Transformers 文件
Granite
並獲得增強的文件體驗
開始使用
Granite
Granite 是一個使用 Power 排程器訓練的 3B 引數語言模型。為大型語言模型的預訓練找到一個好的學習率是很困難的,因為它依賴於許多變數(批次大小、訓練詞元數量等),並且進行超引數搜尋的成本很高。Power 排程器基於變數與其向更大模型的可轉移性之間的冪律關係。將 Power 排程器與最大更新引數化 (Maximum Update Parameterization, MUP) 相結合,可以使模型能夠使用一套固定的超引數進行預訓練,而無需考慮所有這些變數。
您可以在 IBM-Granite 組織下找到所有原始的 Granite 檢查點。
點選右側邊欄中的 Granite 模型,檢視更多關於如何將 Granite 應用於不同語言任務的示例。
以下示例演示瞭如何使用 Pipeline、[AutoModel
] 以及從命令列生成文字。
import torch
from transformers import pipeline
pipe = pipeline(
task="text-generation",
model="ibm-granite/granite-3.3-2b-base",
torch_dtype=torch.bfloat16,
device=0
)
pipe("Explain quantum computing in simple terms ", max_new_tokens=50)
量化透過以較低精度表示權重來減少大型模型的記憶體負擔。有關更多可用量化後端,請參閱量化概述。
以下示例使用 bitsandbytes 將權重僅量化為 int4。
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
tokenizer = AutoTokenizer.from_pretrained("ibm-granite/granite-3.3-8b-base")
model = AutoModelForCausalLM.from_pretrained("ibm-granite/granite-3.3-8b-base", torch_dtype=torch.bfloat16, device_map="auto", attn_implementation="sdpa", quantization_config=quantization_config)
inputs = tokenizer("Explain quantum computing in simple terms", return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_length=50, cache_implementation="static")
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
tokenizer = AutoTokenizer.from_pretrained(""ibm-granite/granite-3.3-2b-base"")
model = AutoModelForCausalLM.from_pretrained(
"ibm-granite/granite-3.3-2b-base",
torch_dtype=torch.bfloat16,
device_map="auto",
attn_implementation="sdpa",
quantization_config=quantization_config,
)
input_ids = tokenizer("Explain artificial intelligence to a 10 year old", return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_length=50, cache_implementation="static")
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
GraniteConfig
class transformers.GraniteConfig
< 原始碼 >( vocab_size = 32000 hidden_size = 4096 intermediate_size = 11008 num_hidden_layers = 32 num_attention_heads = 32 num_key_value_heads = None hidden_act = 'silu' max_position_embeddings = 2048 initializer_range = 0.02 rms_norm_eps = 1e-06 use_cache = True pad_token_id = None bos_token_id = 1 eos_token_id = 2 tie_word_embeddings = False rope_theta = 10000.0 rope_scaling = None attention_bias = False attention_dropout = 0.0 mlp_bias = False embedding_multiplier = 1.0 logits_scaling = 1.0 residual_multiplier = 1.0 attention_multiplier = 1.0 **kwargs )
引數
- vocab_size (
int
, 可選, 預設為 32000) — Granite 模型的詞彙表大小。定義了在呼叫 GraniteModel 時,可以透過inputs_ids
表示的不同詞元的數量。 - hidden_size (
int
, 可選, 預設為 4096) — 隱藏表示的維度。 - intermediate_size (
int
, 可選, 預設為 11008) — MLP 表示的維度。 - num_hidden_layers (
int
, 可選, 預設為 32) — Transformer 解碼器中的隱藏層數量。 - num_attention_heads (
int
, 可選, 預設為 32) — Transformer 解碼器中每個注意力層的注意力頭數量。 - num_key_value_heads (
int
, 可選) — 這是用於實現分組查詢注意力 (Grouped Query Attention) 的鍵值頭數量。如果num_key_value_heads=num_attention_heads
,模型將使用多頭注意力 (MHA);如果num_key_value_heads=1
,模型將使用多查詢注意力 (MQA);否則使用 GQA。將多頭檢查點轉換為 GQA 檢查點時,每個分組的鍵和值頭應透過對該組內所有原始頭進行均值池化來構建。更多詳情請參閱這篇論文。如果未指定,將預設為num_attention_heads
。 - hidden_act (
str
或function
, 可選, 預設為"silu"
) — 解碼器中的非線性啟用函式(函式或字串)。 - max_position_embeddings (
int
, 可選, 預設為 2048) — 該模型可能使用的最大序列長度。 - initializer_range (
float
, 可選, 預設為 0.02) — 用於初始化所有權重矩陣的 truncated_normal_initializer 的標準差。 - rms_norm_eps (
float
, 可選, 預設為 1e-06) — RMS 歸一化層使用的 epsilon 值。 - use_cache (
bool
, 可選, 預設為True
) — 模型是否應返回最後一個鍵/值注意力(並非所有模型都使用)。僅當config.is_decoder=True
時相關。 - pad_token_id (
int
, 可選) — 填充詞元的 ID。 - bos_token_id (
int
, 可選, 預設為 1) — 序列開始詞元的 ID。 - eos_token_id (
int
, 可選, 預設為 2) — 序列結束詞元的 ID。 - tie_word_embeddings (
bool
, 可選, 預設為False
) — 是否繫結詞嵌入權重。 - rope_theta (
float
, 可選, 預設為 10000.0) — RoPE 嵌入的基礎週期。 - rope_scaling (
Dict
, 可選) — 包含 RoPE 嵌入縮放配置的字典。目前支援兩種縮放策略:線性和動態。它們的縮放因子必須是大於 1 的浮點數。預期格式為{"type": 策略名稱, "factor": 縮放因子}
。使用此標誌時,不要將max_position_embeddings
更新為預期的新最大值。有關這些縮放策略行為的更多資訊,請參閱以下帖子:https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/。這是一個實驗性功能,可能會在未來版本中發生破壞性 API 更改。 - attention_bias (
bool
, 可選, 預設為False
) — 在自注意力機制中,是否在查詢、鍵、值和輸出投影層中使用偏置。 - attention_dropout (
float
, 可選, 預設為 0.0) — 注意力機率的 dropout 比率。 - mlp_bias (
bool
, 可選, 預設為False
) — 是否在 MLP 層的 up_proj、down_proj 和 gate_proj 層中使用偏置。 - embedding_multiplier (
float
, 可選, 預設為 1.0) — 嵌入乘數。 - logits_scaling (
float
, 可選, 預設為 1.0) — 輸出 logits 的除數。 - residual_multiplier (
float
, 可選, 預設為 1.0) — 殘差乘數。 - attention_multiplier (
float
, 可選, 預設為 1.0) — 注意力乘數。
這是用於儲存 GraniteModel 配置的配置類。它用於根據指定的引數例項化 Granite 模型,定義模型架構。使用預設值例項化配置將產生與 Granite-3B 相似的配置。
配置物件繼承自 PretrainedConfig,可用於控制模型輸出。有關更多資訊,請閱讀 PretrainedConfig 的文件。
>>> from transformers import GraniteModel, GraniteConfig
>>> # Initializing a Granite granite-3b style configuration
>>> configuration = GraniteConfig()
>>> # Initializing a model from the granite-7b style configuration
>>> model = GraniteModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
GraniteModel
class transformers.GraniteModel
< 原始碼 >( config: GraniteConfig )
引數
- config (GraniteConfig) — 包含模型所有引數的模型配置類。使用配置檔案初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。
基礎的 Granite 模型,輸出原始的隱藏狀態,沒有任何特定的頭部。
該模型繼承自 PreTrainedModel。有關該庫為其所有模型實現的通用方法(如下載或儲存、調整輸入嵌入大小、修剪頭等),請檢視超類的文件。
該模型也是一個 PyTorch torch.nn.Module 的子類。可以像常規 PyTorch 模組一樣使用它,並參考 PyTorch 文件瞭解所有與常規用法和行為相關的事項。
forward
< 原始碼 >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None **flash_attn_kwargs: typing_extensions.Unpack[transformers.modeling_flash_attention_utils.FlashAttentionKwargs] ) → transformers.modeling_outputs.BaseModelOutputWithPast 或 tuple(torch.FloatTensor)
引數
- input_ids (
torch.LongTensor
,形狀為(batch_size, sequence_length)
,可選) — 詞彙表中輸入序列標記的索引。預設情況下,填充將被忽略。可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形狀為(batch_size, sequence_length)
,可選) — 用於避免在填充標記索引上執行注意力操作的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示標記未被掩碼,
- 0 表示標記已被掩碼。
- position_ids (
torch.LongTensor
,形狀為(batch_size, sequence_length)
,可選) — 位置嵌入中每個輸入序列標記的位置索引。在[0, config.n_positions - 1]
範圍內選擇。 - past_key_values (
~cache_utils.Cache
,可選) — 預先計算的隱藏狀態(自注意力塊和交叉注意力塊中的鍵和值),可用於加速順序解碼。這通常包括模型在解碼的前一個階段返回的past_key_values
,當use_cache=True
或config.use_cache=True
時。允許兩種格式:
- Cache 例項,請參閱我們的 kv 快取指南;
- 長度為
config.n_layers
的tuple(torch.FloatTensor)
元組,每個元組包含 2 個形狀為(batch_size, num_heads, sequence_length, embed_size_per_head)
的張量。這也稱為舊版快取格式。
模型將輸出與輸入相同的快取格式。如果未傳遞
past_key_values
,將返回舊版快取格式。如果使用
past_key_values
,使用者可以選擇只輸入最後一個形狀為(batch_size, 1)
的input_ids
(那些沒有向此模型提供其過去鍵值狀態的 ID),而不是所有形狀為(batch_size, sequence_length)
的input_ids
。 - inputs_embeds (
torch.FloatTensor
,形狀為(batch_size, sequence_length, hidden_size)
,可選) — 可選地,您可以選擇直接傳遞嵌入表示,而不是傳遞input_ids
。如果您想比模型內部的嵌入查詢矩陣更好地控制如何將input_ids
索引轉換為相關向量,這將非常有用。 - use_cache (
bool
,可選) — 如果設定為True
,將返回past_key_values
鍵值狀態,可用於加速解碼(請參閱past_key_values
)。 - output_attentions (
bool
,可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的attentions
。 - output_hidden_states (
bool
,可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的hidden_states
。 - cache_position (
torch.LongTensor
,形狀為(sequence_length)
,可選) — 描繪輸入序列標記在序列中位置的索引。與position_ids
相反,此張量不受填充影響。它用於在正確的位置更新快取並推斷完整的序列長度。
返回
transformers.modeling_outputs.BaseModelOutputWithPast 或 tuple(torch.FloatTensor)
一個 transformers.modeling_outputs.BaseModelOutputWithPast 或一個 torch.FloatTensor
元組(如果傳遞了 return_dict=False
或 config.return_dict=False
),根據配置 (GraniteConfig) 和輸入包含各種元素。
-
last_hidden_state (
torch.FloatTensor
, 形狀為(batch_size, sequence_length, hidden_size)
) — 模型最後一層輸出的隱藏狀態序列。如果使用了
past_key_values
,則只輸出形狀為(batch_size, 1, hidden_size)
的序列的最後一個隱藏狀態。 -
past_key_values (
Cache
,可選,當傳遞use_cache=True
或config.use_cache=True
時返回) — 這是一個 Cache 例項。更多詳情,請參閱我們的 kv 快取指南。包含預先計算的隱藏狀態(自注意力塊中的鍵和值,如果
config.is_encoder_decoder=True
,則還包括交叉注意力塊中的鍵和值),可用於(請參閱past_key_values
輸入)加速順序解碼。 -
hidden_states (
tuple(torch.FloatTensor)
,可選,當傳遞output_hidden_states=True
或config.output_hidden_states=True
時返回) —torch.FloatTensor
的元組(一個用於嵌入層的輸出,如果模型有嵌入層,+ 一個用於每層輸出),形狀為(batch_size, sequence_length, hidden_size)
。模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。
-
attentions (
tuple(torch.FloatTensor)
,可選,當傳遞output_attentions=True
或config.output_attentions=True
時返回) —torch.FloatTensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
GraniteModel 的 forward 方法會覆蓋 __call__
特殊方法。
雖然前向傳播的流程需要在此函式中定義,但之後應呼叫 Module
例項而不是此函式,因為前者會負責執行前處理和後處理步驟,而後者會靜默地忽略它們。
GraniteForCausalLM
class transformers.GraniteForCausalLM
< 來源 >( config )
引數
- config (GraniteForCausalLM) — 模型配置類,包含模型的所有引數。使用配置檔案初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。
用於因果語言建模的 Granite 模型。
該模型繼承自 PreTrainedModel。有關該庫為其所有模型實現的通用方法(如下載或儲存、調整輸入嵌入大小、修剪頭等),請檢視超類的文件。
該模型也是一個 PyTorch torch.nn.Module 的子類。可以像常規 PyTorch 模組一樣使用它,並參考 PyTorch 文件瞭解所有與常規用法和行為相關的事項。
forward
< 來源 >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Union[transformers.cache_utils.Cache, list[torch.FloatTensor], NoneType] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None logits_to_keep: typing.Union[int, torch.Tensor] = 0 **kwargs: typing_extensions.Unpack[transformers.models.granite.modeling_granite.KwargsForCausalLM] ) → transformers.modeling_outputs.CausalLMOutputWithPast 或 tuple(torch.FloatTensor)
引數
- input_ids (
torch.LongTensor
,形狀為(batch_size, sequence_length)
,可選) — 詞彙表中輸入序列標記的索引。預設情況下,填充將被忽略。可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形狀為(batch_size, sequence_length)
,可選) — 用於避免在填充標記索引上執行注意力操作的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示標記未被掩碼,
- 0 表示標記已被掩碼。
- position_ids (
torch.LongTensor
,形狀為(batch_size, sequence_length)
,可選) — 位置嵌入中每個輸入序列標記的位置索引。在[0, config.n_positions - 1]
範圍內選擇。 - past_key_values (
Union[~cache_utils.Cache, list[torch.FloatTensor], NoneType]
) — 預先計算的隱藏狀態(自注意力塊和交叉注意力塊中的鍵和值),可用於加速順序解碼。這通常包括模型在解碼的前一個階段返回的past_key_values
,當use_cache=True
或config.use_cache=True
時。允許兩種格式:
- Cache 例項,請參閱我們的 kv 快取指南;
- 長度為
config.n_layers
的tuple(torch.FloatTensor)
元組,每個元組包含 2 個形狀為(batch_size, num_heads, sequence_length, embed_size_per_head)
的張量。這也稱為舊版快取格式。
模型將輸出與輸入相同的快取格式。如果未傳遞
past_key_values
,將返回舊版快取格式。如果使用
past_key_values
,使用者可以選擇只輸入最後一個形狀為(batch_size, 1)
的input_ids
(那些沒有向此模型提供其過去鍵值狀態的 ID),而不是所有形狀為(batch_size, sequence_length)
的input_ids
。 - inputs_embeds (
torch.FloatTensor
,形狀為(batch_size, sequence_length, hidden_size)
,可選) — 可選地,您可以選擇直接傳遞嵌入表示,而不是傳遞input_ids
。如果您想比模型內部的嵌入查詢矩陣更好地控制如何將input_ids
索引轉換為相關向量,這將非常有用。 - labels (
torch.LongTensor
,形狀為(batch_size, sequence_length)
,可選) — 用於計算掩碼語言建模損失的標籤。索引應在[0, ..., config.vocab_size]
或 -100 之間(請參閱input_ids
文件)。索引設定為-100
的標記被忽略(掩碼),損失僅針對標籤在[0, ..., config.vocab_size]
之間的標記計算。 - use_cache (
bool
,可選) — 如果設定為True
,將返回past_key_values
鍵值狀態,可用於加速解碼(請參閱past_key_values
)。 - output_attentions (
bool
,可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的attentions
。 - output_hidden_states (
bool
,可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的hidden_states
。 - cache_position (
torch.LongTensor
,形狀為(sequence_length)
,可選) — 描繪輸入序列標記在序列中位置的索引。與position_ids
相反,此張量不受填充影響。它用於在正確的位置更新快取並推斷完整的序列長度。 - logits_to_keep (
Union[int, torch.Tensor]
,預設為0
) — 如果是int
,則計算最後logits_to_keep
個標記的 logits。如果是0
,則計算所有input_ids
的 logits(特殊情況)。生成時只需要最後一個標記的 logits,僅為該標記計算它們可以節省記憶體,這對於長序列或大詞彙表大小來說變得非常重要。如果是一個torch.Tensor
,則必須是一維的,對應於序列長度維度中要保留的索引。這在使用打包張量格式(批次和序列長度共用一個維度)時很有用。
返回
transformers.modeling_outputs.CausalLMOutputWithPast 或 tuple(torch.FloatTensor)
一個 transformers.modeling_outputs.CausalLMOutputWithPast 或一個 torch.FloatTensor
元組(如果傳遞了 return_dict=False
或 config.return_dict=False
),根據配置 (GraniteConfig) 和輸入包含各種元素。
-
loss (
torch.FloatTensor
形狀為(1,)
,可選,當提供labels
時返回) — 語言建模損失(用於下一個 token 預測)。 -
logits (形狀為
(batch_size, sequence_length, config.vocab_size)
的torch.FloatTensor
) — 語言建模頭部的預測分數(SoftMax 之前的每個詞彙標記的分數)。 -
past_key_values (
Cache
,可選,當傳遞use_cache=True
或config.use_cache=True
時返回) — 這是一個 Cache 例項。更多詳情,請參閱我們的 kv 快取指南。包含預計算的隱藏狀態(自注意力塊中的鍵和值),可用於(參見
past_key_values
輸入)加速順序解碼。 -
hidden_states (
tuple(torch.FloatTensor)
,可選,當傳遞output_hidden_states=True
或config.output_hidden_states=True
時返回) —torch.FloatTensor
的元組(一個用於嵌入層的輸出,如果模型有嵌入層,+ 一個用於每層輸出),形狀為(batch_size, sequence_length, hidden_size)
。模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。
-
attentions (
tuple(torch.FloatTensor)
,可選,當傳遞output_attentions=True
或config.output_attentions=True
時返回) —torch.FloatTensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
GraniteForCausalLM 的 forward 方法會覆蓋 __call__
特殊方法。
雖然前向傳播的流程需要在此函式中定義,但之後應呼叫 Module
例項而不是此函式,因為前者會負責執行前處理和後處理步驟,而後者會靜默地忽略它們。
示例
>>> from transformers import AutoTokenizer, GraniteForCausalLM
>>> model = GraniteForCausalLM.from_pretrained("meta-granite/Granite-2-7b-hf")
>>> tokenizer = AutoTokenizer.from_pretrained("meta-granite/Granite-2-7b-hf")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."