

Roformer transformer,其頂部帶有一個用於抽取式問答任務(如 SQuAD)的跨度分類頭(在隱藏狀態輸出之上是一個線性層,用於計算 `span start logits` 和 `span end logits`)。

此模型繼承自 PreTrainedModel。請查閱超類文件以瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪注意力頭等)。

此模型也是 PyTorch torch.nn.Module 的子類。可以像常規的 PyTorch Module 一樣使用它,並參考 PyTorch 文件瞭解所有與通用用法和行為相關的事項。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None start_positions: typing.Optional[torch.LongTensor] = None end_positions: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.QuestionAnsweringModelOutputtuple(torch.FloatTensor)

引數

  • input_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 詞彙表中輸入序列標記的索引。預設情況下,填充將被忽略。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (torch.FloatTensor,形狀為 (batch_size, sequence_length)可選) — 用於避免對填充標記索引執行注意力的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示標記未被遮蓋
    • 0 表示標記已被遮蓋

    什麼是注意力掩碼?

  • token_type_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 用於指示輸入的第一和第二部分的段標記索引。索引在 [0, 1] 中選擇:

    • 0 對應於 句子 A 的標記,
    • 1 對應於 句子 B 的標記。

    什麼是標記型別 ID?

  • head_mask (torch.FloatTensor,形狀為 (num_heads,)(num_layers, num_heads)可選) — 用於使自注意力模組中選定的頭無效的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示頭未被遮蓋
    • 0 表示頭已被遮蓋
  • inputs_embeds (torch.FloatTensor,形狀為 (batch_size, sequence_length, hidden_size)可選) — 可選地,你可以不傳遞 input_ids,而是直接傳遞一個嵌入表示。如果你想比模型內部的嵌入查詢矩陣更多地控制如何將 input_ids 索引轉換為相關向量,這會很有用。
  • start_positions (torch.LongTensor,形狀為 (batch_size,)可選) — 標記的跨度開始位置(索引)的標籤,用於計算標記分類損失。位置被限制在序列長度(sequence_length)內。序列之外的位置在計算損失時不會被考慮。
  • end_positions (torch.LongTensor,形狀為 (batch_size,)可選) — 標記的跨度結束位置(索引)的標籤,用於計算標記分類損失。位置被限制在序列長度(sequence_length)內。序列之外的位置在計算損失時不會被考慮。
  • output_attentions (bool可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的 attentions
  • output_hidden_states (bool可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的 hidden_states
  • return_dict (bool可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。

返回

transformers.modeling_outputs.QuestionAnsweringModelOutputtuple(torch.FloatTensor)

一個 transformers.modeling_outputs.QuestionAnsweringModelOutput 或一個 torch.FloatTensor 的元組(如果傳遞了 return_dict=False 或當 config.return_dict=False 時),根據配置 (RoFormerConfig) 和輸入,包含各種元素。

  • loss (torch.FloatTensor of shape (1,), 可選, 當提供 labels 時返回) — 總範圍提取損失是起始位置和結束位置的交叉熵之和。

  • start_logits (torch.FloatTensor of shape (batch_size, sequence_length)) — 範圍起始分數(SoftMax 之前)。

  • end_logits (torch.FloatTensor of shape (batch_size, sequence_length)) — 範圍結束分數(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor)可選,當傳遞 `output_hidden_states=True` 或 `config.output_hidden_states=True` 時返回) — `torch.FloatTensor` 的元組(一個用於嵌入層的輸出,如果模型有嵌入層,+ 每個層的輸出),形狀為 `(batch_size, sequence_length, hidden_size)`。

    模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。

  • attentions (tuple(torch.FloatTensor)可選,當傳遞 `output_attentions=True` 或 `config.output_attentions=True` 時返回) — `torch.FloatTensor` 的元組(每層一個),形狀為 `(batch_size, num_heads, sequence_length, sequence_length)`。

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

RoFormerForQuestionAnswering 的 forward 方法重寫了 __call__ 特殊方法。

雖然前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> from transformers import AutoTokenizer, RoFormerForQuestionAnswering
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> model = RoFormerForQuestionAnswering.from_pretrained("junnyu/roformer_chinese_base")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()

>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> tokenizer.decode(predict_answer_tokens, skip_special_tokens=True)
...

>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])

>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss
>>> round(loss.item(), 2)
...
TensorFlow
隱藏 TensorFlow 內容

TFRoFormerModel

class transformers.TFRoFormerModel

< >

( config: RoFormerConfig *inputs **kwargs )

引數

  • config (RoFormerConfig) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化時,不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。

裸的 RoFormer 模型轉換器,輸出原始的隱藏狀態,沒有任何特定的頭在其之上。

該模型繼承自 TFPreTrainedModel。請檢視超類文件以瞭解庫為所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭部等)。

該模型也是一個 keras.Model 子類。可以像常規的 TF 2.0 Keras 模型一樣使用它,並參考 TF 2.0 文件瞭解所有與一般用法和行為相關的事項。

transformers 中的 TensorFlow 模型和層接受兩種輸入格式

  • 所有輸入作為關鍵字引數(如 PyTorch 模型),或
  • 所有輸入作為第一個位置引數中的列表、元組或字典。

支援第二種格式的原因是,Keras 方法在將輸入傳遞給模型和層時更喜歡這種格式。由於這種支援,當使用像 model.fit() 這樣的方法時,事情應該會“自然而然”地為你工作——只需以 model.fit() 支援的任何格式傳遞你的輸入和標籤!然而,如果你想在 Keras 方法(如 fit()predict())之外使用第二種格式,例如在使用 Keras Functional API 建立自己的層或模型時,有三種可能性可以用來將所有輸入張量收集到第一個位置引數中

  • 只有一個 input_ids 的單個張量,沒有其他:model(input_ids)
  • 長度可變的列表,包含一個或多個輸入張量,按文件字串中給出的順序:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 一個字典,其中包含一個或多個與文件字串中給出的輸入名稱關聯的輸入張量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

請注意,當使用子類化建立模型和層時,您無需擔心這些問題,因為您可以像呼叫任何其他 Python 函式一樣傳遞輸入!

呼叫

< >

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: Optional[bool] = False ) transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingtuple(tf.Tensor)

引數

  • input_ids (np.ndarray, tf.Tensor, list[tf.Tensor] `dict[str, tf.Tensor]dict[str, np.ndarray] 且每個示例必須具有形狀 (batch_size, sequence_length)) — 詞彙表中輸入序列標記的索引。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.call()PreTrainedTokenizer.encode()

    什麼是輸入 ID?

  • attention_mask (np.ndarraytf.Tensor,形狀為 (batch_size, sequence_length)可選) — 用於避免對填充標記索引執行注意力的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示標記未被遮蓋
    • 0 表示標記已被遮蓋

    什麼是注意力掩碼?

  • token_type_ids (np.ndarraytf.Tensor,形狀為 (batch_size, sequence_length)可選) — 用於指示輸入的第一和第二部分的段標記索引。索引在 [0, 1] 中選擇:

    • 0 對應於 句子 A 的標記,
    • 1 對應於 句子 B 的標記。

    什麼是標記型別 ID?

  • head_mask (np.ndarraytf.Tensor,形狀為 (num_heads,)(num_layers, num_heads)可選) — 用於使自注意力模組中選定的頭無效的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示頭未被遮蓋
    • 0 表示頭已被遮蓋
  • inputs_embeds (np.ndarraytf.Tensor,形狀為 (batch_size, sequence_length, hidden_size), 可選) — 可選地,你可以不傳遞 input_ids,而是選擇直接傳遞嵌入式表示。如果你想比模型內部的嵌入查詢矩陣更好地控制如何將 input_ids 索引轉換為相關聯的向量,這會很有用。
  • output_attentions (bool, 可選) — 是否返回所有注意力層的注意力張量。更多細節請參閱返回張量下的 attentions。此引數只能在 Eager 模式下使用,在圖模式下將使用配置中的值。
  • output_hidden_states (bool, 可選) — 是否返回所有層的隱藏狀態。更多細節請參閱返回張量下的 hidden_states。此引數只能在 Eager 模式下使用,在圖模式下將使用配置中的值。
  • return_dict (bool, 可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。此引數可以在 Eager 模式下使用,在圖模式下該值將始終設定為 True。
  • training (bool, 可選, 預設為 `False`) — 是否以訓練模式使用模型(一些模組如 dropout 模組在訓練和評估之間有不同的行為)。

返回

transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingtuple(tf.Tensor)

一個 transformers.modeling_tf_outputs.TFBaseModelOutputWithPooling 或一個 tf.Tensor 的元組(如果傳遞了 return_dict=False 或當 config.return_dict=False 時),根據配置(RoFormerConfig)和輸入,包含各種元素。

  • last_hidden_state (tf.Tensor of shape (batch_size, sequence_length, hidden_size)) — 模型最後一層輸出的隱藏狀態序列。

  • pooler_output (tf.Tensor,形狀為 (batch_size, hidden_size)) — 序列的第一個詞元(分類詞元)的最後一層隱藏狀態,經過一個線性層和一個 Tanh 啟用函式進一步處理。線性層的權重是在預訓練期間從下一句預測(分類)目標中訓練的。

    此輸出通常不是輸入語義內容的良好摘要,通常最好對整個輸入序列的隱藏狀態進行平均或池化。

  • hidden_states (tuple(tf.Tensor), 可選, 當傳遞 output_hidden_states=Trueconfig.output_hidden_states=True 時返回) — tf.Tensor 的元組(一個用於嵌入層的輸出 + 一個用於每層的輸出),形狀為 (batch_size, sequence_length, hidden_size)

    模型在每個層輸出的隱藏狀態加上初始嵌入輸出。

  • attentions (tuple(tf.Tensor), 可選, 當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — tf.Tensor 的元組(每層一個),形狀為 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

TFRoFormerModel 的 forward 方法,重寫了 __call__ 特殊方法。

雖然前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> from transformers import AutoTokenizer, TFRoFormerModel
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> model = TFRoFormerModel.from_pretrained("junnyu/roformer_chinese_base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)

>>> last_hidden_states = outputs.last_hidden_state

TFRoFormerForMaskedLM

class transformers.TFRoFormerForMaskedLM

< >

( config: RoFormerConfig *inputs **kwargs )

引數

  • config (RoFormerConfig) — 模型配置類,包含模型的所有引數。使用配置檔案初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。

帶有 `語言建模` 頭的 RoFormer 模型。

該模型繼承自 TFPreTrainedModel。請檢視超類文件以瞭解庫為所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭部等)。

該模型也是一個 keras.Model 子類。可以像常規的 TF 2.0 Keras 模型一樣使用它,並參考 TF 2.0 文件瞭解所有與一般用法和行為相關的事項。

transformers 中的 TensorFlow 模型和層接受兩種輸入格式

  • 所有輸入作為關鍵字引數(如 PyTorch 模型),或
  • 所有輸入作為第一個位置引數中的列表、元組或字典。

支援第二種格式的原因是,Keras 方法在將輸入傳遞給模型和層時更喜歡這種格式。由於這種支援,當使用像 model.fit() 這樣的方法時,事情應該會“自然而然”地為你工作——只需以 model.fit() 支援的任何格式傳遞你的輸入和標籤!然而,如果你想在 Keras 方法(如 fit()predict())之外使用第二種格式,例如在使用 Keras Functional API 建立自己的層或模型時,有三種可能性可以用來將所有輸入張量收集到第一個位置引數中

  • 只有一個 input_ids 的單個張量,沒有其他:model(input_ids)
  • 長度可變的列表,包含一個或多個輸入張量,按文件字串中給出的順序:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 一個字典,其中包含一個或多個與文件字串中給出的輸入名稱關聯的輸入張量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

請注意,當使用子類化建立模型和層時,您無需擔心這些問題,因為您可以像呼叫任何其他 Python 函式一樣傳遞輸入!

呼叫

< >

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) transformers.modeling_tf_outputs.TFMaskedLMOutputtuple(tf.Tensor)

引數

  • input_ids (np.ndarray, tf.Tensor, list[tf.Tensor] `dict[str, tf.Tensor]dict[str, np.ndarray],每個樣本必須具有形狀 (batch_size, sequence_length)) — 詞彙表中輸入序列詞元的索引。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.call()PreTrainedTokenizer.encode()

    什麼是輸入 ID?

  • attention_mask (np.ndarraytf.Tensor,形狀為 (batch_size, sequence_length), 可選) — 用於避免對填充詞元索引執行注意力的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示詞元未被遮蓋
    • 0 表示詞元被遮蓋

    什麼是注意力掩碼?

  • token_type_ids (np.ndarraytf.Tensor,形狀為 (batch_size, sequence_length), 可選) — 段詞元索引,用於指示輸入的第一和第二部分。索引在 [0, 1] 中選擇:

    • 0 對應於 *句子 A* 的詞元,
    • 1 對應於 *句子 B* 的詞元。

    什麼是詞元型別 ID?

  • head_mask (np.ndarraytf.Tensor,形狀為 (num_heads,)(num_layers, num_heads), 可選) — 用於置零自注意力模組中選定頭的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示頭未被遮蓋
    • 0 表示頭被遮蓋
  • inputs_embeds (np.ndarraytf.Tensor,形狀為 (batch_size, sequence_length, hidden_size), 可選) — 可選地,你可以不傳遞 input_ids,而是選擇直接傳遞嵌入式表示。如果你想比模型內部的嵌入查詢矩陣更好地控制如何將 input_ids 索引轉換為相關聯的向量,這會很有用。
  • output_attentions (bool, 可選) — 是否返回所有注意力層的注意力張量。更多細節請參閱返回張量下的 attentions。此引數只能在 Eager 模式下使用,在圖模式下將使用配置中的值。
  • output_hidden_states (bool, 可選) — 是否返回所有層的隱藏狀態。更多細節請參閱返回張量下的 hidden_states。此引數只能在 Eager 模式下使用,在圖模式下將使用配置中的值。
  • return_dict (bool, 可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。此引數可以在 Eager 模式下使用,在圖模式下該值將始終設定為 True。
  • training (bool, 可選, 預設為 `False`) — 是否以訓練模式使用模型(一些模組如 dropout 模組在訓練和評估之間有不同的行為)。
  • labels (tf.Tensornp.ndarray,形狀為 (batch_size, sequence_length), 可選) — 用於計算掩碼語言建模損失的標籤。索引應在 [-100, 0, ..., config.vocab_size] 範圍內(參見 input_ids 文件字串)。索引設定為 -100 的詞元將被忽略(遮蓋),損失僅對標籤在 [0, ..., config.vocab_size] 範圍內的詞元進行計算。

返回

transformers.modeling_tf_outputs.TFMaskedLMOutputtuple(tf.Tensor)

一個 transformers.modeling_tf_outputs.TFMaskedLMOutput 或一個 tf.Tensor 的元組(如果傳遞了 return_dict=False 或當 config.return_dict=False 時),根據配置(RoFormerConfig)和輸入,包含各種元素。

  • loss (tf.Tensor of shape (n,), 可選, 其中 n 是非掩碼標籤的數量,當提供 labels 時返回) — 掩碼語言模型 (MLM) 損失。

  • logits (tf.Tensor of shape (batch_size, sequence_length, config.vocab_size)) — 語言模型頭部的預測分數(SoftMax 之前每個詞彙標記的分數)。

  • hidden_states (tuple(tf.Tensor), 可選, 當傳遞 output_hidden_states=Trueconfig.output_hidden_states=True 時返回) — tf.Tensor 的元組(一個用於嵌入層的輸出 + 一個用於每層的輸出),形狀為 (batch_size, sequence_length, hidden_size)

    模型在每個層輸出的隱藏狀態加上初始嵌入輸出。

  • attentions (tuple(tf.Tensor), 可選, 當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — tf.Tensor 的元組(每層一個),形狀為 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

TFRoFormerForMaskedLM 的 forward 方法,重寫了 __call__ 特殊方法。

雖然前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> from transformers import AutoTokenizer, TFRoFormerForMaskedLM
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> model = TFRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base")

>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="tf")
>>> logits = model(**inputs).logits

>>> # retrieve index of [MASK]
>>> mask_token_index = tf.where((inputs.input_ids == tokenizer.mask_token_id)[0])
>>> selected_logits = tf.gather_nd(logits[0], indices=mask_token_index)

>>> predicted_token_id = tf.math.argmax(selected_logits, axis=-1)
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="tf")["input_ids"]
>>> # mask labels of non-[MASK] tokens
>>> labels = tf.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)

>>> outputs = model(**inputs, labels=labels)

TFRoFormerForCausalLM

class transformers.TFRoFormerForCausalLM

< >

( config: RoFormerConfig *inputs **kwargs )

引數

  • config (RoFormerConfig) — 模型配置類,包含模型的所有引數。使用配置檔案初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。

帶有 `language modeling` 頭的 RoFormer 模型,用於 CLM 微調。

該模型繼承自 TFPreTrainedModel。請檢視超類文件以瞭解庫為所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭部等)。

該模型也是一個 keras.Model 子類。可以像常規的 TF 2.0 Keras 模型一樣使用它,並參考 TF 2.0 文件瞭解所有與一般用法和行為相關的事項。

transformers 中的 TensorFlow 模型和層接受兩種輸入格式

  • 所有輸入作為關鍵字引數(如 PyTorch 模型),或
  • 所有輸入作為第一個位置引數中的列表、元組或字典。

支援第二種格式的原因是,Keras 方法在將輸入傳遞給模型和層時更喜歡這種格式。由於這種支援,當使用像 model.fit() 這樣的方法時,事情應該會“自然而然”地為你工作——只需以 model.fit() 支援的任何格式傳遞你的輸入和標籤!然而,如果你想在 Keras 方法(如 fit()predict())之外使用第二種格式,例如在使用 Keras Functional API 建立自己的層或模型時,有三種可能性可以用來將所有輸入張量收集到第一個位置引數中

  • 只有一個 input_ids 的單個張量,沒有其他:model(input_ids)
  • 長度可變的列表,包含一個或多個輸入張量,按文件字串中給出的順序:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 一個字典,其中包含一個或多個與文件字串中給出的輸入名稱關聯的輸入張量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

請注意,當使用子類化建立模型和層時,您無需擔心這些問題,因為您可以像呼叫任何其他 Python 函式一樣傳遞輸入!

呼叫

< >

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) transformers.modeling_tf_outputs.TFCausalLMOutputtuple(tf.Tensor)

返回

transformers.modeling_tf_outputs.TFCausalLMOutputtuple(tf.Tensor)

一個 transformers.modeling_tf_outputs.TFCausalLMOutput 或一個 tf.Tensor 的元組(如果傳遞了 return_dict=False 或當 config.return_dict=False 時),根據配置(RoFormerConfig)和輸入,包含各種元素。

  • loss (形狀為(n,)tf.Tensor可選,其中n是非掩碼標籤的數量,當提供了labels時返回) — 語言建模損失(用於下一標記預測)。

  • logits (tf.Tensor of shape (batch_size, sequence_length, config.vocab_size)) — 語言模型頭部的預測分數(SoftMax 之前每個詞彙標記的分數)。

  • hidden_states (tuple(tf.Tensor), 可選, 當傳遞 output_hidden_states=Trueconfig.output_hidden_states=True 時返回) — tf.Tensor 的元組(一個用於嵌入層的輸出 + 一個用於每層的輸出),形狀為 (batch_size, sequence_length, hidden_size)

    模型在每個層輸出的隱藏狀態加上初始嵌入輸出。

  • attentions (tuple(tf.Tensor), 可選, 當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — tf.Tensor 的元組(每層一個),形狀為 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

labels (tf.Tensornp.ndarray,形狀為 (batch_size, sequence_length), 可選): 用於計算交叉熵分類損失的標籤。索引應在 [0, ..., config.vocab_size - 1] 範圍內。

示例

>>> from transformers import AutoTokenizer, TFRoFormerForCausalLM
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> model = TFRoFormerForCausalLM.from_pretrained("junnyu/roformer_chinese_base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)
>>> logits = outputs.logits

TFRoFormerForSequenceClassification

class transformers.TFRoFormerForSequenceClassification

< >

( config: RoFormerConfig *inputs **kwargs )

引數

  • config (RoFormerConfig) — 模型配置類,包含模型的所有引數。使用配置檔案初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。

RoFormer 模型 Transformer,頂部帶有序列分類/迴歸頭,例如用於 GLUE 任務。

該模型繼承自 TFPreTrainedModel。請檢視超類文件以瞭解庫為所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭部等)。

該模型也是一個 keras.Model 子類。可以像常規的 TF 2.0 Keras 模型一樣使用它,並參考 TF 2.0 文件瞭解所有與一般用法和行為相關的事項。

transformers 中的 TensorFlow 模型和層接受兩種輸入格式

  • 所有輸入作為關鍵字引數(如 PyTorch 模型),或
  • 所有輸入作為第一個位置引數中的列表、元組或字典。

支援第二種格式的原因是,Keras 方法在將輸入傳遞給模型和層時更喜歡這種格式。由於這種支援,當使用像 model.fit() 這樣的方法時,事情應該會“自然而然”地為你工作——只需以 model.fit() 支援的任何格式傳遞你的輸入和標籤!然而,如果你想在 Keras 方法(如 fit()predict())之外使用第二種格式,例如在使用 Keras Functional API 建立自己的層或模型時,有三種可能性可以用來將所有輸入張量收集到第一個位置引數中

  • 只有一個 input_ids 的單個張量,沒有其他:model(input_ids)
  • 長度可變的列表,包含一個或多個輸入張量,按文件字串中給出的順序:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 一個字典,其中包含一個或多個與文件字串中給出的輸入名稱關聯的輸入張量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

請注意,當使用子類化建立模型和層時,您無需擔心這些問題,因為您可以像呼叫任何其他 Python 函式一樣傳遞輸入!

呼叫

< >

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) transformers.modeling_tf_outputs.TFSequenceClassifierOutputtuple(tf.Tensor)

引數

  • input_ids (np.ndarray, tf.Tensor, list[tf.Tensor] `dict[str, tf.Tensor]dict[str, np.ndarray],每個樣本必須具有形狀 (batch_size, sequence_length)) — 詞彙表中輸入序列詞元的索引。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.call()PreTrainedTokenizer.encode()

    什麼是輸入 ID?

  • attention_mask (np.ndarraytf.Tensor,形狀為 (batch_size, sequence_length), 可選) — 用於避免對填充詞元索引執行注意力的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示詞元未被遮蓋
    • 0 表示詞元被遮蓋

    什麼是注意力掩碼?

  • token_type_ids (np.ndarraytf.Tensor,形狀為 (batch_size, sequence_length), 可選) — 段詞元索引,用於指示輸入的第一和第二部分。索引在 [0, 1] 中選擇:

    • 0 對應於 *句子 A* 的詞元,
    • 1 對應於 *句子 B* 的詞元。

    什麼是詞元型別 ID?

  • head_mask (np.ndarraytf.Tensor,形狀為 (num_heads,)(num_layers, num_heads), 可選) — 用於置零自注意力模組中選定頭的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示頭未被遮蓋
    • 0 表示頭被遮蓋
  • inputs_embeds (np.ndarraytf.Tensor,形狀為 (batch_size, sequence_length, hidden_size), 可選) — 可選地,你可以不傳遞 input_ids,而是選擇直接傳遞嵌入式表示。如果你想比模型內部的嵌入查詢矩陣更好地控制如何將 input_ids 索引轉換為相關聯的向量,這會很有用。
  • output_attentions (bool, 可選) — 是否返回所有注意力層的注意力張量。更多細節請參閱返回張量下的 attentions。此引數只能在 Eager 模式下使用,在圖模式下將使用配置中的值。
  • output_hidden_states (bool, 可選) — 是否返回所有層的隱藏狀態。更多細節請參閱返回張量下的 hidden_states。此引數只能在 Eager 模式下使用,在圖模式下將使用配置中的值。
  • return_dict (bool, 可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。此引數可以在 Eager 模式下使用,在圖模式下該值將始終設定為 True。
  • training (bool, 可選, 預設為 `False`) — 是否以訓練模式使用模型(一些模組如 dropout 模組在訓練和評估之間有不同的行為)。
  • labels (tf.Tensornp.ndarray,形狀為 (batch_size,), 可選) — 用於計算序列分類/迴歸損失的標籤。索引應在 [0, ..., config.num_labels - 1] 範圍內。如果 config.num_labels == 1,則計算迴歸損失(均方損失),如果 config.num_labels > 1,則計算分類損失(交叉熵)。

返回

transformers.modeling_tf_outputs.TFSequenceClassifierOutputtuple(tf.Tensor)

一個 transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或一個 tf.Tensor 的元組(如果傳遞了 return_dict=False 或當 config.return_dict=False 時),根據配置(RoFormerConfig)和輸入,包含各種元素。

  • loss (tf.Tensor,形狀為 (batch_size, )可選,當提供 labels 時返回) — 分類損失(如果 config.num_labels==1,則為迴歸損失)。

  • logits (tf.Tensor,形狀為 (batch_size, config.num_labels)) — 分類(或迴歸,如果 config.num_labels==1)分數(SoftMax 之前)。

  • hidden_states (tuple(tf.Tensor), 可選, 當傳遞 output_hidden_states=Trueconfig.output_hidden_states=True 時返回) — tf.Tensor 的元組(一個用於嵌入層的輸出 + 一個用於每層的輸出),形狀為 (batch_size, sequence_length, hidden_size)

    模型在每個層輸出的隱藏狀態加上初始嵌入輸出。

  • attentions (tuple(tf.Tensor), 可選, 當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — tf.Tensor 的元組(每層一個),形狀為 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

TFRoFormerForSequenceClassification 的 forward 方法,重寫了 __call__ 特殊方法。

雖然前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> from transformers import AutoTokenizer, TFRoFormerForSequenceClassification
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> model = TFRoFormerForSequenceClassification.from_pretrained("junnyu/roformer_chinese_base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")

>>> logits = model(**inputs).logits

>>> predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0])
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = TFRoFormerForSequenceClassification.from_pretrained("junnyu/roformer_chinese_base", num_labels=num_labels)

>>> labels = tf.constant(1)
>>> loss = model(**inputs, labels=labels).loss

TFRoFormerForMultipleChoice

class transformers.TFRoFormerForMultipleChoice

< >

( config: RoFormerConfig *inputs **kwargs )

引數

  • config (RoFormerConfig) — 模型配置類,包含模型的所有引數。使用配置檔案初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。

帶有選擇題分類頭的 RoFormer 模型(在池化輸出之上有一個線性層和一個 softmax 層),例如用於 RocStories/SWAG 任務。

該模型繼承自 TFPreTrainedModel。請檢視超類文件以瞭解庫為所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭部等)。

該模型也是一個 keras.Model 子類。可以像常規的 TF 2.0 Keras 模型一樣使用它,並參考 TF 2.0 文件瞭解所有與一般用法和行為相關的事項。

transformers 中的 TensorFlow 模型和層接受兩種輸入格式

  • 所有輸入作為關鍵字引數(如 PyTorch 模型),或
  • 所有輸入作為第一個位置引數中的列表、元組或字典。

支援第二種格式的原因是,Keras 方法在將輸入傳遞給模型和層時更喜歡這種格式。由於這種支援,當使用像 model.fit() 這樣的方法時,事情應該會“自然而然”地為你工作——只需以 model.fit() 支援的任何格式傳遞你的輸入和標籤!然而,如果你想在 Keras 方法(如 fit()predict())之外使用第二種格式,例如在使用 Keras Functional API 建立自己的層或模型時,有三種可能性可以用來將所有輸入張量收集到第一個位置引數中

  • 只有一個 input_ids 的單個張量,沒有其他:model(input_ids)
  • 長度可變的列表,包含一個或多個輸入張量,按文件字串中給出的順序:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 一個字典,其中包含一個或多個與文件字串中給出的輸入名稱關聯的輸入張量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

請注意,當使用子類化建立模型和層時,您無需擔心這些問題,因為您可以像呼叫任何其他 Python 函式一樣傳遞輸入!

呼叫

< >

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) transformers.modeling_tf_outputs.TFMultipleChoiceModelOutputtuple(tf.Tensor)

引數

  • input_ids (np.ndarray, tf.Tensor, list[tf.Tensor] `dict[str, tf.Tensor]dict[str, np.ndarray],每個樣本必須具有形狀 (batch_size, num_choices, sequence_length)) — 詞彙表中輸入序列詞元的索引。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.call()PreTrainedTokenizer.encode()

    什麼是輸入 ID?

  • attention_mask (np.ndarraytf.Tensor,形狀為 (batch_size, num_choices, sequence_length), 可選) — 用於避免對填充詞元索引執行注意力的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示詞元未被遮蓋
    • 0 表示詞元被遮蓋

    什麼是注意力掩碼?

  • token_type_ids (np.ndarraytf.Tensor,形狀為 (batch_size, num_choices, sequence_length), 可選) — 段詞元索引,用於指示輸入的第一和第二部分。索引在 [0, 1] 中選擇:

    • 0 對應於 *句子 A* 的詞元,
    • 1 對應於 *句子 B* 的詞元。

    什麼是詞元型別 ID?

  • head_mask (np.ndarraytf.Tensor,形狀為 (num_heads,)(num_layers, num_heads), 可選) — 用於置零自注意力模組中選定頭的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示頭未被遮蓋
    • 0 表示頭被遮蓋
  • inputs_embeds (np.ndarraytf.Tensor,形狀為 (batch_size, num_choices, sequence_length, hidden_size), 可選) — 可選地,你可以不傳遞 input_ids,而是選擇直接傳遞嵌入式表示。如果你想比模型內部的嵌入查詢矩陣更好地控制如何將 input_ids 索引轉換為相關聯的向量,這會很有用。
  • output_attentions (bool, 可選) — 是否返回所有注意力層的注意力張量。更多細節請參閱返回張量下的 attentions。此引數只能在 Eager 模式下使用,在圖模式下將使用配置中的值。
  • output_hidden_states (bool, 可選) — 是否返回所有層的隱藏狀態。更多細節請參閱返回張量下的 hidden_states。此引數只能在 Eager 模式下使用,在圖模式下將使用配置中的值。
  • return_dict (bool, 可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。此引數可在即時模式(eager mode)下使用,在圖模式(graph mode)下,該值將始終設定為 True。
  • training (bool, 可選, 預設為 `False`) — 是否將模型用於訓練模式(某些模組如 dropout 模組在訓練和評估之間有不同的行為)。
  • labels (tf.Tensornp.ndarray,形狀為 (batch_size,), 可選) — 用於計算多項選擇分類損失的標籤。索引應在 [0, ..., num_choices] 範圍內,其中 num_choices 是輸入張量第二個維度的大小。(參見上面的 input_ids

返回

transformers.modeling_tf_outputs.TFMultipleChoiceModelOutputtuple(tf.Tensor)

一個 transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput 或一個 tf.Tensor 的元組(如果傳遞了 return_dict=False 或當 config.return_dict=False 時),根據配置(RoFormerConfig)和輸入,包含各種元素。

  • loss (tf.Tensor,形狀為 (batch_size, )可選,當提供 labels 時返回) — 分類損失。

  • logits (tf.Tensor,形狀為 (batch_size, num_choices)) — num_choices 是輸入張量的第二維。(參見上面的 input_ids)。

    分類分數(SoftMax 之前)。

  • hidden_states (tuple(tf.Tensor), 可選, 當傳遞 output_hidden_states=Trueconfig.output_hidden_states=True 時返回) — tf.Tensor 的元組(一個用於嵌入層的輸出 + 一個用於每層的輸出),形狀為 (batch_size, sequence_length, hidden_size)

    模型在每個層輸出的隱藏狀態加上初始嵌入輸出。

  • attentions (tuple(tf.Tensor), 可選, 當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — tf.Tensor 的元組(每層一個),形狀為 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

TFRoFormerForMultipleChoice 的前向方法覆蓋了 __call__ 特殊方法。

雖然前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> from transformers import AutoTokenizer, TFRoFormerForMultipleChoice
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> model = TFRoFormerForMultipleChoice.from_pretrained("junnyu/roformer_chinese_base")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."

>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="tf", padding=True)
>>> inputs = {k: tf.expand_dims(v, 0) for k, v in encoding.items()}
>>> outputs = model(inputs)  # batch size is 1

>>> # the linear classifier still needs to be trained
>>> logits = outputs.logits

TFRoFormerForTokenClassification

class transformers.TFRoFormerForTokenClassification

< >

( config: RoFormerConfig *inputs **kwargs )

引數

  • config (RoFormerConfig) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法以載入模型權重。

帶有詞元分類頭的 RoFormer 模型(在隱藏狀態輸出之上加一個線性層),例如用於命名實體識別(NER)任務。

該模型繼承自 TFPreTrainedModel。請檢視超類文件以瞭解庫為所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭部等)。

該模型也是一個 keras.Model 子類。可以像常規的 TF 2.0 Keras 模型一樣使用它,並參考 TF 2.0 文件瞭解所有與一般用法和行為相關的事項。

transformers 中的 TensorFlow 模型和層接受兩種輸入格式

  • 所有輸入作為關鍵字引數(如 PyTorch 模型),或
  • 所有輸入作為第一個位置引數中的列表、元組或字典。

支援第二種格式的原因是,Keras 方法在將輸入傳遞給模型和層時更喜歡這種格式。由於這種支援,當使用像 model.fit() 這樣的方法時,事情應該會“自然而然”地為你工作——只需以 model.fit() 支援的任何格式傳遞你的輸入和標籤!然而,如果你想在 Keras 方法(如 fit()predict())之外使用第二種格式,例如在使用 Keras Functional API 建立自己的層或模型時,有三種可能性可以用來將所有輸入張量收集到第一個位置引數中

  • 只有一個 input_ids 的單個張量,沒有其他:model(input_ids)
  • 長度可變的列表,包含一個或多個輸入張量,按文件字串中給出的順序:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 一個字典,其中包含一個或多個與文件字串中給出的輸入名稱關聯的輸入張量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

請注意,當使用子類化建立模型和層時,您無需擔心這些問題,因為您可以像呼叫任何其他 Python 函式一樣傳遞輸入!

呼叫

< >

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) transformers.modeling_tf_outputs.TFTokenClassifierOutputtuple(tf.Tensor)

引數

  • input_ids (np.ndarraytf.Tensorlist[tf.Tensor]、`dict[str, tf.Tensor]dict[str, np.ndarray],每個示例的形狀必須為 (batch_size, sequence_length)) — 詞彙表中輸入序列詞元的索引。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.call()PreTrainedTokenizer.encode()

    什麼是 input ID?

  • attention_mask (np.ndarraytf.Tensor,形狀為 (batch_size, sequence_length), 可選) — 用於避免對填充詞元索引執行注意力計算的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示詞元未被遮蔽
    • 0 表示詞元被遮蔽

    什麼是注意力掩碼?

  • token_type_ids (np.ndarraytf.Tensor,形狀為 (batch_size, sequence_length), 可選) — 用於指示輸入的第一和第二部分的片段詞元索引。索引在 [0, 1] 中選擇:

    • 0 對應於*句子 A* 的詞元,
    • 1 對應於*句子 B* 的詞元。

    什麼是詞元型別 ID?

  • head_mask (np.ndarraytf.Tensor,形狀為 (num_heads,)(num_layers, num_heads), 可選) — 用於置零自注意力模組中選定頭的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示頭未被遮蔽
    • 0 表示頭被遮蔽
  • inputs_embeds (np.ndarraytf.Tensor,形狀為 (batch_size, sequence_length, hidden_size), 可選) — 可以選擇直接傳遞嵌入表示,而不是傳遞 input_ids。如果你想比模型內部嵌入查詢矩陣更多地控制如何將 input_ids 索引轉換為關聯向量,這會很有用。
  • output_attentions (bool, 可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的 attentions。此引數只能在即時模式(eager mode)下使用,在圖模式(graph mode)下將使用配置中的值。
  • output_hidden_states (bool, 可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的 hidden_states。此引數只能在即時模式(eager mode)下使用,在圖模式(graph mode)下將使用配置中的值。
  • return_dict (bool, 可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。此引數可在即時模式(eager mode)下使用,在圖模式(graph mode)下,該值將始終設定為 True。
  • training (bool, 可選, 預設為 `False`) — 是否將模型用於訓練模式(某些模組如 dropout 模組在訓練和評估之間有不同的行為)。
  • labels (tf.Tensornp.ndarray,形狀為 (batch_size, sequence_length), 可選) — 用於計算詞元分類損失的標籤。索引應在 [0, ..., config.num_labels - 1] 範圍內。

返回

transformers.modeling_tf_outputs.TFTokenClassifierOutputtuple(tf.Tensor)

一個 transformers.modeling_tf_outputs.TFTokenClassifierOutput 或一個 tf.Tensor 的元組(如果傳遞了 return_dict=False 或當 config.return_dict=False 時),根據配置(RoFormerConfig)和輸入,包含各種元素。

  • loss (tf.Tensor,形狀為 (n,)可選,其中 n 是未被掩蓋的標籤數量,當提供 labels 時返回) — 分類損失。

  • logits (tf.Tensor,形狀為 (batch_size, sequence_length, config.num_labels)) — 分類分數(SoftMax 之前)。

  • hidden_states (tuple(tf.Tensor), 可選, 當傳遞 output_hidden_states=Trueconfig.output_hidden_states=True 時返回) — tf.Tensor 的元組(一個用於嵌入層的輸出 + 一個用於每層的輸出),形狀為 (batch_size, sequence_length, hidden_size)

    模型在每個層輸出的隱藏狀態加上初始嵌入輸出。

  • attentions (tuple(tf.Tensor), 可選, 當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — tf.Tensor 的元組(每層一個),形狀為 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

TFRoFormerForTokenClassification 的前向方法覆蓋了 __call__ 特殊方法。

雖然前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> from transformers import AutoTokenizer, TFRoFormerForTokenClassification
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> model = TFRoFormerForTokenClassification.from_pretrained("junnyu/roformer_chinese_base")

>>> inputs = tokenizer(
...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="tf"
... )

>>> logits = model(**inputs).logits
>>> predicted_token_class_ids = tf.math.argmax(logits, axis=-1)

>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t] for t in predicted_token_class_ids[0].numpy().tolist()]
>>> labels = predicted_token_class_ids
>>> loss = tf.math.reduce_mean(model(**inputs, labels=labels).loss)

TFRoFormerForQuestionAnswering

class transformers.TFRoFormerForQuestionAnswering

< >

( config: RoFormerConfig *inputs **kwargs )

引數

  • config (RoFormerConfig) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法以載入模型權重。

RoFormer 模型,頂部帶有一個片段分類頭,用於像 SQuAD 這樣的抽取式問答任務(在隱藏狀態輸出之上加一個線性層,以計算 `span start logits` 和 `span end logits`)。

該模型繼承自 TFPreTrainedModel。請檢視超類文件以瞭解庫為所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭部等)。

該模型也是一個 keras.Model 子類。可以像常規的 TF 2.0 Keras 模型一樣使用它,並參考 TF 2.0 文件瞭解所有與一般用法和行為相關的事項。

transformers 中的 TensorFlow 模型和層接受兩種輸入格式

  • 所有輸入作為關鍵字引數(如 PyTorch 模型),或
  • 所有輸入作為第一個位置引數中的列表、元組或字典。

支援第二種格式的原因是,Keras 方法在將輸入傳遞給模型和層時更喜歡這種格式。由於這種支援,當使用像 model.fit() 這樣的方法時,事情應該會“自然而然”地為你工作——只需以 model.fit() 支援的任何格式傳遞你的輸入和標籤!然而,如果你想在 Keras 方法(如 fit()predict())之外使用第二種格式,例如在使用 Keras Functional API 建立自己的層或模型時,有三種可能性可以用來將所有輸入張量收集到第一個位置引數中

  • 只有一個 input_ids 的單個張量,沒有其他:model(input_ids)
  • 長度可變的列表,包含一個或多個輸入張量,按文件字串中給出的順序:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 一個字典,其中包含一個或多個與文件字串中給出的輸入名稱關聯的輸入張量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

請注意,當使用子類化建立模型和層時,您無需擔心這些問題,因為您可以像呼叫任何其他 Python 函式一樣傳遞輸入!

呼叫

< >

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None start_positions: np.ndarray | tf.Tensor | None = None end_positions: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutputtuple(tf.Tensor)

引數

  • input_ids (np.ndarraytf.Tensorlist[tf.Tensor]、`dict[str, tf.Tensor]dict[str, np.ndarray],每個示例的形狀必須為 (batch_size, sequence_length)) — 詞彙表中輸入序列詞元的索引。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.call()PreTrainedTokenizer.encode()

    什麼是 input ID?

  • attention_mask (np.ndarraytf.Tensor,形狀為 (batch_size, sequence_length), 可選) — 用於避免對填充詞元索引執行注意力計算的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示詞元未被遮蔽
    • 0 表示詞元被遮蔽

    什麼是注意力掩碼?

  • token_type_ids (np.ndarraytf.Tensor,形狀為 (batch_size, sequence_length), 可選) — 用於指示輸入的第一和第二部分的片段詞元索引。索引在 [0, 1] 中選擇:

    • 0 對應於*句子 A* 的詞元,
    • 1 對應於*句子 B* 的詞元。

    什麼是詞元型別 ID?

  • head_mask (np.ndarraytf.Tensor,形狀為 (num_heads,)(num_layers, num_heads), 可選) — 用於置零自注意力模組中選定頭的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示頭未被遮蔽
    • 0 表示頭被遮蔽
  • inputs_embeds (np.ndarraytf.Tensor,形狀為 (batch_size, sequence_length, hidden_size), 可選) — 可以選擇直接傳遞嵌入表示,而不是傳遞 input_ids。如果你想比模型內部嵌入查詢矩陣更多地控制如何將 input_ids 索引轉換為關聯向量,這會很有用。
  • output_attentions (bool, 可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的 attentions。此引數只能在即時模式(eager mode)下使用,在圖模式(graph mode)下將使用配置中的值。
  • output_hidden_states (bool, 可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的 hidden_states。此引數只能在即時模式(eager mode)下使用,在圖模式(graph mode)下將使用配置中的值。
  • return_dict (bool, 可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。此引數可在即時模式(eager mode)下使用,在圖模式(graph mode)下,該值將始終設定為 True。
  • training (bool, 可選, 預設為 `False`) — 是否將模型用於訓練模式(某些模組如 dropout 模組在訓練和評估之間有不同的行為)。
  • start_positions (tf.Tensornp.ndarray,形狀為 (batch_size,), 可選) — 標記片段開始位置(索引)的標籤,用於計算詞元分類損失。位置被限制在序列長度(sequence_length)內。序列之外的位置在計算損失時不予考慮。
  • end_positions (tf.Tensornp.ndarray,形狀為 (batch_size,), 可選) — 標記片段結束位置(索引)的標籤,用於計算詞元分類損失。位置被限制在序列長度(sequence_length)內。序列之外的位置在計算損失時不予考慮。

返回

transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutputtuple(tf.Tensor)

一個 transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput 或一個 tf.Tensor 的元組(如果傳遞了 return_dict=False 或當 config.return_dict=False 時),根據配置(RoFormerConfig)和輸入,包含各種元素。

  • loss (tf.Tensor,形狀為 (batch_size, ), 可選, 當提供了 start_positionsend_positions 時返回) — 總片段抽取損失是起始位置和結束位置的交叉熵損失之和。

  • start_logits (形狀為 (batch_size, sequence_length)tf.Tensor) — 跨度起始分數(SoftMax 之前)。

  • end_logits (形狀為 (batch_size, sequence_length)tf.Tensor) — 跨度結束分數(SoftMax 之前)。

  • hidden_states (tuple(tf.Tensor), 可選, 當傳遞 output_hidden_states=Trueconfig.output_hidden_states=True 時返回) — tf.Tensor 的元組(一個用於嵌入層的輸出 + 一個用於每層的輸出),形狀為 (batch_size, sequence_length, hidden_size)

    模型在每個層輸出的隱藏狀態加上初始嵌入輸出。

  • attentions (tuple(tf.Tensor), 可選, 當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — tf.Tensor 的元組(每層一個),形狀為 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

TFRoFormerForQuestionAnswering 的前向方法覆蓋了 __call__ 特殊方法。

雖然前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> from transformers import AutoTokenizer, TFRoFormerForQuestionAnswering
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> model = TFRoFormerForQuestionAnswering.from_pretrained("junnyu/roformer_chinese_base")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

>>> inputs = tokenizer(question, text, return_tensors="tf")
>>> outputs = model(**inputs)

>>> answer_start_index = int(tf.math.argmax(outputs.start_logits, axis=-1)[0])
>>> answer_end_index = int(tf.math.argmax(outputs.end_logits, axis=-1)[0])

>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> # target is "nice puppet"
>>> target_start_index = tf.constant([14])
>>> target_end_index = tf.constant([15])

>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = tf.math.reduce_mean(outputs.loss)
JAX
隱藏 JAX 內容

FlaxRoFormerModel

class transformers.FlaxRoFormerModel

< >

( config: RoFormerConfig input_shape: tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )

引數

  • config (RoFormerConfig) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法以載入模型權重。
  • dtype (jax.numpy.dtype, 可選, 預設為 jax.numpy.float32) — 計算的資料型別。可以是 jax.numpy.float32jax.numpy.float16 (在 GPU 上) 和 jax.numpy.bfloat16 (在 TPU 上) 中的一種。

    這可用於在 GPU 或 TPU 上啟用混合精度訓練或半精度推理。如果指定,所有計算都將使用給定的 dtype 執行。

    請注意,這僅指定計算的 dtype,不影響模型引數的 dtype。

    如果您希望更改模型引數的 dtype,請參閱 to_fp16()to_bf16()

裸的 RoFormer 模型轉換器,輸出原始的隱藏狀態,沒有任何特定的頭在其之上。

此模型繼承自 FlaxPreTrainedModel。請檢視超類文件,瞭解庫為所有模型實現的通用方法(例如下載、儲存和從 PyTorch 模型轉換權重)。

此模型也是 flax.linen.Module 的子類。請將其用作常規的 Flax linen 模組,並參考 Flax 文件瞭解所有與一般用法和行為相關的事項。

最後,此模型支援固有的 JAX 功能,例如

__call__

< >

( input_ids attention_mask = None token_type_ids = None head_mask = None params: typing.Optional[dict] = None dropout_rng: <function PRNGKey at 0x7effc7ad3a30> = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_flax_outputs.FlaxBaseModelOutputtuple(torch.FloatTensor)

引數

  • input_ids (numpy.ndarray,形狀為 (batch_size, sequence_length)) — 詞彙表中輸入序列詞元的索引。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是 input ID?

  • attention_mask (numpy.ndarray,形狀為 (batch_size, sequence_length), 可選) — 用於避免對填充詞元索引執行注意力計算的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示詞元未被遮蔽
    • 0 表示詞元被遮蔽

    什麼是注意力掩碼?

  • token_type_ids (numpy.ndarray,形狀為 (batch_size, sequence_length), 可選) — 用於指示輸入的第一和第二部分的片段詞元索引。索引在 [0, 1] 中選擇:

    • 0 對應於*句子 A* 的詞元,
    • 1 對應於*句子 B* 的詞元。

    什麼是詞元型別 ID?

  • position_ids (numpy.ndarray,形狀為 (batch_size, sequence_length), 可選) — 每個輸入序列詞元在位置嵌入中的位置索引。在 [0, config.max_position_embeddings - 1] 範圍內選擇。
  • head_mask (numpy.ndarray,形狀為 (batch_size, sequence_length), 可選) -- 用於置零注意力模組中選定頭的掩碼。掩碼值在 [0, 1]` 中選擇:

    • 1 表示頭未被遮蔽
    • 0 表示頭被遮蔽
  • return_dict (bool, 可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。

返回

transformers.modeling_flax_outputs.FlaxBaseModelOutputtuple(torch.FloatTensor)

一個 transformers.modeling_flax_outputs.FlaxBaseModelOutput 或一個 torch.FloatTensor 的元組(如果傳遞了 return_dict=False 或當 config.return_dict=False 時),根據配置(RoFormerConfig)和輸入,包含各種元素。

  • last_hidden_state (形狀為 (batch_size, sequence_length, hidden_size)jnp.ndarray) — 模型最後一層輸出的隱藏狀態序列。

  • hidden_states (tuple(jnp.ndarray), 可選, 當傳遞 output_hidden_states=True 或當 config.output_hidden_states=True 時返回) — jnp.ndarray 的元組(一個是嵌入層的輸出,另一個是每一層的輸出),形狀為 (batch_size, sequence_length, hidden_size)

    模型在每個層輸出的隱藏狀態加上初始嵌入輸出。

  • attentions (tuple(jnp.ndarray), 可選, 當傳遞 output_attentions=True 或當 config.output_attentions=True 時返回) — jnp.ndarray 的元組(每層一個),形狀為 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

FlaxRoFormerPreTrainedModel 的前向方法覆蓋了 __call__ 特殊方法。

雖然前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> from transformers import AutoTokenizer, FlaxRoFormerModel

>>> tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> model = FlaxRoFormerModel.from_pretrained("junnyu/roformer_chinese_base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

FlaxRoFormerForMaskedLM

class transformers.FlaxRoFormerForMaskedLM

< >

( config: RoFormerConfig input_shape: tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )

引數

  • config (RoFormerConfig) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法以載入模型權重。
  • dtype (jax.numpy.dtype, 可選, 預設為 jax.numpy.float32) — 計算的資料型別。可以是 jax.numpy.float32jax.numpy.float16 (在 GPU 上) 和 jax.numpy.bfloat16 (在 TPU 上) 中的一種。

    這可用於在 GPU 或 TPU 上啟用混合精度訓練或半精度推理。如果指定,所有計算都將使用給定的 dtype 執行。

    請注意,這僅指定計算的 dtype,不影響模型引數的 dtype。

    如果您希望更改模型引數的 dtype,請參閱 to_fp16()to_bf16()

帶有 `語言建模` 頭的 RoFormer 模型。

此模型繼承自 FlaxPreTrainedModel。請檢視超類文件,瞭解庫為所有模型實現的通用方法(例如下載、儲存和從 PyTorch 模型轉換權重)。

此模型也是 flax.linen.Module 的子類。請將其用作常規的 Flax linen 模組,並參考 Flax 文件瞭解所有與一般用法和行為相關的事項。

最後,此模型支援固有的 JAX 功能,例如

__call__

< >

( input_ids attention_mask = None token_type_ids = None head_mask = None params: typing.Optional[dict] = None dropout_rng: <function PRNGKey at 0x7effc7ad3a30> = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_flax_outputs.FlaxMaskedLMOutputtuple(torch.FloatTensor)

引數

  • input_ids (numpy.ndarray,形狀為 (batch_size, sequence_length)) — 詞彙表中輸入序列標記的索引。

    索引可以使用 AutoTokenizer 獲得。詳情請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (numpy.ndarray,形狀為 (batch_size, sequence_length)可選) — 掩碼,用於避免在填充標記索引上執行注意力機制。掩碼值在 [0, 1] 中選擇:

    • 1 表示標記未被掩碼
    • 0 表示標記被掩碼

    什麼是注意力掩碼?

  • token_type_ids (numpy.ndarray,形狀為 (batch_size, sequence_length)可選) — 片段標記索引,用於指示輸入的第一部分和第二部分。索引在 [0, 1] 中選擇:

    • 0 對應於 *A 句子* 標記,
    • 1 對應於 *B 句子* 標記。

    什麼是標記型別 ID?

  • position_ids (numpy.ndarray,形狀為 (batch_size, sequence_length)可選) — 位置嵌入中每個輸入序列標記的位置索引。在 [0, config.max_position_embeddings - 1] 範圍內選擇。
  • head_mask (numpy.ndarray,形狀為 (batch_size, sequence_length)可選) -- 用於置零注意力模組中選定頭的掩碼。掩碼值在 [0, 1]` 中選擇:

    • 1 表示頭未被掩碼
    • 0 表示頭被掩碼
  • return_dict (bool可選) — 是否返回 ModelOutput 而不是普通的元組。

返回

transformers.modeling_flax_outputs.FlaxMaskedLMOutputtuple(torch.FloatTensor)

一個 transformers.modeling_flax_outputs.FlaxMaskedLMOutput 或一個 torch.FloatTensor 元組 (如果傳遞了 return_dict=Falseconfig.return_dict=False),包含根據配置 (RoFormerConfig) 和輸入的不同元素。

  • logits (形狀為 (batch_size, sequence_length, config.vocab_size)jnp.ndarray) — 語言建模頭的預測分數(SoftMax 之前每個詞彙 token 的分數)。

  • hidden_states (tuple(jnp.ndarray), 可選, 當傳遞 output_hidden_states=True 或當 config.output_hidden_states=True 時返回) — jnp.ndarray 的元組(一個是嵌入層的輸出,另一個是每一層的輸出),形狀為 (batch_size, sequence_length, hidden_size)

    模型在每個層輸出的隱藏狀態加上初始嵌入輸出。

  • attentions (tuple(jnp.ndarray), 可選, 當傳遞 output_attentions=True 或當 config.output_attentions=True 時返回) — jnp.ndarray 的元組(每層一個),形狀為 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

FlaxRoFormerPreTrainedModel 的前向方法覆蓋了 __call__ 特殊方法。

雖然前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> from transformers import AutoTokenizer, FlaxRoFormerForMaskedLM

>>> tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> model = FlaxRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base")

>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="jax")

>>> outputs = model(**inputs)
>>> logits = outputs.logits

FlaxRoFormerForSequenceClassification

class transformers.FlaxRoFormerForSequenceClassification

< >

( config: RoFormerConfig input_shape: tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )

引數

  • config (RoFormerConfig) — 包含模型所有引數的模型配置類。使用配置檔案初始化不會載入與模型相關的權重,只會載入配置。要載入模型權重,請檢視 from_pretrained() 方法。
  • dtype (jax.numpy.dtype可選,預設為 jax.numpy.float32) — 計算的資料型別。可以是 jax.numpy.float32jax.numpy.float16 (在 GPU 上) 和 jax.numpy.bfloat16 (在 TPU 上) 之一。

    這可用於在 GPU 或 TPU 上啟用混合精度訓練或半精度推理。如果指定,所有計算都將使用給定的 `dtype` 執行。

    請注意,這僅指定計算的 dtype,不影響模型引數的 dtype。

    如果你希望更改模型引數的 dtype,請參閱 to_fp16()to_bf16()

RoFormer 模型,帶有一個序列分類/迴歸頭(即在池化輸出之上加一個線性層),例如用於 GLUE 任務。

此模型繼承自 FlaxPreTrainedModel。請檢視超類文件,瞭解庫為所有模型實現的通用方法(例如下載、儲存和從 PyTorch 模型轉換權重)。

此模型也是 flax.linen.Module 的子類。請將其用作常規的 Flax linen 模組,並參考 Flax 文件瞭解所有與一般用法和行為相關的事項。

最後,此模型支援固有的 JAX 功能,例如

__call__

< >

( input_ids attention_mask = None token_type_ids = None head_mask = None params: typing.Optional[dict] = None dropout_rng: <function PRNGKey at 0x7effc7ad3a30> = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_flax_outputs.FlaxSequenceClassifierOutputtuple(torch.FloatTensor)

引數

  • input_ids (numpy.ndarray,形狀為 (batch_size, sequence_length)) — 詞彙表中輸入序列標記的索引。

    索引可以使用 AutoTokenizer 獲得。詳情請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (numpy.ndarray,形狀為 (batch_size, sequence_length)可選) — 掩碼,用於避免在填充標記索引上執行注意力機制。掩碼值在 [0, 1] 中選擇:

    • 1 表示標記未被掩碼
    • 0 表示標記被掩碼

    什麼是注意力掩碼?

  • token_type_ids (numpy.ndarray,形狀為 (batch_size, sequence_length)可選) — 片段標記索引,用於指示輸入的第一部分和第二部分。索引在 [0, 1] 中選擇:

    • 0 對應於 *A 句子* 標記,
    • 1 對應於 *B 句子* 標記。

    什麼是標記型別 ID?

  • position_ids (numpy.ndarray,形狀為 (batch_size, sequence_length)可選) — 位置嵌入中每個輸入序列標記的位置索引。在 [0, config.max_position_embeddings - 1] 範圍內選擇。
  • head_mask (numpy.ndarray,形狀為 (batch_size, sequence_length)可選) -- 用於置零注意力模組中選定頭的掩碼。掩碼值在 [0, 1]` 中選擇:

    • 1 表示頭未被掩碼
    • 0 表示頭被掩碼
  • return_dict (bool可選) — 是否返回 ModelOutput 而不是普通的元組。

返回

transformers.modeling_flax_outputs.FlaxSequenceClassifierOutputtuple(torch.FloatTensor)

一個 transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput 或一個 torch.FloatTensor 元組 (如果傳遞了 return_dict=Falseconfig.return_dict=False),包含根據配置 (RoFormerConfig) 和輸入的不同元素。

  • logits (形狀為 (batch_size, config.num_labels)jnp.ndarray) — 分類(如果 config.num_labels==1,則為迴歸)分數(SoftMax 之前)。

  • hidden_states (tuple(jnp.ndarray), 可選, 當傳遞 output_hidden_states=True 或當 config.output_hidden_states=True 時返回) — jnp.ndarray 的元組(一個是嵌入層的輸出,另一個是每一層的輸出),形狀為 (batch_size, sequence_length, hidden_size)

    模型在每個層輸出的隱藏狀態加上初始嵌入輸出。

  • attentions (tuple(jnp.ndarray), 可選, 當傳遞 output_attentions=True 或當 config.output_attentions=True 時返回) — jnp.ndarray 的元組(每層一個),形狀為 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

FlaxRoFormerPreTrainedModel 的前向方法覆蓋了 __call__ 特殊方法。

雖然前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> from transformers import AutoTokenizer, FlaxRoFormerForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> model = FlaxRoFormerForSequenceClassification.from_pretrained("junnyu/roformer_chinese_base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")

>>> outputs = model(**inputs)
>>> logits = outputs.logits

FlaxRoFormerForMultipleChoice

class transformers.FlaxRoFormerForMultipleChoice

< >

( config: RoFormerConfig input_shape: tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )

引數

  • config (RoFormerConfig) — 包含模型所有引數的模型配置類。使用配置檔案初始化不會載入與模型相關的權重,只會載入配置。要載入模型權重,請檢視 from_pretrained() 方法。
  • dtype (jax.numpy.dtype可選,預設為 jax.numpy.float32) — 計算的資料型別。可以是 jax.numpy.float32jax.numpy.float16 (在 GPU 上) 和 jax.numpy.bfloat16 (在 TPU 上) 之一。

    這可用於在 GPU 或 TPU 上啟用混合精度訓練或半精度推理。如果指定,所有計算都將使用給定的 `dtype` 執行。

    請注意,這僅指定計算的 dtype,不影響模型引數的 dtype。

    如果你希望更改模型引數的 dtype,請參閱 to_fp16()to_bf16()

帶有選擇題分類頭的 RoFormer 模型(在池化輸出之上有一個線性層和一個 softmax 層),例如用於 RocStories/SWAG 任務。

此模型繼承自 FlaxPreTrainedModel。請檢視超類文件,瞭解庫為所有模型實現的通用方法(例如下載、儲存和從 PyTorch 模型轉換權重)。

此模型也是 flax.linen.Module 的子類。請將其用作常規的 Flax linen 模組,並參考 Flax 文件瞭解所有與一般用法和行為相關的事項。

最後,此模型支援固有的 JAX 功能,例如

__call__

< >

( input_ids attention_mask = None token_type_ids = None head_mask = None params: typing.Optional[dict] = None dropout_rng: <function PRNGKey at 0x7effc7ad3a30> = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutputtuple(torch.FloatTensor)

引數

  • input_ids (numpy.ndarray,形狀為 (batch_size, num_choices, sequence_length)) — 詞彙表中輸入序列標記的索引。

    索引可以使用 AutoTokenizer 獲得。詳情請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (numpy.ndarray,形狀為 (batch_size, num_choices, sequence_length)可選) — 掩碼,用於避免在填充標記索引上執行注意力機制。掩碼值在 [0, 1] 中選擇:

    • 1 表示標記未被掩碼
    • 0 表示標記被掩碼

    什麼是注意力掩碼?

  • token_type_ids (numpy.ndarray,形狀為 (batch_size, num_choices, sequence_length)可選) — 片段標記索引,用於指示輸入的第一部分和第二部分。索引在 [0, 1] 中選擇:

    • 0 對應於 *A 句子* 標記,
    • 1 對應於 *B 句子* 標記。

    什麼是標記型別 ID?

  • position_ids (numpy.ndarray,形狀為 (batch_size, num_choices, sequence_length)可選) — 位置嵌入中每個輸入序列標記的位置索引。在 [0, config.max_position_embeddings - 1] 範圍內選擇。
  • head_mask (numpy.ndarray,形狀為 (batch_size, num_choices, sequence_length)可選) -- 用於置零注意力模組中選定頭的掩碼。掩碼值在 [0, 1]` 中選擇:

    • 1 表示頭未被掩碼
    • 0 表示頭被掩碼
  • return_dict (bool可選) — 是否返回 ModelOutput 而不是普通的元組。

返回

transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutputtuple(torch.FloatTensor)

一個 transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput 或一個 torch.FloatTensor 元組 (如果傳遞了 return_dict=Falseconfig.return_dict=False),包含根據配置 (RoFormerConfig) 和輸入的不同元素。

  • logits (形狀為 (batch_size, num_choices)jnp.ndarray) — num_choices 是輸入張量的第二個維度。(請參閱上面的 input_ids)。

    分類分數(SoftMax 之前)。

  • hidden_states (tuple(jnp.ndarray), 可選, 當傳遞 output_hidden_states=True 或當 config.output_hidden_states=True 時返回) — jnp.ndarray 的元組(一個是嵌入層的輸出,另一個是每一層的輸出),形狀為 (batch_size, sequence_length, hidden_size)

    模型在每個層輸出的隱藏狀態加上初始嵌入輸出。

  • attentions (tuple(jnp.ndarray), 可選, 當傳遞 output_attentions=True 或當 config.output_attentions=True 時返回) — jnp.ndarray 的元組(每層一個),形狀為 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

FlaxRoFormerPreTrainedModel 的前向方法覆蓋了 __call__ 特殊方法。

雖然前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> from transformers import AutoTokenizer, FlaxRoFormerForMultipleChoice

>>> tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> model = FlaxRoFormerForMultipleChoice.from_pretrained("junnyu/roformer_chinese_base")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."

>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="jax", padding=True)
>>> outputs = model(**{k: v[None, :] for k, v in encoding.items()})

>>> logits = outputs.logits

FlaxRoFormerForTokenClassification

class transformers.FlaxRoFormerForTokenClassification

< >

( config: RoFormerConfig input_shape: tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )

引數

  • config (RoFormerConfig) — 包含模型所有引數的模型配置類。使用配置檔案初始化不會載入與模型相關的權重,只會載入配置。要載入模型權重,請檢視 from_pretrained() 方法。
  • dtype (jax.numpy.dtype可選,預設為 jax.numpy.float32) — 計算的資料型別。可以是 jax.numpy.float32jax.numpy.float16 (在 GPU 上) 和 jax.numpy.bfloat16 (在 TPU 上) 之一。

    這可用於在 GPU 或 TPU 上啟用混合精度訓練或半精度推理。如果指定,所有計算都將使用給定的 `dtype` 執行。

    請注意,這僅指定計算的 dtype,不影響模型引數的 dtype。

    如果你希望更改模型引數的 dtype,請參閱 to_fp16()to_bf16()

帶有詞元分類頭的 RoFormer 模型(在隱藏狀態輸出之上加一個線性層),例如用於命名實體識別(NER)任務。

此模型繼承自 FlaxPreTrainedModel。請檢視超類文件,瞭解庫為所有模型實現的通用方法(例如下載、儲存和從 PyTorch 模型轉換權重)。

此模型也是 flax.linen.Module 的子類。請將其用作常規的 Flax linen 模組,並參考 Flax 文件瞭解所有與一般用法和行為相關的事項。

最後,此模型支援固有的 JAX 功能,例如

__call__

< >

( input_ids attention_mask = None token_type_ids = None head_mask = None params: typing.Optional[dict] = None dropout_rng: <function PRNGKey at 0x7effc7ad3a30> = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_flax_outputs.FlaxTokenClassifierOutputtuple(torch.FloatTensor)

引數

  • input_ids (numpy.ndarray,形狀為 (batch_size, sequence_length)) — 詞彙表中輸入序列標記的索引。

    索引可以使用 AutoTokenizer 獲得。詳情請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (numpy.ndarray,形狀為 (batch_size, sequence_length)可選) — 掩碼,用於避免在填充標記索引上執行注意力機制。掩碼值在 [0, 1] 中選擇:

    • 1 表示標記未被掩碼
    • 0 表示標記被掩碼

    什麼是注意力掩碼?

  • token_type_ids (numpy.ndarray,形狀為 (batch_size, sequence_length)可選) — 片段標記索引,用於指示輸入的第一部分和第二部分。索引在 [0, 1] 中選擇:

    • 0 對應於 *A 句子* 標記,
    • 1 對應於 *B 句子* 標記。

    什麼是標記型別 ID?

  • position_ids (numpy.ndarray,形狀為 (batch_size, sequence_length)可選) — 位置嵌入中每個輸入序列標記的位置索引。在 [0, config.max_position_embeddings - 1] 範圍內選擇。
  • head_mask (numpy.ndarray,形狀為 (batch_size, sequence_length)可選) -- 用於置零注意力模組中選定頭的掩碼。掩碼值在 [0, 1]` 中選擇:

    • 1 表示頭未被掩碼
    • 0 表示頭被掩碼
  • return_dict (bool可選) — 是否返回 ModelOutput 而不是普通的元組。

返回

transformers.modeling_flax_outputs.FlaxTokenClassifierOutputtuple(torch.FloatTensor)

一個 transformers.modeling_flax_outputs.FlaxTokenClassifierOutput 或一個 torch.FloatTensor 元組 (如果傳遞了 return_dict=Falseconfig.return_dict=False),包含根據配置 (RoFormerConfig) 和輸入的不同元素。

  • logits (jnp.ndarray,形狀為 (batch_size, sequence_length, config.num_labels)) — 分類得分(SoftMax 之前)。

  • hidden_states (tuple(jnp.ndarray), 可選, 當傳遞 output_hidden_states=True 或當 config.output_hidden_states=True 時返回) — jnp.ndarray 的元組(一個是嵌入層的輸出,另一個是每一層的輸出),形狀為 (batch_size, sequence_length, hidden_size)

    模型在每個層輸出的隱藏狀態加上初始嵌入輸出。

  • attentions (tuple(jnp.ndarray), 可選, 當傳遞 output_attentions=True 或當 config.output_attentions=True 時返回) — jnp.ndarray 的元組(每層一個),形狀為 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

FlaxRoFormerPreTrainedModel 的前向方法覆蓋了 __call__ 特殊方法。

雖然前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> from transformers import AutoTokenizer, FlaxRoFormerForTokenClassification

>>> tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> model = FlaxRoFormerForTokenClassification.from_pretrained("junnyu/roformer_chinese_base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")

>>> outputs = model(**inputs)
>>> logits = outputs.logits

FlaxRoFormerForQuestionAnswering

class transformers.FlaxRoFormerForQuestionAnswering

< >

( config: RoFormerConfig input_shape: tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )

引數

  • config (RoFormerConfig) — 包含模型所有引數的模型配置類。使用配置檔案初始化不會載入與模型相關的權重,只會載入配置。要載入模型權重,請檢視 from_pretrained() 方法。
  • dtype (jax.numpy.dtype可選,預設為 jax.numpy.float32) — 計算的資料型別。可以是 jax.numpy.float32jax.numpy.float16 (在 GPU 上) 和 jax.numpy.bfloat16 (在 TPU 上) 之一。

    這可用於在 GPU 或 TPU 上啟用混合精度訓練或半精度推理。如果指定,所有計算都將使用給定的 `dtype` 執行。

    請注意,這僅指定計算的 dtype,不影響模型引數的 dtype。

    如果你希望更改模型引數的 dtype,請參閱 to_fp16()to_bf16()

RoFormer 模型,帶有一個用於抽取式問答任務(如 SQuAD)的片段分類頭(在 hidden-states 輸出之上新增一個線性層以計算 `span start logits` 和 `span end logits`)。

此模型繼承自 FlaxPreTrainedModel。請檢視超類文件,瞭解庫為所有模型實現的通用方法(例如下載、儲存和從 PyTorch 模型轉換權重)。

此模型也是 flax.linen.Module 的子類。請將其用作常規的 Flax linen 模組,並參考 Flax 文件瞭解所有與一般用法和行為相關的事項。

最後,此模型支援固有的 JAX 功能,例如

__call__

< >

( input_ids attention_mask = None token_type_ids = None head_mask = None params: typing.Optional[dict] = None dropout_rng: <function PRNGKey at 0x7effc7ad3a30> = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutputtuple(torch.FloatTensor)

引數

  • input_ids (numpy.ndarray,形狀為 (batch_size, sequence_length)) — 詞彙表中輸入序列標記的索引。

    索引可以使用 AutoTokenizer 獲得。詳情請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (numpy.ndarray,形狀為 (batch_size, sequence_length)可選) — 掩碼,用於避免在填充標記索引上執行注意力機制。掩碼值在 [0, 1] 中選擇:

    • 1 表示標記未被掩碼
    • 0 表示標記被掩碼

    什麼是注意力掩碼?

  • token_type_ids (numpy.ndarray,形狀為 (batch_size, sequence_length)可選) — 片段標記索引,用於指示輸入的第一部分和第二部分。索引在 [0, 1] 中選擇:

    • 0 對應於 句子 A 的標記,
    • 1 對應於 句子 B 的標記。

    什麼是標記型別 ID?

  • position_ids (numpy.ndarray,形狀為 (batch_size, sequence_length)可選) — 每個輸入序列標記在位置嵌入中的位置索引。在 [0, config.max_position_embeddings - 1] 範圍內選擇。
  • head_mask (numpy.ndarray,形狀為 (batch_size, sequence_length)可選) — 用於將注意力模組中選定的頭置空的掩碼。掩碼值在 `[0, 1]` 中選擇:

    • 1 表示頭未被遮蔽
    • 0 表示頭被遮蔽
  • return_dict (bool, 可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。

返回

transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutputtuple(torch.FloatTensor)

transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput 或一個 torch.FloatTensor 元組(如果傳遞了 return_dict=False 或當 config.return_dict=False 時),根據配置(RoFormerConfig)和輸入,包含不同的元素。

  • start_logits (jnp.ndarray,形狀為 (batch_size, sequence_length)) — 跨度開始得分(SoftMax 之前)。

  • end_logits (jnp.ndarray,形狀為 (batch_size, sequence_length)) — 跨度結束得分(SoftMax 之前)。

  • hidden_states (tuple(jnp.ndarray), 可選, 當傳遞 output_hidden_states=True 或當 config.output_hidden_states=True 時返回) — jnp.ndarray 的元組(一個是嵌入層的輸出,另一個是每一層的輸出),形狀為 (batch_size, sequence_length, hidden_size)

    模型在每個層輸出的隱藏狀態加上初始嵌入輸出。

  • attentions (tuple(jnp.ndarray), 可選, 當傳遞 output_attentions=True 或當 config.output_attentions=True 時返回) — jnp.ndarray 的元組(每層一個),形狀為 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

FlaxRoFormerPreTrainedModel 的前向方法覆蓋了 __call__ 特殊方法。

雖然前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> from transformers import AutoTokenizer, FlaxRoFormerForQuestionAnswering

>>> tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> model = FlaxRoFormerForQuestionAnswering.from_pretrained("junnyu/roformer_chinese_base")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="jax")

>>> outputs = model(**inputs)
>>> start_scores = outputs.start_logits
>>> end_scores = outputs.end_logits
< > 在 GitHub 上更新

© . This site is unofficial and not affiliated with Hugging Face, Inc.