Transformers 文件

JetMoe

Hugging Face's logo
加入 Hugging Face 社群

並獲得增強的文件體驗

開始使用

JetMoe

PyTorch FlashAttention SDPA

概述

JetMoe-8B 是由 Yikang ShenMyShell 開發的 8B 專家混合(MoE)語言模型。JetMoe 專案旨在以有限的預算提供 LLaMA2 級別的效能和高效的語言模型。為實現這一目標,JetMoe 採用了受 ModuleFormer 啟發的稀疏啟用架構。每個 JetMoe 塊由兩個 MoE 層組成:注意力頭混合(Mixture of Attention Heads)和 MLP 專家混合(Mixture of MLP Experts)。給定輸入標記,它會啟用其一部分專家來處理它們。這種稀疏啟用方案使 JetMoe 能夠比類似大小的密集模型獲得更好的訓練吞吐量。JetMoe-8B 在 96 個 H100 GPU 叢集上,採用簡單的 3 路流水線並行策略,訓練吞吐量約為每天 100B 標記。

該模型由 Yikang Shen 貢獻。

JetMoeConfig

transformers.JetMoeConfig

< >

( vocab_size = 32000 hidden_size = 2048 num_hidden_layers = 12 num_key_value_heads = 16 kv_channels = 128 intermediate_size = 5632 max_position_embeddings = 4096 activation_function = 'silu' num_local_experts = 8 num_experts_per_tok = 2 output_router_logits = False aux_loss_coef = 0.01 use_cache = True bos_token_id = 1 eos_token_id = 2 tie_word_embeddings = True rope_theta = 10000.0 rms_norm_eps = 1e-06 initializer_range = 0.01 attention_dropout = 0.0 **kwargs )

引數

  • vocab_size (int, 可選, 預設為 32000) — JetMoe 模型的詞彙量大小。定義了呼叫 JetMoeModel 時傳入的 inputs_ids 可以表示的不同標記的數量。
  • hidden_size (int, 可選, 預設為 2048) — 隱藏表示的維度。
  • num_hidden_layers (int, 可選, 預設為 12) — Transformer 編碼器中的隱藏層數量。
  • num_key_value_heads (int, 可選, 預設為 16) — Transformer 編碼器中每個鍵和值的注意力頭數量。
  • kv_channels (int, 可選, 預設為 128) — 定義鍵和值張量的通道數。
  • intermediate_size (int, 可選, 預設為 5632) — MLP 表示的維度。
  • max_position_embeddings (int, 可選, 預設為 4096) — 此模型可能使用的最大序列長度。JetMoe 的注意力機制允許最長 4096 個標記的序列。
  • activation_function (string, 可選, 預設為 "silu") — 定義 MLP 專家的啟用函式。
  • num_local_experts (int, 可選, 預設為 8) — 定義 MoE 和 MoA 中專家的數量。
  • num_experts_per_tok (int, 可選, 預設為 2) — 每個標記的路由專家數量,用於 MoE 和 MoA。
  • output_router_logits (bool, 可選, 預設為 False) — 模型是否應返回路由器 logits。啟用此項也將允許模型輸出輔助損失。
  • aux_loss_coef (float, 可選, 預設為 0.01) — 輔助損失的係數。
  • use_cache (bool, 可選, 預設為 True) — 模型是否應返回最後的鍵/值注意力(並非所有模型都使用)。僅當 config.is_decoder=True 時相關。
  • bos_token_id (int, 可選, 預設為 1) — 序列開始標記的 ID。
  • eos_token_id (int, 可選, 預設為 2) — 序列結束標記的 ID。
  • tie_word_embeddings (bool, 可選, 預設為 True) — 模型的輸入和輸出詞嵌入是否應繫結。
  • rope_theta (float, 可選, 預設為 10000.0) — RoPE 嵌入的基週期。
  • rms_norm_eps (float, 可選, 預設為 1e-06) — RMS 歸一化層使用的 epsilon 值。
  • initializer_range (float, 可選, 預設為 0.01) — 用於初始化所有權重矩陣的 truncated_normal_initializer 的標準差。
  • attention_dropout (float, 可選, 預設為 0.0) — 注意力機率的 dropout 比率。

這是用於儲存 JetMoeModel 配置的配置類。它用於根據指定的引數例項化 JetMoe 模型,定義模型架構。例項化預設配置將生成 JetMoe-4B 的配置。

jetmoe/jetmoe-8b

配置物件繼承自 PretrainedConfig,可用於控制模型輸出。有關更多資訊,請參閱 PretrainedConfig 的文件。

>>> from transformers import JetMoeModel, JetMoeConfig

>>> # Initializing a JetMoe 4B style configuration
>>> configuration = JetMoeConfig()

>>> # Initializing a model from the JetMoe 4B style configuration
>>> model = JetMoeModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

JetMoeModel

transformers.JetMoeModel

< >

( config: JetMoeConfig )

引數

  • config (JetMoeConfig) — 模型配置類,包含模型的所有引數。使用配置檔案初始化不會載入與模型相關的權重,只加載配置。請檢視 from_pretrained() 方法以載入模型權重。

不帶任何特定頭部的純 Jetmoe 模型,輸出原始隱藏狀態。

此模型繼承自 PreTrainedModel。請檢視其父類文件,瞭解庫為其所有模型實現的一般方法(例如下載或儲存、調整輸入嵌入大小、修剪頭部等)。

此模型也是 PyTorch torch.nn.Module 子類。請將其用作常規 PyTorch 模組,並參考 PyTorch 文件瞭解所有與一般使用和行為相關的事項。

正向傳播

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Union[transformers.cache_utils.Cache, list[torch.FloatTensor], NoneType] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None output_router_logits: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None ) transformers.modeling_outputs.MoeModelOutputWithPasttuple(torch.FloatTensor)

引數

  • input_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 詞彙表中輸入序列標記的索引。預設情況下會忽略填充。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參見 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (torch.Tensor,形狀為 (batch_size, sequence_length)可選) — 用於避免對填充標記索引執行注意力操作的掩碼。掩碼值選擇在 [0, 1] 之間:

    • 1 表示未被掩碼的標記,
    • 0 表示被掩碼的標記。

    什麼是注意力掩碼?

  • position_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 每個輸入序列標記在位置嵌入中的位置索引。選擇範圍為 [0, config.n_positions - 1]

    什麼是位置 ID?

  • past_key_values (Union[~cache_utils.Cache, list[torch.FloatTensor], NoneType]) — 預先計算的隱藏狀態(自注意力塊和交叉注意力塊中的鍵和值),可用於加速序列解碼。這通常包括模型在解碼上一階段返回的 past_key_values,當 use_cache=Trueconfig.use_cache=True 時。

    允許兩種格式:

    • Cache 例項,請參閱我們的 kv 快取指南
    • 長度為 config.n_layerstuple(torch.FloatTensor) 元組,每個元組包含 2 個形狀為 (batch_size, num_heads, sequence_length, embed_size_per_head) 的張量。這也稱為傳統快取格式。

    模型將輸出與輸入相同的快取格式。如果未傳遞 past_key_values,將返回傳統快取格式。

    如果使用 past_key_values,使用者可以選擇僅輸入形狀為 (batch_size, 1) 的最後一個 input_ids(那些沒有將過去的鍵值狀態提供給此模型的),而不是形狀為 (batch_size, sequence_length) 的所有 input_ids

  • inputs_embeds (torch.FloatTensor,形狀為 (batch_size, sequence_length, hidden_size)可選) — 可選地,您可以選擇直接傳遞嵌入表示,而不是傳遞 input_ids。如果您想對如何將 input_ids 索引轉換為關聯向量擁有比模型內部嵌入查詢矩陣更多的控制權,這將非常有用。
  • use_cache (bool可選) — 如果設定為 True,則返回 past_key_values 鍵值狀態,可用於加速解碼(參見 past_key_values)。
  • output_attentions (bool可選) — 是否返回所有注意力層的注意力張量。更多詳細資訊請參見返回張量中的 attentions
  • output_hidden_states (bool可選) — 是否返回所有層的隱藏狀態。更多詳細資訊請參見返回張量中的 hidden_states
  • output_router_logits (bool可選) — 是否返回所有路由器的 logits。它們對於計算路由器損失很有用,不應在推理期間返回。
  • cache_position (torch.LongTensor,形狀為 (sequence_length)可選) — 表示輸入序列標記在序列中位置的索引。與 position_ids 不同,此張量不受填充影響。它用於在正確位置更新快取並推斷完整的序列長度。

返回

transformers.modeling_outputs.MoeModelOutputWithPasttuple(torch.FloatTensor)

一個 transformers.modeling_outputs.MoeModelOutputWithPast 或一個 torch.FloatTensor 元組(如果傳遞了 return_dict=False 或當 config.return_dict=False 時),其中包含根據配置 (JetMoeConfig) 和輸入的不同元素。

  • last_hidden_state (torch.FloatTensor, 形狀為 (batch_size, sequence_length, hidden_size)) — 模型最後一層輸出的隱藏狀態序列。

  • past_key_values (Cache可選,當傳遞 use_cache=Trueconfig.use_cache=True 時返回) — 這是一個 Cache 例項。更多詳細資訊請參閱我們的 kv 快取指南

    包含預先計算的隱藏狀態(自注意力塊中的鍵和值,如果 config.is_encoder_decoder=True,則可選地包含交叉注意力塊中的鍵和值),可用於(參見 past_key_values 輸入)加速序列解碼。

  • hidden_states (tuple(torch.FloatTensor)可選,當傳遞 output_hidden_states=Trueconfig.output_hidden_states=True 時返回) — torch.FloatTensor 元組(一個用於嵌入層輸出,如果模型有嵌入層,+一個用於每個層輸出),形狀為 (batch_size, sequence_length, hidden_size)

    模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。

  • attentions (tuple(torch.FloatTensor)可選,當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — torch.FloatTensor 元組(每個層一個),形狀為 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

  • router_logits (tuple(torch.FloatTensor)可選,當傳遞 output_router_probs=Trueconfig.add_router_probs=True 或當 config.output_router_probs=True 時返回) — torch.FloatTensor 元組(每個層一個),形狀為 (batch_size, sequence_length, num_experts)

    由 MoE 路由器計算的原始路由器對數(softmax 後),這些術語用於計算專家混合模型的輔助損失。

JetMoeModel 的正向傳播方法,覆蓋了 __call__ 特殊方法。

儘管正向傳播的實現需要在該函式內定義,但之後應呼叫 Module 例項而非此函式,因為前者負責執行預處理和後處理步驟,而後者則默默忽略它們。

JetMoeForCausalLM

transformers.JetMoeForCausalLM

< >

( config )

正向傳播

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[list[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None output_router_logits: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None logits_to_keep: typing.Union[int, torch.Tensor] = 0 **kwargs ) transformers.modeling_outputs.MoeCausalLMOutputWithPasttuple(torch.FloatTensor)

引數

  • input_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 詞彙表中輸入序列標記的索引。預設情況下會忽略填充。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參見 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (torch.Tensor,形狀為 (batch_size, sequence_length)可選) — 用於避免對填充標記索引執行注意力操作的掩碼。掩碼值選擇在 [0, 1] 之間:

    • 1 表示未被掩碼的標記,
    • 0 表示被掩碼的標記。

    什麼是注意力掩碼?

  • position_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 每個輸入序列標記在位置嵌入中的位置索引。選擇範圍為 [0, config.n_positions - 1]

    什麼是位置 ID?

  • past_key_values (list[torch.FloatTensor]可選) — 預先計算的隱藏狀態(自注意力塊和交叉注意力塊中的鍵和值),可用於加速序列解碼。這通常包括模型在解碼上一階段返回的 past_key_values,當 use_cache=Trueconfig.use_cache=True 時。

    允許兩種格式:

    • Cache 例項,請參閱我們的 kv 快取指南
    • 長度為 config.n_layerstuple(torch.FloatTensor) 元組,每個元組包含 2 個形狀為 (batch_size, num_heads, sequence_length, embed_size_per_head) 的張量。這也稱為傳統快取格式。

    模型將輸出與輸入相同的快取格式。如果未傳遞 past_key_values,將返回傳統快取格式。

    如果使用 past_key_values,使用者可以選擇僅輸入形狀為 (batch_size, 1) 的最後一個 input_ids(那些沒有將過去的鍵值狀態提供給此模型的),而不是形狀為 (batch_size, sequence_length) 的所有 input_ids

  • inputs_embeds (torch.FloatTensor,形狀為 (batch_size, sequence_length, hidden_size)可選) — 可選地,您可以選擇直接傳遞嵌入表示,而不是傳遞 input_ids。如果您想對如何將 input_ids 索引轉換為關聯向量擁有比模型內部嵌入查詢矩陣更多的控制權,這將非常有用。
  • labels (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 用於計算 masked language modeling 損失的標籤。索引應在 [0, ..., config.vocab_size] 或 -100 之間(參見 input_ids 文件字串)。索引設定為 -100 的標記將被忽略(被掩碼),損失僅針對標籤在 [0, ..., config.vocab_size] 中的標記計算。
  • use_cache (bool可選) — 如果設定為 True,則返回 past_key_values 鍵值狀態,可用於加速解碼(參見 past_key_values)。
  • output_attentions (bool可選) — 是否返回所有注意力層的注意力張量。更多詳細資訊請參見返回張量中的 attentions
  • output_hidden_states (bool可選) — 是否返回所有層的隱藏狀態。更多詳細資訊請參見返回張量中的 hidden_states
  • output_router_logits (bool可選) — 是否返回所有路由器的 logits。它們對於計算路由器損失很有用,不應在推理期間返回。
  • cache_position (torch.LongTensor,形狀為 (sequence_length)可選) — 表示輸入序列標記在序列中位置的索引。與 position_ids 不同,此張量不受填充影響。它用於在正確位置更新快取並推斷完整的序列長度。
  • logits_to_keep (Union[int, torch.Tensor],預設為 0) — 如果是 int,則計算最後 logits_to_keep 個標記的 logits。如果是 0,則計算所有 input_ids 的 logits(特殊情況)。生成時只需要最後一個標記的 logits,只計算該標記的 logits 可以節省記憶體,這對於長序列或大詞彙量非常重要。如果是 torch.Tensor,則必須是 1D,對應於序列長度維度中要保留的索引。這在使用打包張量格式(批次和序列長度的單個維度)時很有用。

返回

transformers.modeling_outputs.MoeCausalLMOutputWithPasttuple(torch.FloatTensor)

一個 transformers.modeling_outputs.MoeCausalLMOutputWithPast 或一個 torch.FloatTensor 元組(如果傳遞了 return_dict=False 或當 config.return_dict=False 時),其中包含根據配置 (JetMoeConfig) 和輸入的不同元素。

  • loss (torch.FloatTensor 形狀為 (1,)可選,當提供 labels 時返回) — 語言建模損失(用於下一個 token 預測)。

  • logits (形狀為 (batch_size, sequence_length, config.vocab_size)torch.FloatTensor) — 語言建模頭部的預測分數(SoftMax 之前的每個詞彙標記的分數)。

  • aux_loss (torch.FloatTensor可選,當提供 labels 時返回) — 稀疏模組的輔助損失。

  • router_logits (tuple(torch.FloatTensor)可選,當傳遞 output_router_probs=Trueconfig.add_router_probs=True 或當 config.output_router_probs=True 時返回) — torch.FloatTensor 元組(每個層一個),形狀為 (batch_size, sequence_length, num_experts)

    由 MoE 路由器計算的原始路由器對數(softmax 後),這些術語用於計算專家混合模型的輔助損失。

  • past_key_values (Cache可選,當傳遞 use_cache=Trueconfig.use_cache=True 時返回) — 這是一個 Cache 例項。更多詳細資訊請參閱我們的 kv 快取指南

    包含預計算的隱藏狀態(自注意力塊中的鍵和值),可用於(參見 past_key_values 輸入)加速順序解碼。

  • hidden_states (tuple(torch.FloatTensor)可選,當傳遞 output_hidden_states=Trueconfig.output_hidden_states=True 時返回) — torch.FloatTensor 元組(一個用於嵌入層輸出,如果模型有嵌入層,+一個用於每個層輸出),形狀為 (batch_size, sequence_length, hidden_size)

    模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。

  • attentions (tuple(torch.FloatTensor)可選,當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — torch.FloatTensor 元組(每個層一個),形狀為 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

JetMoeForCausalLM 的正向傳播方法,覆蓋了 __call__ 特殊方法。

儘管正向傳播的實現需要在該函式內定義,但之後應呼叫 Module 例項而非此函式,因為前者負責執行預處理和後處理步驟,而後者則默默忽略它們。

示例

JetMoeForSequenceClassification

transformers.JetMoeForSequenceClassification

< >

( config )

引數

帶序列分類頭(線性層)的 JetMoe 模型 Transformer。

JetMoeForSequenceClassification 使用最後一個標記進行分類,就像其他因果模型(如 GPT-2)一樣。

由於它對最後一個標記進行分類,因此需要知道最後一個標記的位置。如果在配置中定義了 pad_token_id,它會找到每行中不是填充標記的最後一個標記。如果未定義 pad_token_id,它只會取批處理中每行的最後一個值。由於在傳遞 inputs_embeds 而不是 input_ids 時無法猜測填充標記,因此它會執行相同的操作(取批處理中每行的最後一個值)。

此模型繼承自 PreTrainedModel。請檢視其父類文件,瞭解庫為其所有模型實現的一般方法(例如下載或儲存、調整輸入嵌入大小、修剪頭部等)。

此模型也是 PyTorch torch.nn.Module 子類。請將其用作常規 PyTorch 模組,並參考 PyTorch 文件瞭解所有與一般使用和行為相關的事項。

正向傳播

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None ) transformers.modeling_outputs.SequenceClassifierOutputWithPasttuple(torch.FloatTensor)

引數

  • input_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 詞彙表中輸入序列標記的索引。預設情況下會忽略填充。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參見 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (torch.Tensor,形狀為 (batch_size, sequence_length)可選) — 用於避免對填充標記索引執行注意力操作的掩碼。掩碼值選擇在 [0, 1] 之間:

    • 1 表示未被掩碼的標記,
    • 0 表示被掩碼的標記。

    什麼是注意力掩碼?

  • position_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 每個輸入序列標記在位置嵌入中的位置索引。選擇範圍為 [0, config.n_positions - 1]

    什麼是位置 ID?

  • past_key_values (~cache_utils.Cache可選) — 預先計算的隱藏狀態(自注意力塊和交叉注意力塊中的鍵和值),可用於加速序列解碼。這通常包括模型在解碼上一階段返回的 past_key_values,當 use_cache=Trueconfig.use_cache=True 時。

    允許兩種格式:

    • Cache 例項,請參閱我們的 kv 快取指南
    • 長度為 config.n_layerstuple(torch.FloatTensor) 元組,每個元組包含 2 個形狀為 (batch_size, num_heads, sequence_length, embed_size_per_head) 的張量。這也稱為傳統快取格式。

    模型將輸出與輸入相同的快取格式。如果未傳遞 past_key_values,將返回傳統快取格式。

    如果使用 past_key_values,使用者可以選擇僅輸入形狀為 (batch_size, 1) 的最後一個 input_ids(那些沒有將過去的鍵值狀態提供給此模型的),而不是形狀為 (batch_size, sequence_length) 的所有 input_ids

  • inputs_embeds (torch.FloatTensor,形狀為 (batch_size, sequence_length, hidden_size)可選) — 可選地,您可以選擇直接傳遞嵌入表示,而不是傳遞 input_ids。如果您想對如何將 input_ids 索引轉換為關聯向量擁有比模型內部嵌入查詢矩陣更多的控制權,這將非常有用。
  • labels (torch.LongTensor,形狀為 (batch_size,)可選) — 用於計算序列分類/迴歸損失的標籤。索引應在 [0, ..., config.num_labels - 1] 之間。如果 config.num_labels == 1,則計算迴歸損失(均方誤差損失);如果 config.num_labels > 1,則計算分類損失(交叉熵)。
  • use_cache (bool可選) — 如果設定為 True,則返回 past_key_values 鍵值狀態,可用於加速解碼(參見 past_key_values)。
  • output_attentions (bool可選) — 是否返回所有注意力層的注意力張量。更多詳細資訊請參見返回張量中的 attentions
  • output_hidden_states (bool可選) — 是否返回所有層的隱藏狀態。更多詳細資訊請參見返回張量中的 hidden_states

返回

transformers.modeling_outputs.SequenceClassifierOutputWithPasttuple(torch.FloatTensor)

一個 transformers.modeling_outputs.SequenceClassifierOutputWithPast 或一個 torch.FloatTensor 元組(如果傳遞了 return_dict=False 或當 config.return_dict=False 時),其中包含根據配置 (JetMoeConfig) 和輸入的不同元素。

  • loss (形狀為 (1,)torch.FloatTensor可選,當提供 labels 時返回) — 分類損失(如果 config.num_labels==1,則為迴歸損失)。

  • logits (形狀為 (batch_size, config.num_labels)torch.FloatTensor) — 分類(如果 config.num_labels==1,則為迴歸)分數(SoftMax 之前)。

  • past_key_values (Cache可選,當傳遞 use_cache=Trueconfig.use_cache=True 時返回) — 這是一個 Cache 例項。更多詳細資訊請參閱我們的 kv 快取指南

    包含預計算的隱藏狀態(自注意力塊中的鍵和值),可用於(參見 past_key_values 輸入)加速順序解碼。

  • hidden_states (tuple(torch.FloatTensor)可選,當傳遞 output_hidden_states=Trueconfig.output_hidden_states=True 時返回) — torch.FloatTensor 元組(一個用於嵌入層輸出,如果模型有嵌入層,+一個用於每個層輸出),形狀為 (batch_size, sequence_length, hidden_size)

    模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。

  • attentions (tuple(torch.FloatTensor)可選,當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — torch.FloatTensor 元組(每個層一個),形狀為 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

JetMoeForSequenceClassification 的正向傳播方法,覆蓋了 __call__ 特殊方法。

儘管正向傳播的實現需要在該函式內定義,但之後應呼叫 Module 例項而非此函式,因為前者負責執行預處理和後處理步驟,而後者則默默忽略它們。

單標籤分類示例

>>> import torch
>>> from transformers import AutoTokenizer, JetMoeForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("jetmoe/jetmoe-8b")
>>> model = JetMoeForSequenceClassification.from_pretrained("jetmoe/jetmoe-8b")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_id = logits.argmax().item()
>>> model.config.id2label[predicted_class_id]
...

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = JetMoeForSequenceClassification.from_pretrained("jetmoe/jetmoe-8b", num_labels=num_labels)

>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...

多標籤分類示例

>>> import torch
>>> from transformers import AutoTokenizer, JetMoeForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("jetmoe/jetmoe-8b")
>>> model = JetMoeForSequenceClassification.from_pretrained("jetmoe/jetmoe-8b", problem_type="multi_label_classification")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = JetMoeForSequenceClassification.from_pretrained(
...     "jetmoe/jetmoe-8b", num_labels=num_labels, problem_type="multi_label_classification"
... )

>>> labels = torch.sum(
...     torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss
< > 在 GitHub 上更新

© . This site is unofficial and not affiliated with Hugging Face, Inc.