Transformers 文件

Jamba

Hugging Face's logo
加入 Hugging Face 社群

並獲得增強的文件體驗

開始使用

PyTorch FlashAttention SDPA

Jamba

Jamba 是一款混合了 Transformer 和 Mamba 的混合專家(MoE)語言模型,其總引數量從 520 億到 3980 億不等。該模型旨在結合這兩個模型家族的優點:Transformer 模型的效能,以及像 Mamba 這類狀態空間模型(SSM)的效率和更長的上下文(256K 詞元)。

Jamba 的架構採用了一種塊與層的方法,使其能夠成功地將 Transformer 和 Mamba 架構整合在一起。每個 Jamba 塊包含一個注意力層或一個 Mamba 層,後面跟著一個多層感知機(MLP),從而使得每八個總層中就有一個是 Transformer 層。同時,混合了 MoE 層以增加模型容量。

你可以在 AI21 組織下找到所有原始的 Jamba 模型檢查點。

點選右側邊欄中的 Jamba 模型,檢視更多關於如何將 Jamba 應用於不同語言任務的示例。

下面的示例演示瞭如何使用 PipelineAutoModel 以及從命令列生成文字。

流水線
自動模型
Transformers CLI
# install optimized Mamba implementations
# !pip install mamba-ssm causal-conv1d>=1.2.0
import torch
from transformers import pipeline

pipeline = pipeline(
    task="text-generation",
    model="ai21labs/AI21-Jamba-Mini-1.6",
    torch_dtype=torch.float16,
    device=0
)
pipeline("Plants create energy through a process known as")

量化透過以較低精度表示權重來減少大型模型的記憶體負擔。有關更多可用量化後端,請參閱量化概述。

下面的示例使用 bitsandbytes 將權重僅量化為 8 位。

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig

quantization_config = BitsAndBytesConfig(load_in_8bit=True,
                                         llm_int8_skip_modules=["mamba"])

# a device map to distribute the model evenly across 8 GPUs
device_map = {'model.embed_tokens': 0, 'model.layers.0': 0, 'model.layers.1': 0, 'model.layers.2': 0, 'model.layers.3': 0, 'model.layers.4': 0, 'model.layers.5': 0, 'model.layers.6': 0, 'model.layers.7': 0, 'model.layers.8': 0, 'model.layers.9': 1, 'model.layers.10': 1, 'model.layers.11': 1, 'model.layers.12': 1, 'model.layers.13': 1, 'model.layers.14': 1, 'model.layers.15': 1, 'model.layers.16': 1, 'model.layers.17': 1, 'model.layers.18': 2, 'model.layers.19': 2, 'model.layers.20': 2, 'model.layers.21': 2, 'model.layers.22': 2, 'model.layers.23': 2, 'model.layers.24': 2, 'model.layers.25': 2, 'model.layers.26': 2, 'model.layers.27': 3, 'model.layers.28': 3, 'model.layers.29': 3, 'model.layers.30': 3, 'model.layers.31': 3, 'model.layers.32': 3, 'model.layers.33': 3, 'model.layers.34': 3, 'model.layers.35': 3, 'model.layers.36': 4, 'model.layers.37': 4, 'model.layers.38': 4, 'model.layers.39': 4, 'model.layers.40': 4, 'model.layers.41': 4, 'model.layers.42': 4, 'model.layers.43': 4, 'model.layers.44': 4, 'model.layers.45': 5, 'model.layers.46': 5, 'model.layers.47': 5, 'model.layers.48': 5, 'model.layers.49': 5, 'model.layers.50': 5, 'model.layers.51': 5, 'model.layers.52': 5, 'model.layers.53': 5, 'model.layers.54': 6, 'model.layers.55': 6, 'model.layers.56': 6, 'model.layers.57': 6, 'model.layers.58': 6, 'model.layers.59': 6, 'model.layers.60': 6, 'model.layers.61': 6, 'model.layers.62': 6, 'model.layers.63': 7, 'model.layers.64': 7, 'model.layers.65': 7, 'model.layers.66': 7, 'model.layers.67': 7, 'model.layers.68': 7, 'model.layers.69': 7, 'model.layers.70': 7, 'model.layers.71': 7, 'model.final_layernorm': 7, 'lm_head': 7}
model = AutoModelForCausalLM.from_pretrained("ai21labs/AI21-Jamba-Large-1.6",
                                             torch_dtype=torch.bfloat16,
                    attn_implementation="flash_attention_2",
                                             quantization_config=quantization_config,
                                             device_map=device_map)

tokenizer = AutoTokenizer.from_pretrained("ai21labs/AI21-Jamba-Large-1.6")

messages = [
   {"role": "system", "content": "You are an ancient oracle who speaks in cryptic but wise phrases, always hinting at deeper meanings."},
   {"role": "user", "content": "Hello!"},
]

input_ids = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors='pt').to(model.device)

outputs = model.generate(input_ids, max_new_tokens=216)

# Decode the output
conversation = tokenizer.decode(outputs[0], skip_special_tokens=True)

# Split the conversation to get only the assistant's response
assistant_response = conversation.split(messages[-1]['content'])[1].strip()
print(assistant_response)
# Output: Seek and you shall find. The path is winding, but the journey is enlightening. What wisdom do you seek from the ancient echoes?

注意

  • 不要量化 Mamba 塊,以防止模型效能下降。

  • 不建議在沒有最佳化 Mamba 核心的情況下使用 Mamba,因為這會導致延遲顯著增加。如果你仍想在沒有核心的情況下使用 Mamba,請在 from_pretrained() 中設定 use_mamba_kernels=False

    import torch
    from transformers import AutoModelForCausalLM
    model = AutoModelForCausalLM.from_pretrained("ai21labs/AI21-Jamba-1.5-Large",
                                                 use_mamba_kernels=False)

JambaConfig

class transformers.JambaConfig

< >

( vocab_size = 65536 tie_word_embeddings = False hidden_size = 4096 intermediate_size = 14336 num_hidden_layers = 32 num_attention_heads = 32 num_key_value_heads = 8 hidden_act = 'silu' initializer_range = 0.02 rms_norm_eps = 1e-06 use_cache = True num_logits_to_keep = 1 output_router_logits = False router_aux_loss_coef = 0.001 pad_token_id = 0 bos_token_id = 1 eos_token_id = 2 sliding_window = None max_position_embeddings = 262144 attention_dropout = 0.0 num_experts_per_tok = 2 num_experts = 16 expert_layer_period = 2 expert_layer_offset = 1 attn_layer_period = 8 attn_layer_offset = 4 use_mamba_kernels = True mamba_d_state = 16 mamba_d_conv = 4 mamba_expand = 2 mamba_dt_rank = 'auto' mamba_conv_bias = True mamba_proj_bias = False **kwargs )

引數

  • vocab_size (int, 可選, 預設為 65536) — Jamba 模型的詞彙表大小。定義了在呼叫 JambaModel 時傳入的 inputs_ids 可以表示的不同詞元的數量。
  • tie_word_embeddings (bool, 可選, 預設為 False) — 是否應將模型的輸入和輸出詞嵌入繫結。請注意,這僅在模型具有輸出詞嵌入層時才相關。
  • hidden_size (int, 可選, 預設為 4096) — 隱藏表示的維度。
  • intermediate_size (int, 可選, 預設為 14336) — MLP 表示的維度。
  • num_hidden_layers (int, 可選, 預設為 32) — Transformer 編碼器中的隱藏層數量。
  • num_attention_heads (int, 可選, 預設為 32) — Transformer 編碼器中每個注意力層的注意力頭數量。
  • num_key_value_heads (int, 可選, 預設為 8) — 這是實現分組查詢注意力(Grouped Query Attention)時應使用的鍵值頭(key_value heads)的數量。如果 num_key_value_heads=num_attention_heads,模型將使用多頭注意力(MHA);如果 num_key_value_heads=1,模型將使用多查詢注意力(MQA);否則,使用 GQA。當將一個多頭檢查點轉換為 GQA 檢查點時,每個組的鍵和值頭應透過對該組內所有原始頭進行平均池化來構建。更多細節,請檢視這篇論文。如果未指定,將預設為 8
  • hidden_act (strfunction, 可選, 預設為 "silu") — 解碼器中的非線性啟用函式(函式或字串)。
  • initializer_range (float, 可選, 預設為 0.02) — 用於初始化所有權重矩陣的 truncated_normal_initializer 的標準差。
  • rms_norm_eps (float, 可選, 預設為 1e-06) — RMS 歸一化層使用的 epsilon 值。
  • use_cache (bool, 可選, 預設為 True) — 模型是否應返回最後的鍵/值注意力(並非所有模型都使用)。僅在 config.is_decoder=True 時相關。
  • num_logits_to_keep (intNone, 可選, 預設為 1) — 在生成過程中需要計算的提示(prompt) logits 的數量。如果為 None,則計算所有 logits。如果為整數值,則只計算最後 num_logits_to_keep 個 logits。預設為 1,因為生成時只需要最後一個提示詞元的 logits。對於長序列,整個序列的 logits 可能會佔用大量記憶體,因此設定 num_logits_to_keep=1 將顯著減少記憶體佔用。
  • output_router_logits (bool, 可選, 預設為 False) — 是否應由模型返回路由器(router)的 logits。啟用此項也將允許模型輸出輔助損失。更多詳情請參閱此處
  • router_aux_loss_coef (float, 可選, 預設為 0.001) — 總損失中的輔助損失因子。
  • pad_token_id (int, 可選, 預設為 0) — 填充詞元的 ID。
  • bos_token_id (int, 可選, 預設為 1) — “序列開始”詞元的 ID。
  • eos_token_id (int, 可選, 預設為 2) — “序列結束”詞元的 ID。
  • sliding_window (int, 可選) — 滑動視窗注意力的視窗大小。如果未指定,將預設為 None
  • max_position_embeddings (int, 可選, 預設為 262144) — 此值沒有實際效果。該模型預期使用的最大序列長度。它可以用於更長的序列,但效能可能會下降。
  • attention_dropout (float, 可選, 預設為 0.0) — 注意力機率的 dropout 比率。
  • num_experts_per_tok (int, 可選, 預設為 2) — 每個詞元要路由到的專家數量,也可以解釋為 top-p 路由引數。
  • num_experts (int, 可選, 預設為 16) — 每個稀疏 MLP 層的專家數量。
  • expert_layer_period (int, 可選, 預設為 2) — 每隔這麼多層,就會有一個專家層。
  • expert_layer_offset (int, 可選, 預設為 1) — 包含專家 MLP 層的第一個層的索引。
  • attn_layer_period (int, 可選, 預設為 8) — 每隔這麼多層,就會有一個普通的注意力層。
  • attn_layer_offset (int, 可選, 預設為 4) — 包含普通注意力 MLP 層的第一個層的索引。
  • use_mamba_kernels (bool, 可選, 預設為 True) — 標誌,指示是否使用快速 Mamba 核心。這些核心僅在安裝了 mamba-ssmcausal-conv1d,並且 Mamba 模組在 CUDA 裝置上執行時才可用。如果為 True 但核心不可用,則會引發 ValueError。
  • mamba_d_state (int, 可選, 預設為 16) — Mamba 狀態空間潛變數的維度。
  • mamba_d_conv (int, optional, 預設為 4) — Mamba 卷積核的大小
  • mamba_expand (int, optional, 預設為 2) — 用於確定 Mamba 中間大小的擴充套件因子(相對於 hidden_size)
  • mamba_dt_rank (Union[int,str], optional, 預設為 "auto") — Mamba 離散化投影矩陣的秩。"auto" 表示它將預設為 math.ceil(self.hidden_size / 16)
  • mamba_conv_bias (bool, optional, 預設為 True) — 指示是否在 Mamba 混合器塊的卷積層中使用偏置的標誌。
  • mamba_proj_bias (bool, optional, 預設為 False) — 指示是否在 Mamba 混合器塊的輸入和輸出投影([“in_proj”, “out_proj”])中使用偏置的標誌

這是一個配置類,用於儲存 JambaModel 的配置。它用於根據指定的引數例項化 Jamba 模型,定義模型架構。使用預設值例項化配置將產生與 Jamba-v0.1 模型類似的配置。

ai21labs/Jamba-v0.1

配置物件繼承自 PretrainedConfig,可用於控制模型輸出。請閱讀 PretrainedConfig 的文件以獲取更多資訊。

JambaModel

class transformers.JambaModel

< >

( config: JambaConfig )

引數

  • config (JambaConfig) — 包含模型所有引數的模型配置類。使用配置檔案初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。

基礎的 Jamba 模型,輸出原始的隱藏狀態,頂部沒有任何特定的頭部。

該模型繼承自 PreTrainedModel。請檢視超類文件,瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭部等)。

該模型也是一個 PyTorch torch.nn.Module 的子類。可以像常規的 PyTorch 模組一樣使用它,並參考 PyTorch 文件瞭解所有與通用用法和行為相關的事項。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.models.jamba.modeling_jamba.HybridMambaAttentionDynamicCache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None output_router_logits: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None ) transformers.modeling_outputs.MoeModelOutputWithPasttuple(torch.FloatTensor)

引數

  • input_ids (torch.LongTensor,形狀為 (batch_size, sequence_length), optional) — 詞彙表中輸入序列標記的索引。預設情況下,填充將被忽略。

    索引可以使用 AutoTokenizer 獲取。詳情請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (torch.Tensor,形狀為 (batch_size, sequence_length), optional) — 用於避免對填充標記索引執行注意力的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示標記未被掩碼
    • 0 表示標記被掩碼

    什麼是注意力掩碼?

  • position_ids (torch.LongTensor,形狀為 (batch_size, sequence_length), optional) — 每個輸入序列標記在位置嵌入中的位置索引。在 [0, config.n_positions - 1] 範圍內選擇。

    什麼是位置 ID?

  • past_key_values (~models.jamba.modeling_jamba.HybridMambaAttentionDynamicCache, optional) — 預計算的隱藏狀態(自注意力塊和交叉注意力塊中的鍵和值),可用於加速順序解碼。這通常是在解碼的先前階段,當 use_cache=Trueconfig.use_cache=True 時,由模型返回的 past_key_values

    允許兩種格式:

    • 一個 Cache 例項,請參閱我們的 kv 快取指南
    • 長度為 config.n_layerstuple(torch.FloatTensor) 元組,每個元組包含 2 個形狀為 (batch_size, num_heads, sequence_length, embed_size_per_head) 的張量。這也稱為舊版快取格式。

    模型將輸出與輸入相同的快取格式。如果沒有傳遞 past_key_values,將返回舊版快取格式。

    如果使用 past_key_values,使用者可以選擇只輸入最後一個 input_ids(那些沒有給出過去鍵值狀態的標記),形狀為 (batch_size, 1),而不是所有形狀為 (batch_size, sequence_length)input_ids

  • inputs_embeds (torch.FloatTensor,形狀為 (batch_size, sequence_length, hidden_size), optional) — 可選地,您可以選擇直接傳遞嵌入表示,而不是傳遞 input_ids。如果您希望比模型的內部嵌入查詢矩陣更好地控制如何將 input_ids 索引轉換為關聯向量,這會很有用。
  • use_cache (bool, optional) — 如果設定為 True,則返回 past_key_values 鍵值狀態,可用於加速解碼(參見 past_key_values)。
  • output_attentions (bool, optional) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的 attentions
  • output_hidden_states (bool, optional) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的 hidden_states
  • output_router_logits (bool, optional) — 是否返回所有路由器的 logits。它們對於計算路由器損失很有用,在推理期間不應返回。
  • cache_position (torch.LongTensor,形狀為 (sequence_length), optional) — 描述輸入序列標記在序列中位置的索引。與 position_ids 不同,此張量不受填充影響。它用於在正確的位置更新快取並推斷完整的序列長度。

返回

transformers.modeling_outputs.MoeModelOutputWithPasttuple(torch.FloatTensor)

一個 transformers.modeling_outputs.MoeModelOutputWithPast 或一個 torch.FloatTensor 的元組(如果傳遞了 return_dict=False 或當 config.return_dict=False 時),根據配置(JambaConfig)和輸入,包含各種元素。

  • last_hidden_state (torch.FloatTensor, 形狀為 (batch_size, sequence_length, hidden_size)) — 模型最後一層輸出的隱藏狀態序列。

  • past_key_values (Cache, optional, 當傳遞 use_cache=Trueconfig.use_cache=True 時返回) — 這是一個 Cache 例項。更多詳情,請參閱我們的 kv 快取指南

    包含預計算的隱藏狀態(自注意力塊中的鍵和值,如果 config.is_encoder_decoder=True,則還包括交叉注意力塊中的鍵和值),可用於(參見 past_key_values 輸入)加速順序解碼。

  • hidden_states (tuple(torch.FloatTensor), optional, 當傳遞 output_hidden_states=Trueconfig.output_hidden_states=True 時返回) — torch.FloatTensor 的元組(一個用於嵌入層的輸出,如果模型有嵌入層,+ 一個用於每層的輸出),形狀為 (batch_size, sequence_length, hidden_size)

    模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。

  • attentions (tuple(torch.FloatTensor), optional, 當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — torch.FloatTensor 的元組(每層一個),形狀為 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

  • router_logits (tuple(torch.FloatTensor), optional, 當傳遞 output_router_probs=Trueconfig.add_router_probs=Trueconfig.output_router_probs=True 時返回) — torch.FloatTensor 的元組(每層一個),形狀為 (batch_size, sequence_length, num_experts)

    由 MoE 路由器計算的原始路由器對數(softmax 後),這些術語用於計算專家混合模型的輔助損失。

JambaModel 的前向方法,覆蓋了 __call__ 特殊方法。

儘管前向傳遞的邏輯需要在此函式內定義,但之後應呼叫 Module 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

JambaForCausalLM

class transformers.JambaForCausalLM

< >

( config: JambaConfig )

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.models.jamba.modeling_jamba.HybridMambaAttentionDynamicCache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None output_router_logits: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None logits_to_keep: typing.Union[int, torch.Tensor] = 0 **loss_kwargs ) transformers.modeling_outputs.MoeCausalLMOutputWithPasttuple(torch.FloatTensor)

引數

  • input_ids (torch.LongTensor,形狀為 (batch_size, sequence_length), optional) — 詞彙表中輸入序列標記的索引。預設情況下,填充將被忽略。

    索引可以使用 AutoTokenizer 獲取。詳情請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (torch.Tensor,形狀為 (batch_size, sequence_length), optional) — 用於避免對填充標記索引執行注意力的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示標記未被掩碼
    • 0 表示標記被掩碼

    什麼是注意力掩碼?

  • position_ids (torch.LongTensor,形狀為 (batch_size, sequence_length), optional) — 每個輸入序列標記在位置嵌入中的位置索引。在 [0, config.n_positions - 1] 範圍內選擇。

    什麼是位置 ID?

  • past_key_values (~models.jamba.modeling_jamba.HybridMambaAttentionDynamicCache, optional) — 預計算的隱藏狀態(自注意力塊和交叉注意力塊中的鍵和值),可用於加速順序解碼。這通常是在解碼的先前階段,當 use_cache=Trueconfig.use_cache=True 時,由模型返回的 past_key_values

    允許兩種格式:

    • 一個 Cache 例項,請參閱我們的 kv 快取指南
    • 長度為 config.n_layerstuple(torch.FloatTensor) 元組,每個元組包含 2 個形狀為 (batch_size, num_heads, sequence_length, embed_size_per_head) 的張量。這也稱為舊版快取格式。

    模型將輸出與輸入相同的快取格式。如果沒有傳遞 past_key_values,將返回舊版快取格式。

    如果使用 past_key_values,使用者可以選擇只輸入最後一個 input_ids(那些沒有給出過去鍵值狀態的標記),形狀為 (batch_size, 1),而不是所有形狀為 (batch_size, sequence_length)input_ids

  • inputs_embeds (torch.FloatTensor,形狀為 (batch_size, sequence_length, hidden_size), optional) — 可選地,您可以選擇直接傳遞嵌入表示,而不是傳遞 input_ids。如果您希望比模型的內部嵌入查詢矩陣更好地控制如何將 input_ids 索引轉換為關聯向量,這會很有用。
  • labels (torch.LongTensor,形狀為 (batch_size, sequence_length), optional) — 用於計算掩碼語言建模損失的標籤。索引應在 [0, ..., config.vocab_size] 或 -100 之間(參見 input_ids 文件字串)。索引設定為 -100 的標記將被忽略(掩碼),損失僅針對標籤在 [0, ..., config.vocab_size] 中的標記計算。
  • use_cache (bool, optional) — 如果設定為 True,則返回 past_key_values 鍵值狀態,可用於加速解碼(參見 past_key_values)。
  • output_attentions (bool, optional) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的 attentions
  • output_hidden_states (bool, optional) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的 hidden_states
  • output_router_logits (bool, optional) — 是否返回所有路由器的 logits。它們對於計算路由器損失很有用,在推理期間不應返回。
  • cache_position (torch.LongTensor,形狀為 (sequence_length), optional) — 描述輸入序列標記在序列中位置的索引。與 position_ids 不同,此張量不受填充影響。它用於在正確的位置更新快取並推斷完整的序列長度。
  • logits_to_keep (Union[int, torch.Tensor], 預設為 0) — 如果是 int,則計算最後 logits_to_keep 個標記的 logits。如果為 0,則計算所有 input_ids 的 logits(特殊情況)。生成時只需要最後一個標記的 logits,僅為該標記計算它們可以節省記憶體,這對於長序列或大詞彙表大小非常重要。如果是一個 torch.Tensor,則必須是一維的,對應於要在序列長度維度中保留的索引。這在使用打包張量格式(批處理和序列長度的單個維度)時很有用。

返回

transformers.modeling_outputs.MoeCausalLMOutputWithPasttuple(torch.FloatTensor)

一個 transformers.modeling_outputs.MoeCausalLMOutputWithPast 或一個 torch.FloatTensor 的元組(如果傳遞了 return_dict=False 或當 config.return_dict=False 時),根據配置(JambaConfig)和輸入,包含各種元素。

  • loss (torch.FloatTensor 形狀為 (1,)可選,當提供 labels 時返回) — 語言建模損失(用於下一個 token 預測)。

  • logits (形狀為 (batch_size, sequence_length, config.vocab_size)torch.FloatTensor) — 語言建模頭部的預測分數(SoftMax 之前的每個詞彙標記的分數)。

  • aux_loss (torch.FloatTensor可選,當提供 labels 時返回) — 稀疏模組的輔助損失。

  • router_logits (tuple(torch.FloatTensor), optional, 當傳遞 output_router_probs=Trueconfig.add_router_probs=Trueconfig.output_router_probs=True 時返回) — torch.FloatTensor 的元組(每層一個),形狀為 (batch_size, sequence_length, num_experts)

    由 MoE 路由器計算的原始路由器對數(softmax 後),這些術語用於計算專家混合模型的輔助損失。

  • past_key_values (Cache, optional, 當傳遞 use_cache=Trueconfig.use_cache=True 時返回) — 這是一個 Cache 例項。更多詳情,請參閱我們的 kv 快取指南

    包含預計算的隱藏狀態(自注意力塊中的鍵和值),可用於(參見 past_key_values 輸入)加速順序解碼。

  • hidden_states (tuple(torch.FloatTensor), optional, 當傳遞 output_hidden_states=Trueconfig.output_hidden_states=True 時返回) — torch.FloatTensor 的元組(一個用於嵌入層的輸出,如果模型有嵌入層,+ 一個用於每層的輸出),形狀為 (batch_size, sequence_length, hidden_size)

    模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。

  • attentions (tuple(torch.FloatTensor), optional, 當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — torch.FloatTensor 的元組(每層一個),形狀為 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

The JambaForCausalLM forward method, overrides the __call__ special method.

儘管前向傳遞的邏輯需要在此函式內定義,但之後應呼叫 Module 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> from transformers import AutoTokenizer, JambaForCausalLM

>>> model = JambaForCausalLM.from_pretrained("ai21labs/Jamba-v0.1")
>>> tokenizer = AutoTokenizer.from_pretrained("ai21labs/Jamba-v0.1")

>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")

>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."

JambaForSequenceClassification

class transformers.JambaForSequenceClassification

< >

( config )

引數

  • config (JambaForSequenceClassification) — 包含模型所有引數的模型配置類。使用配置檔案初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。

Jamba 模型頂部帶有一個序列分類頭(線性層)。

JambaForSequenceClassification 使用最後一個標記來進行分類,就像其他因果模型(例如 GPT-2)一樣。

由於它對最後一個標記進行分類,因此需要知道最後一個標記的位置。如果在配置中定義了 pad_token_id,它會找到每行中不是填充標記的最後一個標記。如果沒有定義 pad_token_id,它會簡單地取批次中每行的最後一個值。由於當傳遞 inputs_embeds 而不是 input_ids 時無法猜測填充標記,它會執行相同的操作(取批次中每行的最後一個值)。

該模型繼承自 PreTrainedModel。請檢視超類文件,瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭部等)。

該模型也是一個 PyTorch torch.nn.Module 的子類。可以像常規的 PyTorch 模組一樣使用它,並參考 PyTorch 文件瞭解所有與通用用法和行為相關的事項。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None ) transformers.modeling_outputs.SequenceClassifierOutputWithPasttuple(torch.FloatTensor)

引數

  • input_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 詞彙表中輸入序列標記的索引。預設情況下,填充將被忽略。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (torch.Tensor,形狀為 (batch_size, sequence_length)可選) — 用於避免對填充標記索引執行注意力操作的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示標記未被掩碼
    • 0 表示標記已被掩碼

    什麼是注意力掩碼?

  • position_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 位置嵌入中每個輸入序列標記的位置索引。在 [0, config.n_positions - 1] 範圍內選擇。

    什麼是位置 ID?

  • past_key_values (~cache_utils.Cache可選) — 預計算的隱藏狀態(自注意力和交叉注意力塊中的鍵和值),可用於加速序列解碼。這通常包括在解碼的前一個階段,當 use_cache=Trueconfig.use_cache=True 時,模型返回的 past_key_values

    允許兩種格式:

    • 一個 Cache 例項,請參閱我們的 kv 快取指南
    • 一個長度為 config.n_layerstuple(torch.FloatTensor) 元組,其中每個元組包含 2 個形狀為 (batch_size, num_heads, sequence_length, embed_size_per_head) 的張量。這也稱為舊版快取格式。

    模型將輸出與輸入相同的快取格式。如果沒有傳遞 past_key_values,將返回舊版快取格式。

    如果使用 past_key_values,使用者可以選擇只輸入最後的 input_ids(那些沒有提供其過去鍵值狀態給此模型的標記),形狀為 (batch_size, 1),而不是所有形狀為 (batch_size, sequence_length)input_ids

  • inputs_embeds (torch.FloatTensor,形狀為 (batch_size, sequence_length, hidden_size)可選) — 可選地,你可以選擇直接傳遞嵌入表示,而不是傳遞 input_ids。如果你希望比模型內部的嵌入查詢矩陣有更多控制權來將 input_ids 索引轉換為相關向量,這將非常有用。
  • labels (torch.LongTensor,形狀為 (batch_size,)可選) — 用於計算序列分類/迴歸損失的標籤。索引應在 [0, ..., config.num_labels - 1] 範圍內。如果 config.num_labels == 1,則計算迴歸損失(均方損失);如果 config.num_labels > 1,則計算分類損失(交叉熵)。
  • use_cache (bool可選) — 如果設定為 True,則返回 past_key_values 鍵值狀態,並可用於加速解碼(請參閱 past_key_values)。
  • output_attentions (bool可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的 attentions
  • output_hidden_states (bool可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的 hidden_states

返回

transformers.modeling_outputs.SequenceClassifierOutputWithPasttuple(torch.FloatTensor)

一個 transformers.modeling_outputs.SequenceClassifierOutputWithPast 或一個 torch.FloatTensor 元組(如果傳遞了 return_dict=False 或當 config.return_dict=False 時),包含根據配置(JambaConfig)和輸入而變化的不同元素。

  • loss (形狀為 (1,)torch.FloatTensor可選,當提供 labels 時返回) — 分類損失(如果 config.num_labels==1,則為迴歸損失)。

  • logits (形狀為 (batch_size, config.num_labels)torch.FloatTensor) — 分類(如果 config.num_labels==1,則為迴歸)分數(SoftMax 之前)。

  • past_key_values (Cache, optional, 當傳遞 use_cache=Trueconfig.use_cache=True 時返回) — 這是一個 Cache 例項。更多詳情,請參閱我們的 kv 快取指南

    包含預計算的隱藏狀態(自注意力塊中的鍵和值),可用於(參見 past_key_values 輸入)加速順序解碼。

  • hidden_states (tuple(torch.FloatTensor), optional, 當傳遞 output_hidden_states=Trueconfig.output_hidden_states=True 時返回) — torch.FloatTensor 的元組(一個用於嵌入層的輸出,如果模型有嵌入層,+ 一個用於每層的輸出),形狀為 (batch_size, sequence_length, hidden_size)

    模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。

  • attentions (tuple(torch.FloatTensor), optional, 當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — torch.FloatTensor 的元組(每層一個),形狀為 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

JambaForSequenceClassification 的前向方法重寫了 __call__ 特殊方法。

儘管前向傳遞的邏輯需要在此函式內定義,但之後應呼叫 Module 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

單標籤分類示例

>>> import torch
>>> from transformers import AutoTokenizer, JambaForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("ai21labs/Jamba-v0.1")
>>> model = JambaForSequenceClassification.from_pretrained("ai21labs/Jamba-v0.1")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_id = logits.argmax().item()
>>> model.config.id2label[predicted_class_id]
...

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = JambaForSequenceClassification.from_pretrained("ai21labs/Jamba-v0.1", num_labels=num_labels)

>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...

多標籤分類示例

>>> import torch
>>> from transformers import AutoTokenizer, JambaForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("ai21labs/Jamba-v0.1")
>>> model = JambaForSequenceClassification.from_pretrained("ai21labs/Jamba-v0.1", problem_type="multi_label_classification")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = JambaForSequenceClassification.from_pretrained(
...     "ai21labs/Jamba-v0.1", num_labels=num_labels, problem_type="multi_label_classification"
... )

>>> labels = torch.sum(
...     torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss
< > 在 GitHub 上更新

© . This site is unofficial and not affiliated with Hugging Face, Inc.