Transformers 文件

OLMo2

Hugging Face's logo
加入 Hugging Face 社群

並獲得增強的文件體驗

開始使用

PyTorch FlashAttention SDPA

OLMo2

OLMo2OLMo 的基礎上改進了原始模型的架構和訓練方案。這包括去除所有偏差以提高訓練穩定性,非引數層歸一化,SwiGLU啟用函式,旋轉位置嵌入,以及修改後的基於BPE的分詞器,用於遮蔽個人可識別資訊。它在包含 3 萬億個token的 Dolma 資料集上進行預訓練。

您可以在 OLMo2 集合中找到所有原始的 OLMo2 檢查點。

點選右側邊欄中的 OLMo2 模型,瞭解更多關於如何將 OLMo2 應用於不同語言任務的示例。

下面的示例演示瞭如何使用 PipelineAutoModel 和命令列生成文字。

流水線
自動模型
Transformers CLI
import torch
from transformers import pipeline

pipe = pipeline(
    task="text-generation",
    model="allenai/OLMo-2-0425-1B",
    torch_dtype=torch.float16,
    device=0,
)
    
result = pipe("Plants create energy through a process known as")
print(result)

量化透過以較低精度表示權重來減少大型模型的記憶體負擔。有關更多可用量化後端,請參閱量化概述。

下面的示例使用 torchao 將權重僅量化為 4 位。


#pip install torchao
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig

torchao_config = TorchAoConfig(
    "int4_weight_only",
    group_size=128
)

tokenizer = AutoTokenizer.from_pretrained(
    "allenai/OLMo-2-0425-1B"
)

model = AutoModelForCausalLM.from_pretrained(
    "allenai/OLMo-2-0425-1B",
    quantization_config=torchao_config,
    torch_dtype=torch.bfloat16,
    device_map="auto",
    attn_implementation="sdpa"
)
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to(model.device)

output = model.generate(**input_ids, max_length=50, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))

注意事項

  • OLMo2 使用 RMSNorm 而不是標準層歸一化。RMSNorm 應用於注意力查詢和鍵,並且在注意力層和前饋層之後而不是之前應用。

  • OLMo2 需要 Transformers v4.48 或更高版本。

  • 透過將 revision 引數新增到 from_pretrained() 來載入特定的中間檢查點。

    from transformers import AutoModelForCausalLM
    
    model = AutoModelForCausalLM.from_pretrained("allenai/OLMo-2-0425-1B", revision="stage1-step140000-tokens294B")

Olmo2Config

transformers.Olmo2Config

< >

( 詞彙表大小 = 50304 隱藏層大小 = 4096 中間層大小 = 11008 隱藏層數量 = 32 注意力頭數量 = 32 鍵值頭數量 = 無 隱藏啟用函式 = 'silu' 最大位置嵌入 = 2048 初始化範圍 = 0.02 使用快取 = True 填充token_id = 1 流起始token_id = 無 流結束token_id = 50279 繫結詞嵌入 = False rope_theta = 10000.0 rope_scaling = 無 注意力偏差 = False 注意力dropout = 0.0 rms_norm_eps = 1e-05 **kwargs )

引數

  • vocab_size (int, 可選, 預設為 50304) — Olmo2 模型的詞彙表大小。定義了呼叫 Olmo2Modelinputs_ids 可以表示的不同 token 的數量。
  • hidden_size (int, 可選, 預設為 4096) — 隱藏表示的維度。
  • intermediate_size (int, 可選, 預設為 11008) — MLP 表示的維度。
  • num_hidden_layers (int, 可選, 預設為 32) — Transformer 解碼器中的隱藏層數量。
  • num_attention_heads (int, 可選, 預設為 32) — Transformer 解碼器中每個注意力層的注意力頭數量。
  • num_key_value_heads (int, 可選) — 用於實現分組查詢注意力 (Grouped Query Attention) 的鍵值頭數量。如果 num_key_value_heads=num_attention_heads,模型將使用多頭注意力 (MHA);如果 num_key_value_heads=1,模型將使用多查詢注意力 (MQA);否則使用 GQA。在將多頭檢查點轉換為 GQA 檢查點時,每個組的鍵和值頭應透過對該組中所有原始頭進行均值池化來構建。有關這些縮放策略行為的更多詳細資訊,請檢視 這篇論文。如果未指定,將預設為 num_attention_heads。這是一個實驗性功能,在未來版本中可能會出現破壞性的 API 更改。
  • hidden_act (strfunction, 可選, 預設為 "silu") — 解碼器中的非線性啟用函式(函式或字串)。
  • max_position_embeddings (int, 可選, 預設為 2048) — 此模型可能使用的最大序列長度。
  • initializer_range (float, 可選, 預設為 0.02) — 用於初始化所有權重矩陣的截斷正態分佈初始化器的標準差。
  • use_cache (bool, 可選, 預設為 True) — 模型是否應返回上次的鍵/值注意力(並非所有模型都使用)。僅當 config.is_decoder=True 時相關。
  • pad_token_id (int, 可選, 預設為 1) — 填充標記 ID。
  • bos_token_id (int, 可選) — 流起始標記 ID。
  • eos_token_id (int, 可選, 預設為 50279) — 流結束標記 ID。
  • tie_word_embeddings (bool, 可選, 預設為 False) — 是否繫結詞嵌入。
  • rope_theta (float, 可選, 預設為 10000.0) — RoPE 嵌入的基週期。
  • rope_scaling (Dict, 可選) — 包含 RoPE 嵌入縮放配置的字典。目前支援兩種縮放策略:線性縮放和動態縮放。其縮放因子必須是大於 1 的浮點數。預期格式為 {"type": 策略名稱, "factor": 縮放因子}。使用此標誌時,請勿將 max_position_embeddings 更新為預期的新最大值。有關這些縮放策略行為的更多資訊,請參閱以下帖子:https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/。這是一個實驗性功能,在未來版本中可能會有破壞性 API 更改。
  • attention_bias (bool, 預設為 False, 可選, 預設為 False) — 是否在自注意力機制的查詢、鍵、值和輸出投影層中使用偏差。
  • attention_dropout (float, 可選, 預設為 0.0) — 注意力機率的 dropout 比率。
  • rms_norm_eps (float, 可選, 預設為 1e-05) — RMS 歸一化層使用的 epsilon 值。

這是用於儲存 Olmo2Model 配置的配置類。它用於根據指定的引數例項化 OLMo2 模型,定義模型架構。使用預設值例項化配置將生成與 allenai/Olmo2-7B-1124-hf 相似的配置。

配置物件繼承自 PretrainedConfig,可用於控制模型輸出。有關更多資訊,請閱讀 PretrainedConfig 的文件。

>>> from transformers import Olmo2Model, Olmo2Config

>>> # Initializing a Olmo2 7B style configuration
>>> configuration = Olmo2Config()

>>> # Initializing a model from the Olmo2 7B style configuration
>>> model = Olmo2Model(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

Olmo2Model

transformers.Olmo2Model

< >

( 配置: Olmo2Config )

引數

  • config (Olmo2Config) — 模型的配置類,包含模型的所有引數。使用配置檔案初始化並不會載入與模型相關的權重,只會載入配置。要載入模型權重,請檢視 from_pretrained() 方法。

裸 Olmo2 模型,輸出原始隱藏狀態,頂部沒有任何特定頭部。

此模型繼承自 PreTrainedModel。有關庫為其所有模型實現的通用方法(如下載或儲存、調整輸入嵌入大小、修剪頭部等),請檢視超類文件。

此模型也是 PyTorch torch.nn.Module 的子類。將其作為常規 PyTorch 模組使用,並參考 PyTorch 文件以瞭解所有與通用用法和行為相關的事項。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None **flash_attn_kwargs: typing_extensions.Unpack[transformers.modeling_flash_attention_utils.FlashAttentionKwargs] ) transformers.modeling_outputs.BaseModelOutputWithPast or tuple(torch.FloatTensor)

引數

  • input_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 詞彙表中輸入序列標記的索引。預設情況下會忽略填充。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參見 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是 input ID?

  • attention_mask (torch.Tensor,形狀為 (batch_size, sequence_length)可選) — 用於避免對填充標記索引執行注意力操作的掩碼。掩碼值選擇範圍為 [0, 1]

    • 1 表示未被掩碼的標記,
    • 0 表示被掩碼的標記。

    什麼是注意力掩碼?

  • position_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 每個輸入序列標記在位置嵌入中的位置索引。選擇範圍為 [0, config.n_positions - 1]

    什麼是位置 ID?

  • past_key_values (~cache_utils.Cache可選) — 預計算的隱藏狀態(自注意力塊中的鍵和值以及交叉注意力塊中的鍵和值),可用於加速順序解碼。這通常包括模型在解碼上一階段返回的 past_key_values,當 use_cache=Trueconfig.use_cache=True 時。

    允許兩種格式:

    • 一個 Cache 例項,參見我們的 kv 快取指南
    • 長度為 config.n_layerstuple(torch.FloatTensor) 元組,每個元組包含 2 個形狀為 (batch_size, num_heads, sequence_length, embed_size_per_head) 的張量)。這也稱為傳統快取格式。

    模型將輸出與作為輸入提供的快取格式相同的快取格式。如果沒有傳遞 past_key_values,將返回傳統快取格式。

    如果使用 past_key_values,使用者可以選擇僅輸入形狀為 (batch_size, 1) 的最後 input_ids(那些沒有將其過去的鍵值狀態提供給此模型的)而不是形狀為 (batch_size, sequence_length) 的所有 input_ids

  • inputs_embeds (torch.FloatTensor,形狀為 (batch_size, sequence_length, hidden_size)可選) — 可選地,您可以選擇直接傳遞嵌入表示,而不是傳遞 input_ids。如果您希望對如何將 input_ids 索引轉換為關聯向量有比模型內部嵌入查詢矩陣更多的控制,這會很有用。
  • use_cache (bool可選) — 如果設定為 True,則返回 past_key_values 鍵值狀態,可用於加速解碼(參見 past_key_values)。
  • output_attentions (bool可選) — 是否返回所有注意力層的注意力張量。有關詳細資訊,請參閱返回張量中的 attentions
  • output_hidden_states (bool可選) — 是否返回所有層的隱藏狀態。有關詳細資訊,請參閱返回張量中的 hidden_states
  • cache_position (torch.LongTensor,形狀為 (sequence_length)可選) — 表示輸入序列標記在序列中的位置的索引。與 position_ids 不同,此張量不受填充影響。它用於在正確位置更新快取並推斷完整的序列長度。

返回

transformers.modeling_outputs.BaseModelOutputWithPasttuple(torch.FloatTensor)

一個 transformers.modeling_outputs.BaseModelOutputWithPast 或一個 torch.FloatTensor 元組(如果傳遞了 return_dict=False 或當 config.return_dict=False 時),包含根據配置 (Olmo2Config) 和輸入的不同元素。

  • last_hidden_state (torch.FloatTensor, 形狀為 (batch_size, sequence_length, hidden_size)) — 模型最後一層輸出的隱藏狀態序列。

    如果使用了 past_key_values,則只輸出形狀為 (batch_size, 1, hidden_size) 的序列的最後一個隱藏狀態。

  • past_key_values (Cache可選,當傳遞 use_cache=True 或當 config.use_cache=True 時返回) — 這是一個 Cache 例項。有關更多詳細資訊,請參見我們的 kv 快取指南

    包含預計算的隱藏狀態(自注意力塊中的鍵和值,以及可選地如果 config.is_encoder_decoder=True 則在交叉注意力塊中的鍵和值),可用於(參見 past_key_values 輸入)加速順序解碼。

  • hidden_states (tuple(torch.FloatTensor)可選,當傳遞 output_hidden_states=True 或當 config.output_hidden_states=True 時返回) — 形狀為 (batch_size, sequence_length, hidden_size)torch.FloatTensor 元組(一個用於嵌入層輸出,如果模型有嵌入層,+ 每個層的輸出一個)。

    模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。

  • attentions (tuple(torch.FloatTensor)可選,當傳遞 output_attentions=True 或當 config.output_attentions=True 時返回) — 形狀為 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元組(每個層一個)。

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

Olmo2Model 的 forward 方法,覆蓋了 __call__ 特殊方法。

儘管前向傳播的配方需要在該函式中定義,但隨後應呼叫 Module 例項而不是此函式,因為前者負責執行預處理和後處理步驟,而後者則默默地忽略它們。

Olmo2ForCausalLM

transformers.Olmo2ForCausalLM

< >

( config )

引數

  • config (Olmo2ForCausalLM) — 模型的配置類,包含模型的所有引數。使用配置檔案初始化並不會載入與模型相關的權重,只會載入配置。要載入模型權重,請檢視 from_pretrained() 方法。

用於因果語言建模的 Olmo2 模型。

此模型繼承自 PreTrainedModel。有關庫為其所有模型實現的通用方法(如下載或儲存、調整輸入嵌入大小、修剪頭部等),請檢視超類文件。

此模型也是 PyTorch torch.nn.Module 的子類。將其作為常規 PyTorch 模組使用,並參考 PyTorch 文件以瞭解所有與通用用法和行為相關的事項。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None logits_to_keep: typing.Union[int, torch.Tensor] = 0 **kwargs: typing_extensions.Unpack[transformers.models.olmo2.modeling_olmo2.KwargsForCausalLM] ) transformers.modeling_outputs.CausalLMOutputWithPasttuple(torch.FloatTensor)

引數

  • input_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 詞彙表中輸入序列標記的索引。預設情況下會忽略填充。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參見 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是 input ID?

  • attention_mask (torch.Tensor,形狀為 (batch_size, sequence_length)可選) — 用於避免對填充標記索引執行注意力操作的掩碼。掩碼值選擇範圍為 [0, 1]

    • 1 表示未被掩碼的標記,
    • 0 表示被掩碼的標記。

    什麼是注意力掩碼?

  • position_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 每個輸入序列標記在位置嵌入中的位置索引。選擇範圍為 [0, config.n_positions - 1]

    什麼是位置 ID?

  • past_key_values (~cache_utils.Cache可選) — 預計算的隱藏狀態(自注意力塊中的鍵和值以及交叉注意力塊中的鍵和值),可用於加速順序解碼。這通常包括模型在解碼上一階段返回的 past_key_values,當 use_cache=Trueconfig.use_cache=True 時。

    允許兩種格式:

    • 一個 Cache 例項,參見我們的 kv 快取指南
    • 長度為 config.n_layerstuple(torch.FloatTensor) 元組,每個元組包含 2 個形狀為 (batch_size, num_heads, sequence_length, embed_size_per_head) 的張量)。這也稱為傳統快取格式。

    模型將輸出與作為輸入提供的快取格式相同的快取格式。如果沒有傳遞 past_key_values,將返回傳統快取格式。

    如果使用 past_key_values,使用者可以選擇僅輸入形狀為 (batch_size, 1) 的最後 input_ids(那些沒有將其過去的鍵值狀態提供給此模型的)而不是形狀為 (batch_size, sequence_length) 的所有 input_ids

  • inputs_embeds (torch.FloatTensor,形狀為 (batch_size, sequence_length, hidden_size)可選) — 可選地,您可以選擇直接傳遞嵌入表示,而不是傳遞 input_ids。如果您希望對如何將 input_ids 索引轉換為關聯向量有比模型內部嵌入查詢矩陣更多的控制,這會很有用。
  • labels (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 用於計算掩碼語言建模損失的標籤。索引應在 [0, ..., config.vocab_size] 或 -100 之間(參見 input_ids 文件字串)。索引設定為 -100 的標記將被忽略(掩碼),損失僅針對標籤在 [0, ..., config.vocab_size] 中的標記計算。
  • use_cache (bool可選) — 如果設定為 True,則返回 past_key_values 鍵值狀態,可用於加速解碼(參見 past_key_values)。
  • output_attentions (bool可選) — 是否返回所有注意力層的注意力張量。有關詳細資訊,請參閱返回張量中的 attentions
  • output_hidden_states (bool可選) — 是否返回所有層的隱藏狀態。有關詳細資訊,請參閱返回張量中的 hidden_states
  • cache_position (torch.LongTensor,形狀為 (sequence_length)可選) — 表示輸入序列標記在序列中的位置的索引。與 position_ids 不同,此張量不受填充影響。它用於在正確位置更新快取並推斷完整的序列長度。
  • logits_to_keep (Union[int, torch.Tensor],預設為 0) — 如果是 int,則計算最後 logits_to_keep 個標記的 logits。如果是 0,則計算所有 input_ids 的 logits(特殊情況)。生成時只需要最後一個標記的 logits,僅為該標記計算它們可以節省記憶體,這對於長序列或大詞彙量來說非常重要。如果是 torch.Tensor,則必須是 1D 張量,對應於序列長度維度中要保留的索引。這在使用打包張量格式(批次和序列長度的單維度)時很有用。

返回

transformers.modeling_outputs.CausalLMOutputWithPasttuple(torch.FloatTensor)

一個 transformers.modeling_outputs.CausalLMOutputWithPast 或一個 torch.FloatTensor 元組(如果傳遞了 return_dict=False 或當 config.return_dict=False 時),包含根據配置 (Olmo2Config) 和輸入的不同元素。

  • loss (torch.FloatTensor 形狀為 (1,)可選,當提供 labels 時返回) — 語言建模損失(用於下一個 token 預測)。

  • logits (形狀為 (batch_size, sequence_length, config.vocab_size)torch.FloatTensor) — 語言建模頭部的預測分數(SoftMax 之前的每個詞彙標記的分數)。

  • past_key_values (Cache可選,當傳遞 use_cache=True 或當 config.use_cache=True 時返回) — 這是一個 Cache 例項。有關更多詳細資訊,請參見我們的 kv 快取指南

    包含預計算的隱藏狀態(自注意力塊中的鍵和值),可用於(參見 past_key_values 輸入)加速順序解碼。

  • hidden_states (tuple(torch.FloatTensor)可選,當傳遞 output_hidden_states=True 或當 config.output_hidden_states=True 時返回) — 形狀為 (batch_size, sequence_length, hidden_size)torch.FloatTensor 元組(一個用於嵌入層輸出,如果模型有嵌入層,+ 每個層的輸出一個)。

    模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。

  • attentions (tuple(torch.FloatTensor)可選,當傳遞 output_attentions=True 或當 config.output_attentions=True 時返回) — 形狀為 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元組(每個層一個)。

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

Olmo2ForCausalLM 的 forward 方法,覆蓋了 __call__ 特殊方法。

儘管前向傳播的配方需要在該函式中定義,但隨後應呼叫 Module 例項而不是此函式,因為前者負責執行預處理和後處理步驟,而後者則默默地忽略它們。

示例

>>> from transformers import AutoTokenizer, Olmo2ForCausalLM

>>> model = Olmo2ForCausalLM.from_pretrained("meta-olmo2/Olmo2-2-7b-hf")
>>> tokenizer = AutoTokenizer.from_pretrained("meta-olmo2/Olmo2-2-7b-hf")

>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")

>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
< > 在 GitHub 上更新

© . This site is unofficial and not affiliated with Hugging Face, Inc.