Transformers 文件
Blenderbot
並獲得增強的文件體驗
開始使用
Blenderbot
概述
Blender 聊天機器人模型由 Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston 於 2020 年 4 月 30 日在論文 《構建開放域聊天機器人的秘訣》 中提出。
論文摘要如下:
摘要內容:構建開放域聊天機器人是機器學習研究中一個具有挑戰性的領域。雖然先前的工作表明,擴大神經網路模型的引數數量和訓練資料規模可以改善結果,但我們發現,其他因素對於高效能聊天機器人同樣重要。良好的對話需要專家級對話者無縫融合多種技能:提供引人入勝的話題、傾聽對話夥伴、適當地展示知識、同理心和個性,同時保持一致的人格。我們證明,當給予適當的訓練資料和選擇合適的生成策略時,大規模模型可以學習這些技能。我們構建了具有 9000 萬、27 億和 94 億引數的變體模型,並公開了我們的模型和程式碼。人工評估顯示,在多輪對話中,我們的最佳模型在參與度和人性化方面優於現有方法。然後,我們透過分析模型的失敗案例來討論這項工作的侷限性。
此模型由 sshleifer 貢獻。作者的程式碼可以在 這裡 找到。
使用技巧和示例
Blenderbot 是一個使用絕對位置嵌入的模型,因此通常建議在輸入的右側而不是左側進行填充。
一個示例
>>> from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration
>>> mname = "facebook/blenderbot-400M-distill"
>>> model = BlenderbotForConditionalGeneration.from_pretrained(mname)
>>> tokenizer = BlenderbotTokenizer.from_pretrained(mname)
>>> UTTERANCE = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer([UTTERANCE], return_tensors="pt")
>>> reply_ids = model.generate(**inputs)
>>> print(tokenizer.batch_decode(reply_ids))
["<s> That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?</s>"]
實現說明
- Blenderbot 使用標準的基於 seq2seq 模型 transformer 的架構。
- 可用的檢查點可以在 模型中心 找到。
- 這是*預設的* Blenderbot 模型類。然而,一些較小的檢查點,例如 `facebook/blenderbot_small_90M`,具有不同的架構,因此應與 BlenderbotSmall 一起使用。
資源
BlenderbotConfig
class transformers.BlenderbotConfig
< 原始檔 >( vocab_size = 8008 max_position_embeddings = 128 encoder_layers = 2 encoder_ffn_dim = 10240 encoder_attention_heads = 32 decoder_layers = 24 decoder_ffn_dim = 10240 decoder_attention_heads = 32 encoder_layerdrop = 0.0 decoder_layerdrop = 0.0 use_cache = True is_encoder_decoder = True activation_function = 'gelu' d_model = 2560 dropout = 0.1 attention_dropout = 0.0 activation_dropout = 0.0 init_std = 0.02 decoder_start_token_id = 1 scale_embedding = False pad_token_id = 0 bos_token_id = 1 eos_token_id = 2 encoder_no_repeat_ngram_size = 3 forced_eos_token_id = 2 **kwargs )
引數
- vocab_size (
int
, 可選, 預設為 50265) — Blenderbot 模型的詞彙表大小。定義了在呼叫 BlenderbotModel 或 TFBlenderbotModel 時傳遞的 `inputs_ids` 可以表示的不同標記的數量。 - d_model (
int
, 可選, 預設為 1024) — 層和池化層的維度。 - encoder_layers (
int
, 可選, 預設為 12) — 編碼器層數。 - decoder_layers (
int
, 可選, 預設為 12) — 解碼器層數。 - encoder_attention_heads (
int
, 可選, 預設為 16) — Transformer 編碼器中每個注意力層的注意力頭數量。 - decoder_attention_heads (
int
, 可選, 預設為 16) — Transformer 解碼器中每個注意力層的注意力頭數量。 - decoder_ffn_dim (
int
, 可選, 預設為 4096) — 解碼器中“中間”層(通常稱為前饋層)的維度。 - encoder_ffn_dim (
int
, 可選, 預設為 4096) — 解碼器中“中間”層(通常稱為前饋層)的維度。 - activation_function (
str
或function
, 可選, 預設為"gelu"
) — 編碼器和池化器中的非線性啟用函式(函式或字串)。如果為字串,支援"gelu"
,"relu"
,"silu"
和"gelu_new"
。 - dropout (
float
, 可選, 預設為 0.1) — 嵌入層、編碼器和池化器中所有全連線層的丟棄機率。 - attention_dropout (
float
, 可選, 預設為 0.0) — 注意力機率的丟棄率。 - activation_dropout (
float
, 可選, 預設為 0.0) — 全連線層內啟用函式的丟棄率。 - max_position_embeddings (
int
, 可選, 預設為 128) — 此模型可能使用的最大序列長度。通常將其設定為一個較大的值以防萬一(例如 512、1024 或 2048)。 - init_std (
float
, 可選, 預設為 0.02) — 用於初始化所有權重矩陣的 truncated_normal_initializer 的標準差。 - encoder_layerdrop (
float
, 可選, 預設為 0.0) — 編碼器的 LayerDrop 機率。更多細節請參閱 [LayerDrop 論文](https://huggingface.co/papers/1909.11556)。 - decoder_layerdrop (
float
, 可選, 預設為 0.0) — 解碼器的 LayerDrop 機率。更多細節請參閱 [LayerDrop 論文](https://huggingface.co/papers/1909.11556)。 - scale_embedding (
bool
, 可選, 預設為False
) — 是否透過除以 sqrt(d_model) 來縮放嵌入。 - use_cache (
bool
, 可選, 預設為True
) — 模型是否應返回最後一個鍵/值注意力(並非所有模型都使用)。 - forced_eos_token_id (
int
, 可選, 預設為 2) — 當達到 `max_length` 時,強制作為最後生成標記的 ID。通常設定為 `eos_token_id`。
這是用於儲存 BlenderbotModel 配置的配置類。它用於根據指定的引數例項化一個 Blenderbot 模型,定義模型架構。使用預設值例項化配置將產生與 Blenderbot facebook/blenderbot-3B 架構類似的配置。
配置物件繼承自 PretrainedConfig,可用於控制模型輸出。更多資訊請閱讀 PretrainedConfig 的文件。
示例
>>> from transformers import BlenderbotConfig, BlenderbotModel
>>> # Initializing a Blenderbot facebook/blenderbot-3B style configuration
>>> configuration = BlenderbotConfig()
>>> # Initializing a model (with random weights) from the facebook/blenderbot-3B style configuration
>>> model = BlenderbotModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
BlenderbotTokenizer
class transformers.BlenderbotTokenizer
< 源 >( vocab_file merges_file errors = 'replace' bos_token = '<s>' eos_token = '</s>' sep_token = '</s>' cls_token = '<s>' unk_token = '<unk>' pad_token = '<pad>' mask_token = '<mask>' add_prefix_space = False **kwargs )
引數
- vocab_file (
str
) — 詞彙表文件的路徑。 - merges_file (
str
) — merges 檔案的路徑。 - errors (
str
, 可選, 預設為"replace"
) — 將位元組解碼為 UTF-8 時遵循的正規化。有關更多資訊,請參閱 bytes.decode。 - bos_token (
str
, 可選, 預設為"<s>"
) — 預訓練期間使用的序列開始標記。可用作序列分類器標記。使用特殊標記構建序列時,這不是用於序列開始的標記。使用的標記是 `cls_token`。
- eos_token (
str
, 可選, 預設為"</s>"
) — 序列結束標記。使用特殊標記構建序列時,這不是用於序列結束的標記。使用的標記是 `sep_token`。
- sep_token (
str
, 可選, 預設為"</s>"
) — 分隔符標記,用於從多個序列構建一個序列,例如,用於序列分類的兩個序列,或用於問答的文字和問題。它也用作使用特殊標記構建的序列的最後一個標記。 - cls_token (
str
, 可選, 預設為"<s>"
) — 分類器標記,用於進行序列分類(對整個序列進行分類,而不是對每個標記進行分類)。當使用特殊標記構建序列時,它是序列的第一個標記。 - unk_token (
str
, 可選, 預設為"<unk>"
) — 未知標記。不在詞彙表中的標記無法轉換為 ID,而是被設定為此標記。 - pad_token (
str
, 可選, 預設為"<pad>"
) — 用於填充的標記,例如在批處理不同長度的序列時使用。 - mask_token (
str
, 可選, 預設為"<mask>"
) — 用於遮蔽值的標記。這是使用掩碼語言模型訓練此模型時使用的標記。這是模型將嘗試預測的標記。 - add_prefix_space (
bool
, 可選, 預設為False
) — 是否在輸入前新增一個初始空格。這允許將首個單詞與其他任何單詞一樣處理。(Blenderbot tokenizer 透過前面的空格來檢測單詞的開頭)。
構建一個 Blenderbot 分詞器,它派生自 GPT-2 分詞器,使用位元組級位元組對編碼(Byte-Pair-Encoding)。
這個分詞器經過訓練,將空格視為詞元的一部分(有點像 sentencepiece),所以一個詞會
無論是否在句子開頭(無空格),編碼方式都會不同
>>> from transformers import BlenderbotTokenizer
>>> tokenizer = BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B")
>>> tokenizer.add_prefix_space = False
>>> tokenizer("Hello world")["input_ids"]
[47, 921, 86, 1085, 2]
>>> tokenizer(" Hello world")["input_ids"]
[6950, 1085, 2]
您可以透過在例項化此分詞器時或在對某些文字呼叫它時傳遞 add_prefix_space=True
來繞過此行為,但由於模型並非以這種方式進行預訓練,這可能會導致效能下降。
當與 is_split_into_words=True
一起使用時,此分詞器會在每個詞(甚至是第一個詞)之前新增一個空格。
該分詞器繼承自 PreTrainedTokenizer,其中包含了大部分主要方法。使用者應參考此超類以獲取有關這些方法的更多資訊。
BlenderbotTokenizerFast
class transformers.BlenderbotTokenizerFast
< 源 >( vocab_file = None merges_file = None tokenizer_file = None errors = 'replace' bos_token = '<s>' eos_token = '</s>' sep_token = '</s>' cls_token = '<s>' unk_token = '<unk>' pad_token = '<pad>' mask_token = '<mask>' add_prefix_space = False trim_offsets = True **kwargs )
引數
- vocab_file (
str
) — 詞彙表文件的路徑。 - merges_file (
str
) — merges 檔案的路徑。 - errors (
str
, 可選, 預設為"replace"
) — 將位元組解碼為 UTF-8 時遵循的正規化。有關更多資訊,請參閱 bytes.decode。 - bos_token (
str
, 可選, 預設為"<s>"
) — 預訓練期間使用的序列開始標記。可用作序列分類器標記。使用特殊標記構建序列時,這不是用於序列開始的標記。使用的標記是 `cls_token`。
- eos_token (
str
, 可選, 預設為"</s>"
) — 序列結束標記。使用特殊標記構建序列時,這不是用於序列結束的標記。使用的標記是 `sep_token`。
- sep_token (
str
, 可選, 預設為"</s>"
) — 分隔符標記,用於從多個序列構建一個序列,例如,用於序列分類的兩個序列,或用於問答的文字和問題。它也用作使用特殊標記構建的序列的最後一個標記。 - cls_token (
str
, 可選, 預設為"<s>"
) — 分類器標記,用於進行序列分類(對整個序列進行分類,而不是對每個標記進行分類)。當使用特殊標記構建序列時,它是序列的第一個標記。 - unk_token (
str
, 可選, 預設為"<unk>"
) — 未知標記。不在詞彙表中的標記無法轉換為 ID,而是被設定為此標記。 - pad_token (
str
, 可選, 預設為"<pad>"
) — 用於填充的標記,例如在批處理不同長度的序列時使用。 - mask_token (
str
, 可選, 預設為"<mask>"
) — 用於遮蔽值的標記。這是使用掩碼語言模型訓練此模型時使用的標記。這是模型將嘗試預測的標記。 - add_prefix_space (
bool
, 可選, 預設為False
) — 是否在輸入前新增一個初始空格。這允許將首個單詞與其他任何單詞一樣處理。(Blenderbot tokenizer 透過前面的空格來檢測單詞的開頭)。 - trim_offsets (
bool
, 可選, 預設為True
) — 後處理步驟是否應修剪偏移量以避免包含空格。
構建一個“快速”的 Blenderbot 分詞器(由 HuggingFace 的 *tokenizers* 庫支援),它派生自 GPT-2 分詞器,使用位元組級位元組對編碼(Byte-Pair-Encoding)。
這個分詞器經過訓練,將空格視為詞元的一部分(有點像 sentencepiece),所以一個詞會
無論是否在句子開頭(無空格),編碼方式都會不同
>>> from transformers import BlenderbotTokenizerFast
>>> tokenizer = BlenderbotTokenizerFast.from_pretrained("facebook/blenderbot-3B")
>>> tokenizer("Hello world")["input_ids"]
[6950, 1085, 2]
>>> tokenizer(" Hello world")["input_ids"]
[6950, 1085, 2]
您可以透過在例項化此分詞器時或在對某些文字呼叫它時傳遞 add_prefix_space=True
來繞過此行為,但由於模型並非以這種方式進行預訓練,這可能會導致效能下降。
當與 is_split_into_words=True
一起使用時,此分詞器需要以 add_prefix_space=True
進行例項化。
該分詞器繼承自 PreTrainedTokenizerFast,其中包含了大部分主要方法。使用者應參考此超類以獲取有關這些方法的更多資訊。
BlenderbotModel
有關 *forward* 和 *generate* 的引數,請參閱 BartModel
class transformers.BlenderbotModel
< 源 >( config: BlenderbotConfig )
引數
- config (BlenderbotConfig) — 模型配置類,包含模型的所有引數。使用配置檔案初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法以載入模型權重。
Blenderbot 基礎模型,輸出原始的隱藏狀態,頂部沒有任何特定的頭。
該模型繼承自 PreTrainedModel。請檢視超類文件以瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭部等)。
該模型也是一個 PyTorch torch.nn.Module 子類。可以像常規的 PyTorch 模組一樣使用它,並參考 PyTorch 文件瞭解所有與常規用法和行為相關的事項。
forward
< 源 >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None decoder_input_ids: typing.Optional[torch.LongTensor] = None decoder_attention_mask: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.Tensor] = None decoder_head_mask: typing.Optional[torch.Tensor] = None cross_attn_head_mask: typing.Optional[torch.Tensor] = None encoder_outputs: typing.Union[tuple, transformers.modeling_outputs.BaseModelOutput, NoneType] = None past_key_values: typing.Optional[list[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.Tensor] = None decoder_inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.Tensor] = None ) → transformers.modeling_outputs.Seq2SeqModelOutput or tuple(torch.FloatTensor)
引數
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, 可選) — 詞彙表中輸入序列標記的索引。預設情況下,填充將被忽略。可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
of shape(batch_size, sequence_length)
, 可選) — 避免對填充標記索引執行注意力的掩碼。掩碼值在 `[0, 1]` 中選擇:- 1 表示標記未被遮蔽,
- 0 表示標記被遮蔽。
- decoder_input_ids (
torch.LongTensor
of shape(batch_size, target_sequence_length)
, 可選) — 詞彙表中解碼器輸入序列標記的索引。可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
Blenderbot 使用 `bos_token_id` 作為生成 `decoder_input_ids` 的起始標記。如果使用 `past_key_values`,可以選擇只輸入最後一個 `decoder_input_ids`(請參閱 `past_key_values`)。
- decoder_attention_mask (
torch.LongTensor
of shape(batch_size, target_sequence_length)
, 可選) — 預設行為:生成一個忽略 `decoder_input_ids` 中填充標記的張量。預設情況下也會使用因果掩碼。 - head_mask (
torch.Tensor
of shape(num_heads,)
or(num_layers, num_heads)
, 可選) — 用於使自注意力模組的選定頭部無效的掩碼。掩碼值在 `[0, 1]` 中選擇:- 1 表示頭部未被遮蔽,
- 0 表示頭部被遮蔽。
- decoder_head_mask (
torch.Tensor
of shape(decoder_layers, decoder_attention_heads)
, 可選) — 用於使解碼器中注意力模組的選定頭部無效的掩碼。掩碼值在 `[0, 1]` 中選擇:- 1 表示頭部未被遮蔽,
- 0 表示頭部被遮蔽。
- cross_attn_head_mask (
torch.Tensor
of shape(decoder_layers, decoder_attention_heads)
, 可選) — 用於使解碼器中交叉注意力模組的選定頭部無效的掩碼。掩碼值在 `[0, 1]` 中選擇:- 1 表示頭部未被遮蔽,
- 0 表示頭部被遮蔽。
- encoder_outputs (
Union[tuple, ~modeling_outputs.BaseModelOutput, NoneType]
) — 由 (`last_hidden_state`, *可選*: `hidden_states`, *可選*: `attentions`) 組成的元組。`last_hidden_state` 形狀為 `(batch_size, sequence_length, hidden_size)`,*可選*) 是編碼器最後一層輸出的隱藏狀態序列。用於解碼器的交叉注意力。 - past_key_values (
list[torch.FloatTensor]
, 可選) — 預先計算的隱藏狀態(自注意力塊和交叉注意力塊中的鍵和值),可用於加速順序解碼。這通常包括在解碼的前一階段,當 `use_cache=True` 或 `config.use_cache=True` 時由模型返回的 `past_key_values`。允許兩種格式:
- 一個 Cache 例項,請參閱我們的 kv 快取指南;
- 一個長度為 `config.n_layers` 的 `tuple(torch.FloatTensor)` 元組,每個元組有兩個形狀為 `(batch_size, num_heads, sequence_length, embed_size_per_head)` 的張量。這也稱為舊版快取格式。
模型將輸出與輸入相同的快取格式。如果沒有傳遞 `past_key_values`,將返回舊版快取格式。
如果使用 `past_key_values`,使用者可以選擇只輸入最後一個 `input_ids`(那些沒有為其提供過去鍵值狀態的 ID),形狀為 `(batch_size, 1)`,而不是所有形狀為 `(batch_size, sequence_length)` 的 `input_ids`。
- inputs_embeds (
torch.Tensor
of shape(batch_size, sequence_length, hidden_size)
, 可選) — 或者,你可以選擇不傳遞 `input_ids`,而是直接傳遞一個嵌入表示。如果你想比模型內部的嵌入查詢矩陣更好地控制如何將 `input_ids` 索引轉換為相關向量,這將非常有用。 - decoder_inputs_embeds (
torch.FloatTensor
of shape(batch_size, target_sequence_length, hidden_size)
, 可選) — 或者,你可以選擇不傳遞 `decoder_input_ids`,而是直接傳遞一個嵌入表示。如果使用 `past_key_values`,可以選擇只輸入最後一個 `decoder_inputs_embeds`(請參閱 `past_key_values`)。如果你想比模型內部的嵌入查詢矩陣更好地控制如何將 `decoder_input_ids` 索引轉換為相關向量,這將非常有用。如果 `decoder_input_ids` 和 `decoder_inputs_embeds` 都未設定,`decoder_inputs_embeds` 將取 `inputs_embeds` 的值。
- use_cache (
bool
, 可選) — 如果設定為 `True`,則返回 `past_key_values` 鍵值狀態,可用於加速解碼(請參閱 `past_key_values`)。 - output_attentions (
bool
, 可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的 `attentions`。 - output_hidden_states (
bool
, 可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的 `hidden_states`。 - return_dict (
bool
, 可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。 - cache_position (
torch.Tensor
,形狀為(sequence_length)
,可選) — 描述輸入序列中詞元位置的索引。與position_ids
相反,此張量不受填充的影響。它用於在正確的位置更新快取並推斷完整的序列長度。
返回
transformers.modeling_outputs.Seq2SeqModelOutput 或 tuple(torch.FloatTensor)
一個 transformers.modeling_outputs.Seq2SeqModelOutput 或一個 torch.FloatTensor
的元組(如果傳遞了 return_dict=False
或當 config.return_dict=False
時),根據配置(BlenderbotConfig)和輸入,包含各種元素。
-
last_hidden_state (
torch.FloatTensor
,形狀為(batch_size, sequence_length, hidden_size)
) — 模型解碼器最後一層輸出的隱藏狀態序列。如果使用了
past_key_values
,則只輸出形狀為(batch_size, 1, hidden_size)
的序列的最後一個隱藏狀態。 -
past_key_values (
EncoderDecoderCache
,可選,當傳遞use_cache=True
或當config.use_cache=True
時返回) — 這是一個 EncoderDecoderCache 例項。更多詳情,請參閱我們的 kv 快取指南。包含預先計算的隱藏狀態(自注意力塊和交叉注意力塊中的鍵和值),可用於(參見
past_key_values
輸入)加速順序解碼。 -
decoder_hidden_states (
tuple(torch.FloatTensor)
,可選,當傳遞output_hidden_states=True
或當config.output_hidden_states=True
時返回) —torch.FloatTensor
的元組(一個用於嵌入層的輸出,如果模型有嵌入層,+ 一個用於每一層的輸出),形狀為(batch_size, sequence_length, hidden_size)
。解碼器在每個層輸出的隱藏狀態,加上可選的初始嵌入輸出。
-
decoder_attentions (
tuple(torch.FloatTensor)
,可選,當傳遞output_attentions=True
或當config.output_attentions=True
時返回) —torch.FloatTensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。解碼器的注意力權重,在注意力 softmax 之後,用於計算自注意力頭中的加權平均。
-
cross_attentions (
tuple(torch.FloatTensor)
,可選,當傳遞output_attentions=True
或當config.output_attentions=True
時返回) —torch.FloatTensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。解碼器交叉注意力層的注意力權重,在注意力 softmax 之後,用於計算交叉注意力頭中的加權平均。
-
encoder_last_hidden_state (
torch.FloatTensor
,形狀為(batch_size, sequence_length, hidden_size)
,可選) — 模型編碼器最後一層輸出的隱藏狀態序列。 -
encoder_hidden_states (
tuple(torch.FloatTensor)
,可選,當傳遞output_hidden_states=True
或當config.output_hidden_states=True
時返回) —torch.FloatTensor
的元組(一個用於嵌入層的輸出,如果模型有嵌入層,+ 一個用於每一層的輸出),形狀為(batch_size, sequence_length, hidden_size)
。編碼器在每個層輸出的隱藏狀態,加上可選的初始嵌入輸出。
-
encoder_attentions (
tuple(torch.FloatTensor)
,可選,當傳遞output_attentions=True
或當config.output_attentions=True
時返回) —torch.FloatTensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。編碼器的注意力權重,在注意力 softmax 之後,用於計算自注意力頭中的加權平均。
BlenderbotModel 的 forward 方法會覆蓋 __call__
特殊方法。
儘管前向傳播的流程需要在此函式中定義,但之後應呼叫 Module
例項而不是此函式,因為前者會處理預處理和後處理步驟,而後者會靜默忽略它們。
示例
>>> from transformers import AutoTokenizer, BlenderbotModel
>>> model = BlenderbotModel.from_pretrained("facebook/blenderbot-400M-distill")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
>>> inputs = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="pt")
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
>>> outputs = model(input_ids=inputs.input_ids, decoder_input_ids=decoder_input_ids)
>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 6, 1280]
BlenderbotForConditionalGeneration
有關 forward 和 generate 的引數,請參閱 BartForConditionalGeneration。
class transformers.BlenderbotForConditionalGeneration
< 原始碼 >( config: BlenderbotConfig )
引數
- config (BlenderbotConfig) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化時,不會載入與模型關聯的權重,僅載入配置。請檢視 from_pretrained() 方法來載入模型權重。
帶有語言模型頭的 Blenderbot 模型。可用於摘要任務。
該模型繼承自 PreTrainedModel。請檢視超類文件以瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭部等)。
該模型也是一個 PyTorch torch.nn.Module 子類。可以像常規的 PyTorch 模組一樣使用它,並參考 PyTorch 文件瞭解所有與常規用法和行為相關的事項。
forward
< 原始碼 >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None decoder_input_ids: typing.Optional[torch.LongTensor] = None decoder_attention_mask: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.Tensor] = None decoder_head_mask: typing.Optional[torch.Tensor] = None cross_attn_head_mask: typing.Optional[torch.Tensor] = None encoder_outputs: typing.Union[tuple, transformers.modeling_outputs.BaseModelOutput, NoneType] = None past_key_values: typing.Optional[list[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.Tensor] = None decoder_inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.Tensor] = None ) → transformers.modeling_outputs.Seq2SeqLMOutput 或 tuple(torch.FloatTensor)
引數
- input_ids (
torch.LongTensor
,形狀為(batch_size, sequence_length)
,可選) — 詞彙表中輸入序列詞元的索引。預設情況下將忽略填充。可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形狀為(batch_size, sequence_length)
,可選) — 用於避免對填充詞元索引執行注意力機制的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示詞元未被掩碼,
- 0 表示詞元被掩碼。
- decoder_input_ids (
torch.LongTensor
,形狀為(batch_size, target_sequence_length)
,可選) — 詞彙表中解碼器輸入序列詞元的索引。可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
Blenderbot 使用
bos_token_id
作為生成decoder_input_ids
的起始詞元。如果使用past_key_values
,則可以選擇只輸入最後一個decoder_input_ids
(參見past_key_values
)。 - decoder_attention_mask (
torch.LongTensor
,形狀為(batch_size, target_sequence_length)
,可選) — 預設行為:生成一個忽略decoder_input_ids
中填充詞元的張量。預設情況下也會使用因果掩碼。 - head_mask (
torch.Tensor
,形狀為(num_heads,)
或(num_layers, num_heads)
,可選) — 用於置零自注意力模組中選定頭的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示頭未被掩碼,
- 0 表示頭被掩碼。
- decoder_head_mask (
torch.Tensor
,形狀為(decoder_layers, decoder_attention_heads)
,可選) — 用於置零解碼器中注意力模組選定頭的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示頭未被掩碼,
- 0 表示頭被掩碼。
- cross_attn_head_mask (
torch.Tensor
,形狀為(decoder_layers, decoder_attention_heads)
,可選) — 用於置零解碼器中交叉注意力模組選定頭的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示頭未被掩碼,
- 0 表示頭被掩碼。
- encoder_outputs (
Union[tuple, ~modeling_outputs.BaseModelOutput, NoneType]
) — 由 (last_hidden_state
, 可選:hidden_states
, 可選:attentions
) 組成的元組。last_hidden_state
的形狀為(batch_size, sequence_length, hidden_size)
,可選)是編碼器最後一層輸出的隱藏狀態序列。用於解碼器的交叉注意力機制。 - past_key_values (
list[torch.FloatTensor]
,可選) — 預計算的隱藏狀態(自注意力和交叉注意力塊中的鍵和值),可用於加速序列解碼。這通常是在解碼的先前階段,當use_cache=True
或config.use_cache=True
時,由模型返回的past_key_values
。允許兩種格式:
- Cache 例項,請參閱我們的 kv 快取指南;
- 長度為
config.n_layers
的tuple(torch.FloatTensor)
的元組,每個元組包含 2 個形狀為(batch_size, num_heads, sequence_length, embed_size_per_head)
的張量。這也被稱為傳統快取格式。
模型將輸出與輸入相同的快取格式。如果未傳遞
past_key_values
,將返回傳統快取格式。如果使用
past_key_values
,使用者可以選擇只輸入最後一個input_ids
(那些沒有提供其過去鍵值狀態給此模型的詞元),形狀為(batch_size, 1)
,而不是所有形狀為(batch_size, sequence_length)
的input_ids
。 - inputs_embeds (
torch.Tensor
,形狀為(batch_size, sequence_length, hidden_size)
,可選) — 可選地,你可以選擇直接傳遞嵌入表示,而不是傳遞input_ids
。如果你想比模型內部的嵌入查詢矩陣更好地控制如何將input_ids
索引轉換為關聯向量,這將非常有用。 - decoder_inputs_embeds (
torch.FloatTensor
,形狀為(batch_size, target_sequence_length, hidden_size)
,可選) — 可選地,你可以選擇直接傳遞嵌入表示,而不是傳遞decoder_input_ids
。如果使用past_key_values
,則可以選擇只輸入最後一個decoder_inputs_embeds
(參見past_key_values
)。如果你想比模型內部的嵌入查詢矩陣更好地控制如何將decoder_input_ids
索引轉換為關聯向量,這將非常有用。如果
decoder_input_ids
和decoder_inputs_embeds
都未設定,decoder_inputs_embeds
將取inputs_embeds
的值。 - labels (
torch.LongTensor
,形狀為(batch_size, sequence_length)
,可選) — 用於計算掩碼語言建模損失的標籤。索引應在[0, ..., config.vocab_size]
或 -100 之間(參見input_ids
的文件字串)。索引設定為-100
的詞元將被忽略(掩碼),損失僅對標籤在[0, ..., config.vocab_size]
中的詞元計算。 - use_cache (
bool
,可選) — 如果設定為True
,則返回past_key_values
鍵值狀態,並可用於加速解碼(參見past_key_values
)。 - output_attentions (
bool
,可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的attentions
。 - output_hidden_states (
bool
,可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的hidden_states
。 - return_dict (
bool
,可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。 - cache_position (
torch.Tensor
,形狀為(sequence_length)
,可選) — 描述輸入序列中詞元位置的索引。與position_ids
相反,此張量不受填充的影響。它用於在正確的位置更新快取並推斷完整的序列長度。
返回
transformers.modeling_outputs.Seq2SeqLMOutput 或 tuple(torch.FloatTensor)
一個 transformers.modeling_outputs.Seq2SeqLMOutput 或一個 torch.FloatTensor
的元組(如果傳遞了 return_dict=False
或當 config.return_dict=False
時),根據配置(BlenderbotConfig)和輸入,包含各種元素。
-
loss (
torch.FloatTensor
,形狀為(1,)
,可選,當提供labels
時返回) — 語言建模損失。 -
logits (形狀為
(batch_size, sequence_length, config.vocab_size)
的torch.FloatTensor
) — 語言建模頭部的預測分數(SoftMax 之前的每個詞彙標記的分數)。 -
past_key_values (
EncoderDecoderCache
,可選,當傳遞use_cache=True
或當config.use_cache=True
時返回) — 這是一個 EncoderDecoderCache 例項。更多詳情,請參閱我們的 kv 快取指南。包含預先計算的隱藏狀態(自注意力塊和交叉注意力塊中的鍵和值),可用於(參見
past_key_values
輸入)加速順序解碼。 -
decoder_hidden_states (
tuple(torch.FloatTensor)
,可選,當傳遞output_hidden_states=True
或當config.output_hidden_states=True
時返回) —torch.FloatTensor
的元組(一個用於嵌入層的輸出,如果模型有嵌入層,+ 一個用於每一層的輸出),形狀為(batch_size, sequence_length, hidden_size)
。解碼器在每一層輸出時的隱藏狀態以及初始嵌入輸出。
-
decoder_attentions (
tuple(torch.FloatTensor)
,可選,當傳遞output_attentions=True
或當config.output_attentions=True
時返回) —torch.FloatTensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。解碼器的注意力權重,在注意力 softmax 之後,用於計算自注意力頭中的加權平均。
-
cross_attentions (
tuple(torch.FloatTensor)
,可選,當傳遞output_attentions=True
或當config.output_attentions=True
時返回) —torch.FloatTensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。解碼器交叉注意力層的注意力權重,在注意力 softmax 之後,用於計算交叉注意力頭中的加權平均。
-
encoder_last_hidden_state (
torch.FloatTensor
,形狀為(batch_size, sequence_length, hidden_size)
,可選) — 模型編碼器最後一層輸出的隱藏狀態序列。 -
encoder_hidden_states (
tuple(torch.FloatTensor)
,可選,當傳遞output_hidden_states=True
或當config.output_hidden_states=True
時返回) —torch.FloatTensor
的元組(一個用於嵌入層的輸出,如果模型有嵌入層,+ 一個用於每一層的輸出),形狀為(batch_size, sequence_length, hidden_size)
。編碼器在每一層輸出時的隱藏狀態以及初始嵌入輸出。
-
encoder_attentions (
tuple(torch.FloatTensor)
,可選,當傳遞output_attentions=True
或當config.output_attentions=True
時返回) —torch.FloatTensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。編碼器的注意力權重,在注意力 softmax 之後,用於計算自注意力頭中的加權平均。
BlenderbotForConditionalGeneration 的 forward 方法會覆蓋 __call__
特殊方法。
儘管前向傳播的流程需要在此函式中定義,但之後應呼叫 Module
例項而不是此函式,因為前者會處理預處理和後處理步驟,而後者會靜默忽略它們。
對話示例
>>> from transformers import AutoTokenizer, BlenderbotForConditionalGeneration
>>> mname = "facebook/blenderbot-400M-distill"
>>> model = BlenderbotForConditionalGeneration.from_pretrained(mname)
>>> tokenizer = AutoTokenizer.from_pretrained(mname)
>>> UTTERANCE = "My friends are cool but they eat too many carbs."
>>> print("Human: ", UTTERANCE)
Human: My friends are cool but they eat too many carbs.
>>> inputs = tokenizer([UTTERANCE], return_tensors="pt")
>>> reply_ids = model.generate(**inputs)
>>> print("Bot: ", tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0])
Bot: That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?
>>> REPLY = "I'm not sure"
>>> print("Human: ", REPLY)
Human: I'm not sure
>>> NEXT_UTTERANCE = (
... "My friends are cool but they eat too many carbs.</s> <s>That's unfortunate. "
... "Are they trying to lose weight or are they just trying to be healthier?</s> "
... "<s> I'm not sure."
... )
>>> inputs = tokenizer([NEXT_UTTERANCE], return_tensors="pt")
>>> next_reply_ids = model.generate(**inputs)
>>> print("Bot: ", tokenizer.batch_decode(next_reply_ids, skip_special_tokens=True)[0])
Bot: I see. Well, it's good that they're trying to change their eating habits.
BlenderbotForCausalLM
forward
< 原始碼 >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None encoder_hidden_states: typing.Optional[torch.FloatTensor] = None encoder_attention_mask: typing.Optional[torch.FloatTensor] = None head_mask: typing.Optional[torch.Tensor] = None cross_attn_head_mask: typing.Optional[torch.Tensor] = None past_key_values: typing.Optional[list[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None ) → transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或 tuple(torch.FloatTensor)
引數
- input_ids (
torch.LongTensor
,形狀為(batch_size, sequence_length)
,可選) — 詞彙表中輸入序列詞元的索引。預設情況下將忽略填充。可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形狀為(batch_size, sequence_length)
,可選) — 用於避免對填充詞元索引執行注意力機制的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示詞元未被掩碼,
- 0 表示詞元被掩碼。
- encoder_hidden_states (
torch.FloatTensor
,形狀為(batch_size, sequence_length, hidden_size)
,可選) — 編碼器最後一層輸出的隱藏狀態序列。如果模型被配置為解碼器,則在交叉注意力中使用。 - encoder_attention_mask (
torch.FloatTensor
,形狀為(batch_size, sequence_length)
,可選) — 用於避免對編碼器輸入的填充詞元索引執行注意力機制的掩碼。如果模型被配置為解碼器,此掩碼在交叉注意力中使用。掩碼值在[0, 1]
中選擇:- 1 表示詞元未被掩碼,
- 0 表示詞元被掩碼。
- head_mask (
torch.Tensor
,形狀為(num_heads,)
或(num_layers, num_heads)
,可選) — 用於置零自注意力模組中選定頭的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示頭未被掩碼,
- 0 表示頭被掩碼。
- cross_attn_head_mask (
torch.Tensor
,形狀為(decoder_layers, decoder_attention_heads)
,可選) — 用於置零交叉注意力模組中選定頭的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示頭未被掩碼,
- 0 表示頭被掩碼。
- past_key_values (
list[torch.FloatTensor]
,可選) — 預計算的隱藏狀態(自注意力和交叉注意力塊中的鍵和值),可用於加速序列解碼。這通常是在解碼的先前階段,當use_cache=True
或config.use_cache=True
時,由模型返回的past_key_values
。允許兩種格式:
- Cache 例項,請參閱我們的 kv 快取指南;
- 長度為
config.n_layers
的tuple(torch.FloatTensor)
的元組,每個元組包含 2 個形狀為(batch_size, num_heads, sequence_length, embed_size_per_head)
的張量。這也被稱為傳統快取格式。
模型將輸出與輸入相同的快取格式。如果未傳遞
past_key_values
,將返回傳統快取格式。如果使用
past_key_values
,使用者可以選擇只輸入最後一個input_ids
(那些沒有提供其過去鍵值狀態給此模型的詞元),形狀為(batch_size, 1)
,而不是所有形狀為(batch_size, sequence_length)
的input_ids
。 - inputs_embeds (
torch.FloatTensor
,形狀為(batch_size, sequence_length, hidden_size)
,可選) — 可選地,你可以選擇直接傳遞嵌入表示,而不是傳遞input_ids
。如果你想比模型內部的嵌入查詢矩陣更好地控制如何將input_ids
索引轉換為關聯向量,這將非常有用。 - labels (
torch.LongTensor
,形狀為(batch_size, sequence_length)
,可選) — 用於計算掩碼語言建模損失的標籤。索引應在[0, ..., config.vocab_size]
或 -100 之間(參見input_ids
的文件字串)。索引設定為-100
的詞元將被忽略(掩碼),損失僅對標籤在[0, ..., config.vocab_size]
中的詞元計算。 - use_cache (
bool
,可選) — 如果設定為True
,則返回past_key_values
鍵值狀態,並可用於加速解碼(參見past_key_values
)。 - output_attentions (
bool
,可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的attentions
。 - output_hidden_states (
bool
,可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的hidden_states
。 - return_dict (
bool
,可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。 - cache_position (
torch.LongTensor
,形狀為(sequence_length)
,可選) — 描述輸入序列中詞元位置的索引。與position_ids
相反,此張量不受填充的影響。它用於在正確的位置更新快取並推斷完整的序列長度。
返回
transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或 tuple(torch.FloatTensor)
一個 transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或一個 torch.FloatTensor
的元組(如果傳遞了 return_dict=False
或當 config.return_dict=False
時),根據配置(BlenderbotConfig)和輸入,包含各種元素。
-
loss (
torch.FloatTensor
形狀為(1,)
,可選,當提供labels
時返回) — 語言建模損失(用於下一個 token 預測)。 -
logits (形狀為
(batch_size, sequence_length, config.vocab_size)
的torch.FloatTensor
) — 語言建模頭部的預測分數(SoftMax 之前的每個詞彙標記的分數)。 -
hidden_states (
tuple(torch.FloatTensor)
,可選,當傳遞output_hidden_states=True
或當config.output_hidden_states=True
時返回) —torch.FloatTensor
的元組(一個用於嵌入層的輸出,如果模型有嵌入層,+ 一個用於每一層的輸出),形狀為(batch_size, sequence_length, hidden_size)
。模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。
-
attentions (
tuple(torch.FloatTensor)
,可選,當傳遞output_attentions=True
或當config.output_attentions=True
時返回) —torch.FloatTensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
-
cross_attentions (
tuple(torch.FloatTensor)
,可選,當傳遞output_attentions=True
或當config.output_attentions=True
時返回) —torch.FloatTensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 後的交叉注意力權重,用於計算交叉注意力頭中的加權平均。
-
past_key_values (
Cache
,可選,當傳遞use_cache=True
或當config.use_cache=True
時返回) — 這是一個 Cache 例項。更多詳情,請參閱我們的 kv 快取指南。包含預先計算的隱藏狀態(注意力塊中的鍵和值),可用於(參見
past_key_values
輸入)加速順序解碼。
BlenderbotForCausalLM 的 forward 方法會覆蓋 __call__
特殊方法。
儘管前向傳播的流程需要在此函式中定義,但之後應呼叫 Module
例項而不是此函式,因為前者會處理預處理和後處理步驟,而後者會靜默忽略它們。
示例
>>> from transformers import AutoTokenizer, BlenderbotForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
>>> model = BlenderbotForCausalLM.from_pretrained("facebook/blenderbot-400M-distill", add_cross_attention=False)
>>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder."
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> expected_shape = [1, inputs.input_ids.shape[-1], model.config.vocab_size]
>>> list(logits.shape) == expected_shape
True
TFBlenderbotModel
class transformers.TFBlenderbotModel
< 原始碼 >( config: BlenderbotConfig *inputs **kwargs )
引數
- config (BlenderbotConfig) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化時,不會載入與模型關聯的權重,僅載入配置。請檢視 from_pretrained() 方法來載入模型權重。
基礎 BLENDERBOT 模型,輸出原始隱藏狀態,頂部沒有任何特定的頭。此模型繼承自 TFPreTrainedModel。請檢視超類的文件,瞭解庫為所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭等)。
此模型也是 keras.Model 的子類。可以像常規的 TF 2.0 Keras 模型一樣使用它,並參考 TF 2.0 文件瞭解所有與常規用法和行為相關的事項。
transformers
中的 TensorFlow 模型和層接受兩種輸入格式
- 所有輸入作為關鍵字引數(如 PyTorch 模型),或
- 所有輸入作為第一個位置引數中的列表、元組或字典。
支援第二種格式的原因是,Keras 方法在向模型和層傳遞輸入時更喜歡這種格式。由於這種支援,當使用像 model.fit()
這樣的方法時,事情應該“自然而然”地為你工作——只需以 model.fit()
支援的任何格式傳遞你的輸入和標籤!但是,如果你想在 Keras 方法(如 fit()
和 predict()
)之外使用第二種格式,例如在使用 Keras Functional
API 建立自己的層或模型時,有三種可能性可以將所有輸入張量收集到第一個位置引數中
- 只有一個
input_ids
的單個張量,沒有其他:model(input_ids)
- 長度可變的列表,包含一個或多個輸入張量,按文件字串中給出的順序:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一個字典,其中包含一個或多個與文件字串中給出的輸入名稱關聯的輸入張量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
請注意,在使用 子類化 建立模型和層時,你無需擔心任何這些問題,因為你可以像呼叫任何其他 Python 函式一樣傳遞輸入!
呼叫
< 原始碼 >( input_ids: tf.Tensor | None = None attention_mask: tf.Tensor | None = None decoder_input_ids: tf.Tensor | None = None decoder_attention_mask: tf.Tensor | None = None decoder_position_ids: tf.Tensor | None = None head_mask: tf.Tensor | None = None decoder_head_mask: tf.Tensor | None = None cross_attn_head_mask: tf.Tensor | None = None encoder_outputs: Optional[Union[tuple, TFBaseModelOutput]] = None past_key_values: list[tf.Tensor] | None = None inputs_embeds: tf.Tensor | None = None decoder_inputs_embeds: tf.Tensor | None = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: Optional[bool] = False **kwargs ) → transformers.modeling_tf_outputs.TFSeq2SeqModelOutput 或 tuple(tf.Tensor)
引數
- input_ids (
tf.Tensor
,形狀為(batch_size, sequence_length)
) — 詞彙表中輸入序列標記的索引。索引可以使用 AutoTokenizer 獲得。詳情請參閱 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
tf.Tensor
,形狀為(batch_size, sequence_length)
,可選) — 用於避免對填充標記索引執行注意力機制的掩碼。掩碼值的選擇範圍為[0, 1]
:- 1 表示標記未被遮蔽,
- 0 表示標記已被遮蔽。
- decoder_input_ids (
tf.Tensor
,形狀為(batch_size, target_sequence_length)
,可選) — 詞彙表中解碼器輸入序列標記的索引。索引可以使用 AutoTokenizer 獲得。詳情請參閱 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
Blenderbot 使用
bos_token_id
作為生成decoder_input_ids
的起始標記。如果使用past_key_values
,可以選擇只輸入最後一個decoder_input_ids
(請參閱past_key_values
)。 - decoder_attention_mask (
tf.Tensor
,形狀為(batch_size, target_sequence_length)
,可選) — 預設情況下會建立並忽略填充標記。在大多數用例中不建議設定此項。 - decoder_position_ids (
tf.Tensor
,形狀為(batch_size, sequence_length)
,可選) — 每個解碼器輸入序列標記在位置嵌入中的位置索引。選擇範圍在[0, config.max_position_embeddings - 1]
內。 - head_mask (
tf.Tensor
,形狀為(encoder_layers, encoder_attention_heads)
,可選) — 用於使編碼器中注意力模組的選定頭無效的掩碼。掩碼值的選擇範圍為[0, 1]
:- 1 表示頭未被遮蔽,
- 0 表示頭已被遮蔽。
- decoder_head_mask (
tf.Tensor
,形狀為(decoder_layers, decoder_attention_heads)
,可選) — 用於使解碼器中注意力模組的選定頭無效的掩碼。掩碼值的選擇範圍為[0, 1]
:- 1 表示頭未被遮蔽,
- 0 表示頭已被遮蔽。
- cross_attn_head_mask (
tf.Tensor
,形狀為(decoder_layers, decoder_attention_heads)
,可選) — 用於使交叉注意力模組的選定頭無效的掩碼。掩碼值的選擇範圍為[0, 1]
:- 1 表示頭未被遮蔽,
- 0 表示頭已被遮蔽。
- encoder_outputs (
tf.FloatTensor
,可選) — 編碼器最後一層的輸出隱藏狀態。用於解碼器的交叉注意力機制。形狀為(batch_size, sequence_length, hidden_size)
的序列。 - past_key_values (長度為
config.n_layers
的tuple[tuple[tf.Tensor]]
) — 包含預先計算的注意力塊的鍵和值隱藏狀態。可用於加速解碼。如果使用了past_key_values
,使用者可以選擇只輸入最後一個形狀為(batch_size, 1)
的decoder_input_ids
(那些沒有提供給此模型其過去鍵值狀態的 ID),而不是所有形狀為(batch_size, sequence_length)
的decoder_input_ids
。 - use_cache (
bool
,可選,預設為True
) — 如果設定為True
,將返回past_key_values
鍵值狀態,可用於加速解碼(請參閱past_key_values
)。訓練時設定為False
,生成時設定為True
。 - output_attentions (
bool
,可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的attentions
。此引數只能在 Eager 模式下使用,在圖模式下將使用配置中的值。 - output_hidden_states (
bool
,可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的hidden_states
。此引數只能在 Eager 模式下使用,在圖模式下將使用配置中的值。 - return_dict (
bool
,可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。此引數可以在 Eager 模式下使用,在圖模式下該值將始終設定為 True。 - training (
bool
,可選,預設為False
) — 是否在訓練模式下使用模型(某些模組如 dropout 模組在訓練和評估之間有不同的行為)。
返回
transformers.modeling_tf_outputs.TFSeq2SeqModelOutput 或 tuple(tf.Tensor)
一個 transformers.modeling_tf_outputs.TFSeq2SeqModelOutput 或一個 tf.Tensor
的元組(如果傳遞了 return_dict=False
或當 config.return_dict=False
時),根據配置(BlenderbotConfig)和輸入,包含各種元素。
-
last_hidden_state (形狀為
(batch_size, sequence_length, hidden_size)
的tf.Tensor
) — 模型解碼器最後一層輸出的隱藏狀態序列。如果使用了
past_key_values
,則只輸出形狀為(batch_size, 1, hidden_size)
的序列的最後一個隱藏狀態。 -
past_key_values (
list[tf.Tensor]
,可選,當傳遞use_cache=True
或當config.use_cache=True
時返回) — 長度為config.n_layers
的tf.Tensor
列表,每個張量的形狀為(2, batch_size, num_heads, sequence_length, embed_size_per_head)
)。包含解碼器注意力塊的預計算隱藏狀態(鍵和值),可用於(參見
past_key_values
輸入)加速順序解碼。 -
decoder_hidden_states (
tuple(tf.Tensor)
,可選,當傳遞output_hidden_states=True
或當config.output_hidden_states=True
時返回) —tf.Tensor
的元組(一個用於嵌入層的輸出 + 一個用於每層的輸出),形狀為(batch_size, sequence_length, hidden_size)
。解碼器在每一層輸出時的隱藏狀態以及初始嵌入輸出。
-
decoder_attentions (
tuple(tf.Tensor)
,可選,當傳遞output_attentions=True
或當config.output_attentions=True
時返回) —tf.Tensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。解碼器的注意力權重,在注意力 softmax 之後,用於計算自注意力頭中的加權平均。
-
cross_attentions (
tuple(tf.Tensor)
,可選,當傳遞output_attentions=True
或當config.output_attentions=True
時返回) —tf.Tensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。解碼器交叉注意力層的注意力權重,在注意力 softmax 之後,用於計算交叉注意力頭中的加權平均。
-
encoder_last_hidden_state (形狀為
(batch_size, sequence_length, hidden_size)
的tf.Tensor
, 可選) — 模型編碼器最後一層輸出的隱藏狀態序列。 -
encoder_hidden_states (
tuple(tf.Tensor)
,可選,當傳遞output_hidden_states=True
或當config.output_hidden_states=True
時返回) —tf.Tensor
的元組(一個用於嵌入層的輸出 + 一個用於每層的輸出),形狀為(batch_size, sequence_length, hidden_size)
。編碼器在每一層輸出時的隱藏狀態以及初始嵌入輸出。
-
encoder_attentions (
tuple(tf.Tensor)
,可選,當傳遞output_attentions=True
或當config.output_attentions=True
時返回) —tf.Tensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。編碼器的注意力權重,在注意力 softmax 之後,用於計算自注意力頭中的加權平均。
TFBlenderbotModel 的前向方法,重寫了 __call__
特殊方法。
儘管前向傳播的流程需要在此函式中定義,但之後應呼叫 Module
例項而不是此函式,因為前者會處理預處理和後處理步驟,而後者會靜默忽略它們。
示例
>>> from transformers import AutoTokenizer, TFBlenderbotModel
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
>>> model = TFBlenderbotModel.from_pretrained("facebook/blenderbot-400M-distill")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)
>>> last_hidden_states = outputs.last_hidden_state
TFBlenderbotForConditionalGeneration
class transformers.TFBlenderbotForConditionalGeneration
< 來源 >( config *inputs **kwargs )
引數
- config (BlenderbotConfig) — 模型配置類,包含模型的所有引數。使用配置檔案進行初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。
帶有語言建模頭的 BLENDERBOT 模型。可用於摘要任務。該模型繼承自 TFPreTrainedModel。請檢視超類文件,瞭解該庫為其所有模型實現的通用方法(如下載或儲存、調整輸入嵌入大小、修剪頭部等)。
此模型也是 keras.Model 的子類。可以像常規的 TF 2.0 Keras 模型一樣使用它,並參考 TF 2.0 文件瞭解所有與常規用法和行為相關的事項。
transformers
中的 TensorFlow 模型和層接受兩種輸入格式
- 所有輸入作為關鍵字引數(如 PyTorch 模型),或
- 所有輸入作為第一個位置引數中的列表、元組或字典。
支援第二種格式的原因是,Keras 方法在向模型和層傳遞輸入時更喜歡這種格式。由於這種支援,當使用像 model.fit()
這樣的方法時,事情應該“自然而然”地為你工作——只需以 model.fit()
支援的任何格式傳遞你的輸入和標籤!但是,如果你想在 Keras 方法(如 fit()
和 predict()
)之外使用第二種格式,例如在使用 Keras Functional
API 建立自己的層或模型時,有三種可能性可以將所有輸入張量收集到第一個位置引數中
- 只有一個
input_ids
的單個張量,沒有其他:model(input_ids)
- 長度可變的列表,包含一個或多個輸入張量,按文件字串中給出的順序:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一個字典,其中包含一個或多個與文件字串中給出的輸入名稱關聯的輸入張量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
請注意,在使用 子類化 建立模型和層時,你無需擔心任何這些問題,因為你可以像呼叫任何其他 Python 函式一樣傳遞輸入!
呼叫
< 來源 >( input_ids: tf.Tensor | None = None attention_mask: tf.Tensor | None = None decoder_input_ids: tf.Tensor | None = None decoder_attention_mask: tf.Tensor | None = None decoder_position_ids: tf.Tensor | None = None head_mask: tf.Tensor | None = None decoder_head_mask: tf.Tensor | None = None cross_attn_head_mask: tf.Tensor | None = None encoder_outputs: Optional[Union[tuple, TFBaseModelOutput]] = None past_key_values: list[tf.Tensor] | None = None inputs_embeds: tf.Tensor | None = None decoder_inputs_embeds: tf.Tensor | None = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: tf.Tensor | None = None training: Optional[bool] = False ) → transformers.modeling_tf_outputs.TFSeq2SeqLMOutput 或 tuple(tf.Tensor)
引數
- input_ids (
tf.Tensor
,形狀為({0})
) — 詞彙表中輸入序列標記的索引。索引可以使用 AutoTokenizer 獲得。詳情請參閱 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
tf.Tensor
,形狀為({0})
,可選) — 用於避免對填充標記索引執行注意力機制的掩碼。掩碼值的選擇範圍為[0, 1]
:- 1 表示標記未被遮蔽,
- 0 表示標記已被遮蔽。
- decoder_input_ids (
tf.Tensor
,形狀為(batch_size, target_sequence_length)
,可選) — 詞彙表中解碼器輸入序列標記的索引。索引可以使用 AutoTokenizer 獲得。詳情請參閱 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
Blenderbot 使用
bos_token_id
作為生成decoder_input_ids
的起始標記。如果使用past_key_values
,可以選擇只輸入最後一個decoder_input_ids
(請參閱past_key_values
)。 - decoder_attention_mask (
tf.Tensor
,形狀為(batch_size, target_sequence_length)
,可選) — 預設情況下會建立並忽略填充標記。在大多數用例中不建議設定此項。 - decoder_position_ids (
tf.Tensor
,形狀為(batch_size, sequence_length)
,可選) — 每個解碼器輸入序列標記在位置嵌入中的位置索引。選擇範圍在[0, config.max_position_embeddings - 1]
內。 - head_mask (
tf.Tensor
,形狀為(encoder_layers, encoder_attention_heads)
,可選) — 用於使編碼器中注意力模組的選定頭無效的掩碼。掩碼值的選擇範圍為[0, 1]
:- 1 表示頭未被遮蔽,
- 0 表示頭已被遮蔽。
- decoder_head_mask (
tf.Tensor
,形狀為(decoder_layers, decoder_attention_heads)
,可選) — 用於使解碼器中注意力模組的選定頭無效的掩碼。掩碼值的選擇範圍為[0, 1]
:- 1 表示頭未被遮蔽,
- 0 表示頭已被遮蔽。
- cross_attn_head_mask (
tf.Tensor
,形狀為(decoder_layers, decoder_attention_heads)
,可選) — 用於使交叉注意力模組的選定頭無效的掩碼。掩碼值的選擇範圍為[0, 1]
:- 1 表示頭未被遮蔽,
- 0 表示頭已被遮蔽。
- encoder_outputs (
tf.FloatTensor
,可選) — 編碼器最後一層的輸出隱藏狀態。用於解碼器的交叉注意力機制。形狀為(batch_size, sequence_length, hidden_size)
的序列。 - past_key_values (長度為
config.n_layers
的tuple[tuple[tf.Tensor]]
) — 包含預先計算的注意力塊的鍵和值隱藏狀態。可用於加速解碼。如果使用了past_key_values
,使用者可以選擇只輸入最後一個形狀為(batch_size, 1)
的decoder_input_ids
(那些沒有提供給此模型其過去鍵值狀態的 ID),而不是所有形狀為(batch_size, sequence_length)
的decoder_input_ids
。 - use_cache (
bool
,可選,預設為True
) — 如果設定為True
,將返回past_key_values
鍵值狀態,可用於加速解碼(請參閱past_key_values
)。訓練時設定為False
,生成時設定為True
。 - output_attentions (
bool
,可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的attentions
。此引數只能在 Eager 模式下使用,在圖模式下將使用配置中的值。 - output_hidden_states (
bool
,可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的hidden_states
。此引數只能在 Eager 模式下使用,在圖模式下將使用配置中的值。 - return_dict (
bool
,可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。此引數可以在 Eager 模式下使用,在圖模式下該值將始終設定為 True。 - training (
bool
,可選,預設為False
) — 是否在訓練模式下使用模型(某些模組如 dropout 模組在訓練和評估之間有不同的行為)。 - labels (
tf.tensor
,形狀為(batch_size, sequence_length)
,可選) — 用於計算掩碼語言建模損失的標籤。索引應在[0, ..., config.vocab_size]
或 -100 之間(請參閱input_ids
文件字串)。索引設定為-100
的標記將被忽略(遮蔽),損失僅對標籤在[0, ..., config.vocab_size]
內的標記計算。
返回
transformers.modeling_tf_outputs.TFSeq2SeqLMOutput 或 tuple(tf.Tensor)
一個 transformers.modeling_tf_outputs.TFSeq2SeqLMOutput 或一個 tf.Tensor
的元組(如果傳遞了 return_dict=False
或當 config.return_dict=False
時),根據配置(BlenderbotConfig)和輸入,包含各種元素。
-
loss (形狀為
(n,)
的tf.Tensor
, 可選, 其中 n 是非掩碼標籤的數量,當提供labels
時返回) — 語言建模損失。 -
logits (
tf.Tensor
of shape(batch_size, sequence_length, config.vocab_size)
) — 語言模型頭部的預測分數(SoftMax 之前每個詞彙標記的分數)。 -
past_key_values (
list[tf.Tensor]
,可選,當傳遞use_cache=True
或當config.use_cache=True
時返回) — 長度為config.n_layers
的tf.Tensor
列表,每個張量的形狀為(2, batch_size, num_heads, sequence_length, embed_size_per_head)
)。包含解碼器注意力塊的預計算隱藏狀態(鍵和值),可用於(參見
past_key_values
輸入)加速順序解碼。 -
decoder_hidden_states (
tuple(tf.Tensor)
,可選,當傳遞output_hidden_states=True
或當config.output_hidden_states=True
時返回) —tf.Tensor
的元組(一個用於嵌入層的輸出 + 一個用於每層的輸出),形狀為(batch_size, sequence_length, hidden_size)
。解碼器在每一層輸出時的隱藏狀態以及初始嵌入輸出。
-
decoder_attentions (
tuple(tf.Tensor)
,可選,當傳遞output_attentions=True
或當config.output_attentions=True
時返回) —tf.Tensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。解碼器的注意力權重,在注意力 softmax 之後,用於計算自注意力頭中的加權平均。
-
cross_attentions (
tuple(tf.Tensor)
,可選,當傳遞output_attentions=True
或當config.output_attentions=True
時返回) —tf.Tensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。解碼器交叉注意力層的注意力權重,在注意力 softmax 之後,用於計算交叉注意力頭中的加權平均。
-
encoder_last_hidden_state (形狀為
(batch_size, sequence_length, hidden_size)
的tf.Tensor
, 可選) — 模型編碼器最後一層輸出的隱藏狀態序列。 -
encoder_hidden_states (
tuple(tf.Tensor)
,可選,當傳遞output_hidden_states=True
或當config.output_hidden_states=True
時返回) —tf.Tensor
的元組(一個用於嵌入層的輸出 + 一個用於每層的輸出),形狀為(batch_size, sequence_length, hidden_size)
。編碼器在每一層輸出時的隱藏狀態以及初始嵌入輸出。
-
encoder_attentions (
tuple(tf.Tensor)
,可選,當傳遞output_attentions=True
或當config.output_attentions=True
時返回) —tf.Tensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。編碼器的注意力權重,在注意力 softmax 之後,用於計算自注意力頭中的加權平均。
TFBlenderbotForConditionalGeneration 的前向方法,重寫了 __call__
特殊方法。
儘管前向傳播的流程需要在此函式中定義,但之後應呼叫 Module
例項而不是此函式,因為前者會處理預處理和後處理步驟,而後者會靜默忽略它們。
對話示例:
>>> from transformers import AutoTokenizer, TFBlenderbotForConditionalGeneration
>>> mname = "facebook/blenderbot-400M-distill"
>>> model = TFBlenderbotForConditionalGeneration.from_pretrained(mname)
>>> tokenizer = AutoTokenizer.from_pretrained(mname)
>>> UTTERANCE = "My friends are cool but they eat too many carbs."
>>> print("Human: ", UTTERANCE)
>>> inputs = tokenizer([UTTERANCE], return_tensors="tf")
>>> reply_ids = model.generate(**inputs)
>>> print("Bot: ", tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0])
>>> REPLY = "I'm not sure"
>>> print("Human: ", REPLY)
>>> NEXT_UTTERANCE = (
... "My friends are cool but they eat too many carbs.</s> <s>That's unfortunate. "
... "Are they trying to lose weight or are they just trying to be healthier?</s> "
... "<s> I'm not sure."
... )
>>> inputs = tokenizer([NEXT_UTTERANCE], return_tensors="tf")
>>> next_reply_ids = model.generate(**inputs)
>>> print("Bot: ", tokenizer.batch_decode(next_reply_ids, skip_special_tokens=True)[0])
FlaxBlenderbotModel
class transformers.FlaxBlenderbotModel
< 來源 >( config: BlenderbotConfig input_shape: tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
引數
- config (BlenderbotConfig) — 模型配置類,包含模型的所有引數。使用配置檔案進行初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。
裸 MBart 模型轉換器,輸出原始隱藏狀態,頂部沒有任何特定的頭。該模型繼承自 FlaxPreTrainedModel。請檢視超類文件,瞭解該庫為其所有模型實現的通用方法(如下載或儲存、調整輸入嵌入大小、修剪頭部等)。
此模型也是一個 Flax Linen flax.nn.Module 的子類。請將其作為常規的 Flax 模組使用,並參考 Flax 文件瞭解所有與一般用法和行為相關的事項。
最後,此模型支援固有的 JAX 功能,例如
__call__
< 來源 >( input_ids: Array attention_mask: typing.Optional[jax.Array] = None decoder_input_ids: typing.Optional[jax.Array] = None decoder_attention_mask: typing.Optional[jax.Array] = None position_ids: typing.Optional[jax.Array] = None decoder_position_ids: typing.Optional[jax.Array] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None train: bool = False params: typing.Optional[dict] = None dropout_rng: <function PRNGKey at 0x7effc7ad3a30> = None ) → transformers.modeling_flax_outputs.FlaxSeq2SeqModelOutput 或 tuple(torch.FloatTensor)
引數
- input_ids (
jnp.ndarray
,形狀為(batch_size, sequence_length)
) — 詞彙表中輸入序列標記的索引。如果您提供填充,預設情況下將被忽略。索引可以使用 AutoTokenizer 獲得。詳情請參閱 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
jnp.ndarray
,形狀為(batch_size, sequence_length)
,可選) — 用於避免對填充標記索引執行注意力機制的掩碼。掩碼值的選擇範圍為[0, 1]
:- 1 表示標記未被遮蔽,
- 0 表示標記已被遮蔽。
- decoder_input_ids (
jnp.ndarray
,形狀為(batch_size, target_sequence_length)
,可選) — 詞彙表中解碼器輸入序列標記的索引。索引可以使用 AutoTokenizer 獲得。詳情請參閱 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
對於翻譯和摘要訓練,應提供
decoder_input_ids
。如果未提供decoder_input_ids
,模型將根據論文中的去噪預訓練方法,透過將input_ids
右移來建立此張量。 - decoder_attention_mask (
jnp.ndarray
,形狀為(batch_size, target_sequence_length)
,可選) — 預設行為:生成一個忽略decoder_input_ids
中填充標記的張量。預設情況下也會使用因果掩碼。如果你想改變填充行為,你應該根據你的需要進行修改。有關預設策略的更多資訊,請參閱論文中的圖 1。
- position_ids (
numpy.ndarray
,形狀為(batch_size, sequence_length)
,可選) — 每個輸入序列詞元在位置嵌入中的位置索引。取值範圍為[0, config.max_position_embeddings - 1]
。 - decoder_position_ids (
numpy.ndarray
,形狀為(batch_size, sequence_length)
,可選) — 每個解碼器輸入序列詞元在位置嵌入中的位置索引。取值範圍為[0, config.max_position_embeddings - 1]
。 - output_attentions (
bool
,可選) — 是否返回所有注意力層的注意力張量。更多詳情請參閱返回張量下的attentions
。 - output_hidden_states (
bool
,可選) — 是否返回所有層的隱藏狀態。更多詳情請參閱返回張量下的hidden_states
。 - return_dict (
bool
,可選) — 是返回一個 ModelOutput 而不是一個普通的元組。
返回
transformers.modeling_flax_outputs.FlaxSeq2SeqModelOutput 或 tuple(torch.FloatTensor)
一個 transformers.modeling_flax_outputs.FlaxSeq2SeqModelOutput 或一個 torch.FloatTensor
的元組(如果傳遞了 return_dict=False
或當 config.return_dict=False
時),根據配置(BlenderbotConfig)和輸入,包含不同的元素。
-
last_hidden_state (形狀為
(batch_size, sequence_length, hidden_size)
的jnp.ndarray
) — 模型解碼器最後一層輸出的隱藏狀態序列。如果使用了
past_key_values
,則只輸出形狀為(batch_size, 1, hidden_size)
的序列的最後一個隱藏狀態。 -
past_key_values (
tuple(tuple(jnp.ndarray))
,可選,當傳遞use_cache=True
或當config.use_cache=True
時返回) — 長度為config.n_layers
的tuple(jnp.ndarray)
元組,每個元組包含 2 個形狀為(batch_size, num_heads, sequence_length, embed_size_per_head)
的張量,以及 2 個額外的形狀為(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的張量。包含預先計算的隱藏狀態(自注意力塊和交叉注意力塊中的鍵和值),可用於(參見
past_key_values
輸入)加速順序解碼。 -
decoder_hidden_states (
tuple(jnp.ndarray)
,可選,當傳遞output_hidden_states=True
或當config.output_hidden_states=True
時返回) —jnp.ndarray
的元組(一個用於嵌入層的輸出,一個用於每個層的輸出),形狀為(batch_size, sequence_length, hidden_size)
。解碼器在每一層輸出時的隱藏狀態以及初始嵌入輸出。
-
decoder_attentions (
tuple(jnp.ndarray)
,可選,當傳遞output_attentions=True
或當config.output_attentions=True
時返回) —jnp.ndarray
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。解碼器的注意力權重,在注意力 softmax 之後,用於計算自注意力頭中的加權平均。
-
cross_attentions (
tuple(jnp.ndarray)
,可選,當傳遞output_attentions=True
或當config.output_attentions=True
時返回) —jnp.ndarray
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。解碼器交叉注意力層的注意力權重,在注意力 softmax 之後,用於計算交叉注意力頭中的加權平均。
-
encoder_last_hidden_state (形狀為
(batch_size, sequence_length, hidden_size)
的jnp.ndarray
,可選) — 模型編碼器最後一層輸出的隱藏狀態序列。 -
encoder_hidden_states (
tuple(jnp.ndarray)
,可選,當傳遞output_hidden_states=True
或當config.output_hidden_states=True
時返回) —jnp.ndarray
的元組(一個用於嵌入層的輸出,一個用於每個層的輸出),形狀為(batch_size, sequence_length, hidden_size)
。編碼器在每一層輸出時的隱藏狀態以及初始嵌入輸出。
-
encoder_attentions (
tuple(jnp.ndarray)
,可選,當傳遞output_attentions=True
或當config.output_attentions=True
時返回) —jnp.ndarray
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。編碼器的注意力權重,在注意力 softmax 之後,用於計算自注意力頭中的加權平均。
FlaxBlenderbotPreTrainedModel
的前向方法,重寫了 __call__
特殊方法。
儘管前向傳播的流程需要在此函式中定義,但之後應呼叫 Module
例項而不是此函式,因為前者會處理預處理和後處理步驟,而後者會靜默忽略它們。
示例
>>> from transformers import AutoTokenizer, FlaxBlenderbotModel
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
>>> model = FlaxBlenderbotModel.from_pretrained("facebook/blenderbot-400M-distill")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
編碼
< 來源 >( input_ids: Array attention_mask: typing.Optional[jax.Array] = None position_ids: typing.Optional[jax.Array] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None train: bool = False params: typing.Optional[dict] = None dropout_rng: <function PRNGKey at 0x7effc7ad3a30> = None ) → transformers.modeling_flax_outputs.FlaxBaseModelOutput 或 tuple(torch.FloatTensor)
引數
- input_ids (
jnp.ndarray
,形狀為(batch_size, sequence_length)
) — 詞彙表中輸入序列詞元的索引。如果您提供填充,預設情況下將被忽略。可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
jnp.ndarray
,形狀為(batch_size, sequence_length)
,可選) — 用於避免對填充詞元索引執行注意力的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示未被遮蔽的詞元,
- 0 表示被遮蔽的詞元。
- position_ids (
numpy.ndarray
,形狀為(batch_size, sequence_length)
,可選) — 每個輸入序列詞元在位置嵌入中的位置索引。取值範圍為[0, config.max_position_embeddings - 1]
。 - output_attentions (
bool
,可選) — 是否返回所有注意力層的注意力張量。更多詳情請參閱返回張量下的attentions
。 - output_hidden_states (
bool
,可選) — 是否返回所有層的隱藏狀態。更多詳情請參閱返回張量下的hidden_states
。 - return_dict (
bool
,可選) — 是返回一個 ModelOutput 而不是一個普通的元組。
返回
transformers.modeling_flax_outputs.FlaxBaseModelOutput 或 tuple(torch.FloatTensor)
一個 transformers.modeling_flax_outputs.FlaxBaseModelOutput 或一個 torch.FloatTensor
的元組(如果傳遞了 return_dict=False
或當 config.return_dict=False
時),根據配置(<class 'transformers.models.blenderbot.configuration_blenderbot.BlenderbotConfig'>
)和輸入,包含不同的元素。
-
last_hidden_state (形狀為
(batch_size, sequence_length, hidden_size)
的jnp.ndarray
) — 模型最後一層輸出的隱藏狀態序列。 -
hidden_states (
tuple(jnp.ndarray)
,可選,當傳遞output_hidden_states=True
或當config.output_hidden_states=True
時返回) —jnp.ndarray
的元組(一個用於嵌入層的輸出,一個用於每個層的輸出),形狀為(batch_size, sequence_length, hidden_size)
。模型在每個層輸出的隱藏狀態加上初始嵌入輸出。
-
attentions (
tuple(jnp.ndarray)
,可選,當傳遞output_attentions=True
或當config.output_attentions=True
時返回) —jnp.ndarray
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
示例
>>> from transformers import AutoTokenizer, FlaxBlenderbotForConditionalGeneration
>>> model = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-400M-distill")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)
decode
< 來源 >( decoder_input_ids encoder_outputs encoder_attention_mask: typing.Optional[jax.Array] = None decoder_attention_mask: typing.Optional[jax.Array] = None decoder_position_ids: typing.Optional[jax.Array] = None past_key_values: typing.Optional[dict] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None train: bool = False params: typing.Optional[dict] = None dropout_rng: <function PRNGKey at 0x7effc7ad3a30> = None ) → transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions 或 tuple(torch.FloatTensor)
引數
- decoder_input_ids (
jnp.ndarray
,形狀為(batch_size, target_sequence_length)
) — 詞彙表中解碼器輸入序列詞元的索引。可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
對於翻譯和摘要訓練,應提供
decoder_input_ids
。如果未提供decoder_input_ids
,模型將透過將input_ids
右移來建立此張量,以進行論文中描述的去噪預訓練。 - encoder_outputs (
tuple(tuple(jnp.ndarray)
) — 元組包含(last_hidden_state
,可選:hidden_states
,可選:attentions
)last_hidden_state
的形狀為(batch_size, sequence_length, hidden_size)
,可選)是編碼器最後一層輸出的隱藏狀態序列。用於解碼器的交叉注意力中。 - encoder_attention_mask (
jnp.ndarray
,形狀為(batch_size, sequence_length)
,可選) — 用於避免對填充詞元索引執行注意力的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示未被遮蔽的詞元,
- 0 表示被遮蔽的詞元。
- decoder_attention_mask (
jnp.ndarray
,形狀為(batch_size, target_sequence_length)
,可選) — 預設行為:生成一個忽略decoder_input_ids
中填充詞元的張量。預設情況下也會使用因果掩碼。如果要更改填充行為,應根據需要進行修改。有關預設策略的更多資訊,請參閱論文中的圖 1。
- decoder_position_ids (
numpy.ndarray
,形狀為(batch_size, sequence_length)
,可選) — 每個解碼器輸入序列詞元在位置嵌入中的位置索引。取值範圍為[0, config.max_position_embeddings - 1]
。 - past_key_values (
dict[str, np.ndarray]
,可選,由init_cache
返回或在傳遞先前的past_key_values
時返回) — 預先計算的隱藏狀態字典(注意力塊中的鍵和值),可用於快速自迴歸解碼。預先計算的鍵和值隱藏狀態的形狀為 [batch_size, max_length]。 - output_attentions (
bool
,可選) — 是否返回所有注意力層的注意力張量。更多詳情請參閱返回張量下的attentions
。 - output_hidden_states (
bool
,可選) — 是否返回所有層的隱藏狀態。更多詳情請參閱返回張量下的hidden_states
。 - return_dict (
bool
,可選) — 是返回一個 ModelOutput 而不是一個普通的元組。
返回
transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions 或 tuple(torch.FloatTensor)
一個 transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions 或一個 torch.FloatTensor
的元組(如果傳遞了 return_dict=False
或當 config.return_dict=False
時),根據配置(<class 'transformers.models.blenderbot.configuration_blenderbot.BlenderbotConfig'>
)和輸入,包含不同的元素。
-
last_hidden_state (形狀為
(batch_size, sequence_length, hidden_size)
的jnp.ndarray
) — 模型最後一層輸出的隱藏狀態序列。如果使用了
past_key_values
,則只輸出形狀為(batch_size, 1, hidden_size)
的序列的最後一個隱藏狀態。 -
past_key_values (
tuple(tuple(jnp.ndarray))
,可選,當傳遞use_cache=True
或當config.use_cache=True
時返回) — 長度為config.n_layers
的tuple(jnp.ndarray)
元組,每個元組包含 2 個形狀為(batch_size, num_heads, sequence_length, embed_size_per_head)
的張量,如果config.is_encoder_decoder=True
,則還包含 2 個額外的形狀為(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的張量。包含預先計算的隱藏狀態(自注意力塊中的鍵和值,如果
config.is_encoder_decoder=True
,則還包含交叉注意力塊中的鍵和值),可用於(參見past_key_values
輸入)加速序列解碼。 -
hidden_states (
tuple(jnp.ndarray)
,可選,當傳遞output_hidden_states=True
或當config.output_hidden_states=True
時返回) —jnp.ndarray
的元組(一個用於嵌入層的輸出,一個用於每個層的輸出),形狀為(batch_size, sequence_length, hidden_size)
。模型在每個層輸出的隱藏狀態加上初始嵌入輸出。
-
attentions (
tuple(jnp.ndarray)
,可選,當傳遞output_attentions=True
或當config.output_attentions=True
時返回) —jnp.ndarray
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
-
cross_attentions (
tuple(jnp.ndarray)
,可選,當傳遞output_attentions=True
且config.add_cross_attention=True
或當config.output_attentions=True
時返回) —jnp.ndarray
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。解碼器交叉注意力層的注意力權重,在注意力 softmax 之後,用於計算交叉注意力頭中的加權平均。
示例
>>> import jax.numpy as jnp
>>> from transformers import AutoTokenizer, FlaxBlenderbotForConditionalGeneration
>>> model = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-400M-distill")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)
>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> last_decoder_hidden_states = outputs.last_hidden_state
FlaxBlenderbotForConditionalGeneration
class transformers.FlaxBlenderbotForConditionalGeneration
< 來源 >( config: BlenderbotConfig input_shape: tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
引數
- config (BlenderbotConfig) — 模型配置類,包含模型的所有引數。使用配置檔案初始化不會載入與模型相關的權重,僅載入配置。請檢視 from_pretrained() 方法來載入模型權重。
帶有語言建模頭的 Blenderbot 模型。可用於摘要生成。該模型繼承自 FlaxPreTrainedModel。請檢視超類文件,瞭解庫為其所有模型實現的通用方法(如下載或儲存、調整輸入嵌入大小、修剪頭部等)。
此模型也是一個 Flax Linen flax.nn.Module 的子類。請將其作為常規的 Flax 模組使用,並參考 Flax 文件瞭解所有與一般用法和行為相關的事項。
最後,此模型支援固有的 JAX 功能,例如
__call__
< 來源 >( input_ids: Array attention_mask: typing.Optional[jax.Array] = None decoder_input_ids: typing.Optional[jax.Array] = None decoder_attention_mask: typing.Optional[jax.Array] = None position_ids: typing.Optional[jax.Array] = None decoder_position_ids: typing.Optional[jax.Array] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None train: bool = False params: typing.Optional[dict] = None dropout_rng: <function PRNGKey at 0x7effc7ad3a30> = None ) → transformers.modeling_flax_outputs.FlaxSeq2SeqLMOutput 或 tuple(torch.FloatTensor)
引數
- input_ids (
jnp.ndarray
,形狀為(batch_size, sequence_length)
) — 詞彙表中輸入序列詞元的索引。如果您提供填充,預設情況下將被忽略。可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
jnp.ndarray
,形狀為(batch_size, sequence_length)
,可選) — 用於避免對填充詞元索引執行注意力的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示未被遮蔽的詞元,
- 0 表示被遮蔽的詞元。
- decoder_input_ids (
jnp.ndarray
,形狀為(batch_size, target_sequence_length)
,可選) — 詞彙表中解碼器輸入序列詞元的索引。可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
對於翻譯和摘要訓練,應提供
decoder_input_ids
。如果未提供decoder_input_ids
,模型將透過將input_ids
右移來建立此張量,以進行論文中描述的去噪預訓練。 - decoder_attention_mask (
jnp.ndarray
,形狀為(batch_size, target_sequence_length)
,可選) — 預設行為:生成一個忽略decoder_input_ids
中填充詞元的張量。預設情況下也會使用因果掩碼。如果要更改填充行為,應根據需要進行修改。有關預設策略的更多資訊,請參閱論文中的圖 1。
- position_ids (
numpy.ndarray
,形狀為(batch_size, sequence_length)
,可選) — 每個輸入序列詞元在位置嵌入中的位置索引。取值範圍為[0, config.max_position_embeddings - 1]
。 - decoder_position_ids (
numpy.ndarray
,形狀為(batch_size, sequence_length)
,可選) — 每個解碼器輸入序列詞元在位置嵌入中的位置索引。取值範圍為[0, config.max_position_embeddings - 1]
。 - output_attentions (
bool
,可選) — 是否返回所有注意力層的注意力張量。更多詳情請參閱返回張量下的attentions
。 - output_hidden_states (
bool
,可選) — 是否返回所有層的隱藏狀態。更多詳情請參閱返回張量下的hidden_states
。 - return_dict (
bool
,可選) — 是返回一個 ModelOutput 而不是一個普通的元組。
返回
transformers.modeling_flax_outputs.FlaxSeq2SeqLMOutput 或 tuple(torch.FloatTensor)
一個 transformers.modeling_flax_outputs.FlaxSeq2SeqLMOutput 或一個 torch.FloatTensor
的元組(如果傳遞了 return_dict=False
或當 config.return_dict=False
時),根據配置(BlenderbotConfig)和輸入,包含不同的元素。
-
logits (形狀為
(batch_size, sequence_length, config.vocab_size)
的jnp.ndarray
) — 語言建模頭的預測分數(SoftMax 之前每個詞彙 token 的分數)。 -
past_key_values (
tuple(tuple(jnp.ndarray))
,可選,當傳遞use_cache=True
或當config.use_cache=True
時返回) — 長度為config.n_layers
的tuple(jnp.ndarray)
元組,每個元組包含 2 個形狀為(batch_size, num_heads, sequence_length, embed_size_per_head)
的張量,以及 2 個額外的形狀為(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的張量。包含預先計算的隱藏狀態(自注意力塊和交叉注意力塊中的鍵和值),可用於(參見
past_key_values
輸入)加速順序解碼。 -
decoder_hidden_states (
tuple(jnp.ndarray)
,可選,當傳遞output_hidden_states=True
或當config.output_hidden_states=True
時返回) —jnp.ndarray
的元組(一個用於嵌入層的輸出,一個用於每個層的輸出),形狀為(batch_size, sequence_length, hidden_size)
。解碼器在每一層輸出時的隱藏狀態以及初始嵌入輸出。
-
decoder_attentions (
tuple(jnp.ndarray)
,可選,當傳遞output_attentions=True
或當config.output_attentions=True
時返回) —jnp.ndarray
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。解碼器的注意力權重,在注意力 softmax 之後,用於計算自注意力頭中的加權平均。
-
cross_attentions (
tuple(jnp.ndarray)
,可選,當傳遞output_attentions=True
或當config.output_attentions=True
時返回) —jnp.ndarray
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。解碼器交叉注意力層的注意力權重,在注意力 softmax 之後,用於計算交叉注意力頭中的加權平均。
-
encoder_last_hidden_state (形狀為
(batch_size, sequence_length, hidden_size)
的jnp.ndarray
,可選) — 模型編碼器最後一層輸出的隱藏狀態序列。 -
encoder_hidden_states (
tuple(jnp.ndarray)
,可選,當傳遞output_hidden_states=True
或當config.output_hidden_states=True
時返回) —jnp.ndarray
的元組(一個用於嵌入層的輸出,一個用於每個層的輸出),形狀為(batch_size, sequence_length, hidden_size)
。編碼器在每一層輸出時的隱藏狀態以及初始嵌入輸出。
-
encoder_attentions (
tuple(jnp.ndarray)
,可選,當傳遞output_attentions=True
或當config.output_attentions=True
時返回) —jnp.ndarray
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。編碼器的注意力權重,在注意力 softmax 之後,用於計算自注意力頭中的加權平均。
FlaxBlenderbotPreTrainedModel
的前向方法,重寫了 __call__
特殊方法。
儘管前向傳播的流程需要在此函式中定義,但之後應呼叫 Module
例項而不是此函式,因為前者會處理預處理和後處理步驟,而後者會靜默忽略它們。
對話示例:
>>> from transformers import AutoTokenizer, FlaxBlenderbotForConditionalGeneration
>>> model = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-400M-distill")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
>>> UTTERANCE = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer([UTTERANCE], max_length=1024, return_tensors="np")
>>> # Generate Reply
>>> reply_ids = model.generate(inputs["input_ids"], num_beams=4, max_length=5, early_stopping=True).sequences
>>> print([tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in reply_ids])
編碼
< 來源 >( input_ids: Array attention_mask: typing.Optional[jax.Array] = None position_ids: typing.Optional[jax.Array] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None train: bool = False params: typing.Optional[dict] = None dropout_rng: <function PRNGKey at 0x7effc7ad3a30> = None ) → transformers.modeling_flax_outputs.FlaxBaseModelOutput 或 tuple(torch.FloatTensor)
引數
- input_ids (
jnp.ndarray
,形狀為(batch_size, sequence_length)
) — 詞彙表中輸入序列詞元的索引。如果您提供填充,預設情況下將被忽略。可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
jnp.ndarray
,形狀為(batch_size, sequence_length)
,可選) — 用於避免對填充詞元索引執行注意力的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示未被遮蔽的詞元,
- 0 表示被遮蔽的詞元。
- position_ids (
numpy.ndarray
,形狀為(batch_size, sequence_length)
,可選) — 位置嵌入中每個輸入序列詞元的位置索引。取值範圍為[0, config.max_position_embeddings - 1]
。 - output_attentions (
bool
,可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的attentions
。 - output_hidden_states (
bool
,可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的hidden_states
。 - return_dict (
bool
,可選) — 是返回一個 ModelOutput 而不是一個普通的元組。
返回
transformers.modeling_flax_outputs.FlaxBaseModelOutput 或 tuple(torch.FloatTensor)
一個 transformers.modeling_flax_outputs.FlaxBaseModelOutput 或一個 torch.FloatTensor
的元組(如果傳遞了 return_dict=False
或當 config.return_dict=False
時),根據配置(<class 'transformers.models.blenderbot.configuration_blenderbot.BlenderbotConfig'>
)和輸入,包含不同的元素。
-
last_hidden_state (形狀為
(batch_size, sequence_length, hidden_size)
的jnp.ndarray
) — 模型最後一層輸出的隱藏狀態序列。 -
hidden_states (
tuple(jnp.ndarray)
,可選,當傳遞output_hidden_states=True
或當config.output_hidden_states=True
時返回) —jnp.ndarray
的元組(一個用於嵌入層的輸出,一個用於每個層的輸出),形狀為(batch_size, sequence_length, hidden_size)
。模型在每個層輸出的隱藏狀態加上初始嵌入輸出。
-
attentions (
tuple(jnp.ndarray)
,可選,當傳遞output_attentions=True
或當config.output_attentions=True
時返回) —jnp.ndarray
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
示例
>>> from transformers import AutoTokenizer, FlaxBlenderbotForConditionalGeneration
>>> model = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-400M-distill")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)
decode
< 來源 >( decoder_input_ids encoder_outputs encoder_attention_mask: typing.Optional[jax.Array] = None decoder_attention_mask: typing.Optional[jax.Array] = None decoder_position_ids: typing.Optional[jax.Array] = None past_key_values: typing.Optional[dict] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None train: bool = False params: typing.Optional[dict] = None dropout_rng: <function PRNGKey at 0x7effc7ad3a30> = None ) → transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions 或 tuple(torch.FloatTensor)
引數
- decoder_input_ids (
jnp.ndarray
,形狀為(batch_size, target_sequence_length)
) — 解碼器輸入序列在詞彙表中的詞元索引。可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
對於翻譯和摘要訓練,應提供
decoder_input_ids
。如果未提供decoder_input_ids
,模型將根據論文的描述,透過將input_ids
右移來建立此張量,以進行去噪預訓練。 - encoder_outputs (
tuple(tuple(jnp.ndarray)
) — 元組,包含 (last_hidden_state
, 可選:hidden_states
, 可選:attentions
)last_hidden_state
的形狀為(batch_size, sequence_length, hidden_size)
,可選) 是編碼器最後一層輸出的隱藏狀態序列。用於解碼器的交叉注意力機制。 - encoder_attention_mask (
jnp.ndarray
,形狀為(batch_size, sequence_length)
,可選) — 用於避免對填充詞元索引執行注意力的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示未被掩碼的詞元,
- 0 表示被掩碼的詞元。
- decoder_attention_mask (
jnp.ndarray
,形狀為(batch_size, target_sequence_length)
,可選) — 預設行為:生成一個忽略decoder_input_ids
中填充詞元的張量。預設情況下也會使用因果掩碼。如果你想改變填充行為,應根據需要進行修改。有關預設策略的更多資訊,請參閱論文中的圖 1。
- decoder_position_ids (
numpy.ndarray
,形狀為(batch_size, sequence_length)
,可選) — 位置嵌入中每個解碼器輸入序列詞元的位置索引。取值範圍為[0, config.max_position_embeddings - 1]
。 - past_key_values (
dict[str, np.ndarray]
,可選,由init_cache
返回或在傳遞先前的past_key_values
時返回) — 包含預計算的隱藏狀態(注意力塊中的鍵和值)的字典,可用於快速自迴歸解碼。預計算的鍵和值隱藏狀態的形狀為 [batch_size, max_length]。 - output_attentions (
bool
,可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的attentions
。 - output_hidden_states (
bool
,可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的hidden_states
。 - return_dict (
bool
,可選) — 是返回一個 ModelOutput 而不是一個普通的元組。
返回
transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions 或 tuple(torch.FloatTensor)
一個 transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions 或一個 torch.FloatTensor
的元組(如果傳遞了 return_dict=False
或當 config.return_dict=False
時),包含各種元素,具體取決於配置 (<class 'transformers.models.blenderbot.configuration_blenderbot.BlenderbotConfig'>
) 和輸入。
-
logits (形狀為
(batch_size, sequence_length, config.vocab_size)
的jnp.ndarray
) — 語言建模頭的預測分數(SoftMax 之前每個詞彙 token 的分數)。 -
hidden_states (
tuple(jnp.ndarray)
,可選,當傳遞output_hidden_states=True
或當config.output_hidden_states=True
時返回) —jnp.ndarray
的元組(一個用於嵌入層的輸出,一個用於每個層的輸出),形狀為(batch_size, sequence_length, hidden_size)
。模型在每個層輸出的隱藏狀態加上初始嵌入輸出。
-
attentions (
tuple(jnp.ndarray)
,可選,當傳遞output_attentions=True
或當config.output_attentions=True
時返回) —jnp.ndarray
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
-
cross_attentions (
tuple(jnp.ndarray)
,可選,當傳遞output_attentions=True
或當config.output_attentions=True
時返回) —jnp.ndarray
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 後的交叉注意力權重,用於計算交叉注意力頭中的加權平均。
-
past_key_values (
tuple(tuple(jnp.ndarray))
,可選,當傳遞use_cache=True
或config.use_cache=True
時返回) — 長度為config.n_layers
的jnp.ndarray
元組的元組,每個元組包含自注意力和交叉注意力層的快取鍵、值狀態(如果模型在編碼器-解碼器設定中使用)。僅當config.is_decoder = True
時相關。包含預先計算的隱藏狀態(注意力塊中的鍵和值),可用於(參見
past_key_values
輸入)加速順序解碼。
示例
>>> import jax.numpy as jnp
>>> from transformers import AutoTokenizer, FlaxBlenderbotForConditionalGeneration
>>> model = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-400M-distill")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)
>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> logits = outputs.logits