Transformers 文件

BigBird

Hugging Face's logo
加入 Hugging Face 社群

並獲得增強的文件體驗

開始使用

PyTorch Flax

BigBird

BigBird 是一個 Transformer 模型,旨在處理最長可達 4096 的序列,而 BERT 的序列長度為 512。傳統 Transformer 模型在處理長輸入時會遇到困難,因為隨著序列長度的增加,注意力機制的計算成本會變得非常昂貴。BigBird 透過使用稀疏注意力機制解決了這個問題,這意味著它不會一次性關注所有內容。相反,它混合了局部注意力、隨機注意力和一些全域性標記來處理整個輸入。這種組合使其兼具兩者的優點,既保持了計算效率,又能捕獲到足夠多的序列資訊以很好地理解內容。因此,BigBird 非常適合涉及長文件的任務,如問答、摘要和基因組應用。

你可以在 Google 組織下找到所有原始的 BigBird checkpoints。

點選右側邊欄中的 BigBird 模型,檢視更多關於如何將 BigBird 應用於不同語言任務的示例。

下面的示例演示瞭如何使用 PipelineAutoModel 以及從命令列預測 [MASK] 標記。

流水線
自動模型
Transformers CLI
import torch
from transformers import pipeline

pipeline = pipeline(
    task="fill-mask",
    model="google/bigbird-roberta-base",
    torch_dtype=torch.float16,
    device=0
)
pipeline("Plants create [MASK] through a process known as photosynthesis.")

注意事項

  • 輸入應在右側進行填充,因為 BigBird 使用絕對位置嵌入。
  • BigBird 支援 original_fullblock_sparse 兩種注意力機制。如果輸入序列長度小於 1024,建議使用 original_full,因為稀疏模式對於較短的輸入不會帶來太多好處。
  • 當前實現使用的視窗大小為 3 個塊,2 個全域性塊,僅支援 ITC 實現,且不支援 num_random_blocks=0
  • 序列長度必須能被塊大小整除。

資源

  • 閱讀 BigBird 部落格文章,瞭解其注意力機制的更多細節。

BigBirdConfig

class transformers.BigBirdConfig

< >

( vocab_size = 50358 hidden_size = 768 num_hidden_layers = 12 num_attention_heads = 12 intermediate_size = 3072 hidden_act = 'gelu_new' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 4096 type_vocab_size = 2 initializer_range = 0.02 layer_norm_eps = 1e-12 use_cache = True pad_token_id = 0 bos_token_id = 1 eos_token_id = 2 sep_token_id = 66 attention_type = 'block_sparse' use_bias = True rescale_embeddings = False block_size = 64 num_random_blocks = 3 classifier_dropout = None **kwargs )

引數

  • vocab_size (int, 可選, 預設為 50358) — BigBird 模型的詞彙表大小。定義了在呼叫 BigBirdModel 時傳遞的 inputs_ids 可以表示的不同標記的數量。
  • hidden_size (int, 可選, 預設為 768) — 編碼器層和池化層的維度。
  • num_hidden_layers (int, 可選, 預設為 12) — Transformer 編碼器中的隱藏層數量。
  • num_attention_heads (int, 可選, 預設為 12) — Transformer 編碼器中每個注意力層的注意力頭數量。
  • intermediate_size (int, 可選, 預設為 3072) — Transformer 編碼器中“中間”(即前饋)層的維度。
  • hidden_act (strfunction, 可選, 預設為 "gelu_new") — 編碼器和池化層中的非線性啟用函式(函式或字串)。如果為字串,支援 "gelu""relu""selu""gelu_new"
  • hidden_dropout_prob (float, 可選, 預設為 0.1) — 嵌入層、編碼器和池化層中所有全連線層的丟棄機率。
  • attention_probs_dropout_prob (float, 可選, 預設為 0.1) — 注意力機率的丟棄率。
  • max_position_embeddings (int, 可選, 預設為 4096) — 此模型可能使用的最大序列長度。通常將其設定為一個較大的值以備不時之需(例如,1024、2048 或 4096)。
  • type_vocab_size (int, 可選, 預設為 2) — 呼叫 BigBirdModel 時傳遞的 token_type_ids 的詞彙表大小。
  • initializer_range (float, 可選, 預設為 0.02) — 用於初始化所有權重矩陣的 truncated_normal_initializer 的標準差。
  • layer_norm_eps (float, 可選, 預設為 1e-12) — 層歸一化層使用的 epsilon 值。
  • is_decoder (bool, 可選, 預設為 False) — 模型是否用作解碼器。如果為 False,則模型用作編碼器。
  • use_cache (bool, 可選, 預設為 True) — 模型是否應返回最後一個鍵/值注意力(並非所有模型都使用)。僅當 config.is_decoder=True 時相關。
  • attention_type (str, 可選, 預設為 "block_sparse") — 是否使用論文中介紹的塊稀疏注意力(複雜度為 n)或原始注意力層(複雜度為 n^2)。可能的值為 "original_full""block_sparse"
  • use_bias (bool, 可選, 預設為 True) — 是否在查詢、鍵、值中使用偏置。
  • rescale_embeddings (bool, 可選, 預設為 False) — 是否使用 (hidden_size ** 0.5) 重新縮放嵌入。
  • block_size (int, 可選, 預設為 64) — 每個塊的大小。僅在 attention_type == "block_sparse" 時有用。
  • num_random_blocks (int, 可選, 預設為 3) — 每個查詢將關注的隨機塊的數量。僅在 attention_type == "block_sparse" 時有用。
  • classifier_dropout (float, 可選) — 分類頭的丟棄率。

這是用於儲存 BigBirdModel 配置的配置類。它根據指定的引數例項化 BigBird 模型,定義模型架構。使用預設值例項化配置將產生與 BigBird google/bigbird-roberta-base 架構類似的配置。

配置物件繼承自 PretrainedConfig,可用於控制模型輸出。有關更多資訊,請閱讀 PretrainedConfig 的文件。

示例

>>> from transformers import BigBirdConfig, BigBirdModel

>>> # Initializing a BigBird google/bigbird-roberta-base style configuration
>>> configuration = BigBirdConfig()

>>> # Initializing a model (with random weights) from the google/bigbird-roberta-base style configuration
>>> model = BigBirdModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

BigBirdTokenizer

class transformers.BigBirdTokenizer

< >

( vocab_file unk_token = '<unk>' bos_token = '<s>' eos_token = '</s>' pad_token = '<pad>' sep_token = '[SEP]' mask_token = '[MASK]' cls_token = '[CLS]' sp_model_kwargs: typing.Optional[dict[str, typing.Any]] = None **kwargs )

引數

  • vocab_file (str) — SentencePiece 檔案(通常副檔名為 .spm),其中包含例項化分詞器所需的詞彙表。
  • unk_token (str, 可選, 預設為 "<unk>") — 未知詞元。不在詞彙表中的詞元無法轉換為 ID,將被設定為此詞元。
  • bos_token (str, 可選, 預設為 "<s>") — 序列開始詞元。
  • eos_token (str, 可選, 預設為 "</s>") — 序列結束詞元。
  • pad_token (str, 可選, 預設為 "<pad>") — 用於填充的詞元,例如在批處理不同長度的序列時使用。
  • sep_token (str, 可選, 預設為 "[SEP]") — 分隔符詞元,用於從多個序列構建一個序列時,例如用於序列分類的兩個序列,或用於問答的文字和問題。它也用作帶有特殊詞元的序列的最後一個詞元。
  • mask_token (str, 可選, 預設為 "[MASK]") — 用於掩碼值的詞元。這是在使用掩碼語言建模訓練此模型時使用的詞元。這是模型將嘗試預測的詞元。
  • cls_token (str, 可選, 預設為 "[CLS]") — 分類器詞元,用於進行序列分類(對整個序列進行分類,而不是逐詞元分類)。當使用特殊詞元構建序列時,它是序列的第一個詞元。
  • sp_model_kwargs (dict, 可選) — 將傳遞給 SentencePieceProcessor.__init__() 方法。SentencePiece 的 Python 包裝器可用於設定以下內容等:

    • enable_sampling: 啟用子詞正則化。

    • nbest_size: Unigram 的取樣引數。對 BPE-Dropout 無效。

      • nbest_size = {0,1}: 不執行取樣。
      • nbest_size > 1: 從 nbest_size 個結果中取樣。
      • nbest_size < 0: 假設 nbest_size 無窮大,並使用前向過濾-後向取樣演算法從所有假設(格)中取樣。
    • alpha: Unigram 取樣的平滑引數,以及 BPE-dropout 的合併操作的丟棄機率。

構建一個 BigBird 分詞器。基於 SentencePiece

該分詞器繼承自 PreTrainedTokenizer,其中包含大部分主要方法。使用者應參考此超類以獲取有關這些方法的更多資訊。

build_inputs_with_special_tokens

< >

( token_ids_0: list token_ids_1: typing.Optional[list[int]] = None ) List[int]

引數

  • token_ids_0 (List[int]) — 將新增特殊詞元的 ID 列表。
  • token_ids_1 (List[int], 可選) — 序列對的可選第二個 ID 列表。

返回

List[int]

帶有適當特殊標記的輸入ID列表。

透過連線和新增特殊詞元,從一個序列或一對序列為序列分類任務構建模型輸入。Big Bird 序列具有以下格式:

  • 單個序列:[CLS] X [SEP]
  • 序列對:[CLS] A [SEP] B [SEP]

get_special_tokens_mask

< >

( token_ids_0: list token_ids_1: typing.Optional[list[int]] = None already_has_special_tokens: bool = False ) List[int]

引數

  • token_ids_0 (List[int]) — ID 列表。
  • token_ids_1 (List[int], 可選) — 序列對的可選第二個 ID 列表。
  • already_has_special_tokens (bool, 可選, 預設為 False) — 詞元列表是否已經為模型格式化了特殊詞元。

返回

List[int]

一個範圍為 [0, 1] 的整數列表:1 表示特殊標記,0 表示序列標記。

從沒有新增特殊標記的標記列表中檢索序列ID。此方法在使用分詞器prepare_for_model方法新增特殊標記時呼叫。

create_token_type_ids_from_sequences

< >

( token_ids_0: list token_ids_1: typing.Optional[list[int]] = None ) list[int]

引數

  • token_ids_0 (list[int]) — 第一個分詞後的序列。
  • token_ids_1 (list[int], 可選) — 第二個分詞後的序列。

返回

list[int]

標記型別 ID。

建立與傳入序列對應的標記型別 ID。什麼是標記型別 ID?

如果模型有特殊的構建方式,應在子類中重寫此方法。

save_vocabulary

< >

( save_directory: str filename_prefix: typing.Optional[str] = None )

BigBirdTokenizerFast

class transformers.BigBirdTokenizerFast

< >

( vocab_file = None tokenizer_file = None unk_token = '<unk>' bos_token = '<s>' eos_token = '</s>' pad_token = '<pad>' sep_token = '[SEP]' mask_token = '[MASK]' cls_token = '[CLS]' **kwargs )

引數

  • vocab_file (str) — SentencePiece 檔案(通常副檔名為 .spm),其中包含例項化分詞器所需的詞彙表。
  • bos_token (str, 可選, 預設為 "<s>") — 預訓練期間使用的序列開始詞元。可用作序列分類器詞元。

    當使用特殊詞元構建序列時,這不是用於序列開始的詞元。使用的詞元是 cls_token

  • eos_token (str, 可選, 預設為 "</s>") — 序列結束詞元。.. 注意:當使用特殊詞元構建序列時,這不是用於序列結束的詞元。使用的詞元是 sep_token
  • unk_token (str, 可選, 預設為 "<unk>") — 未知詞元。不在詞彙表中的詞元無法轉換為 ID,將被設定為此詞元。
  • sep_token (str, 可選, 預設為 "[SEP]") — 分隔符詞元,用於從多個序列構建一個序列時,例如用於序列分類的兩個序列,或用於問答的文字和問題。它也用作帶有特殊詞元的序列的最後一個詞元。
  • pad_token (str, 可選, 預設為 "<pad>") — 用於填充的詞元,例如在批處理不同長度的序列時使用。
  • cls_token (str, 可選, 預設為 "[CLS]") — 分類器詞元,用於進行序列分類(對整個序列進行分類,而不是逐詞元分類)。當使用特殊詞元構建序列時,它是序列的第一個詞元。
  • mask_token (str, 可選, 預設為 "[MASK]") — 用於掩碼值的詞元。這是在使用掩碼語言建模訓練此模型時使用的詞元。這是模型將嘗試預測的詞元。

構建一個“快速”BigBird 分詞器(由 HuggingFace 的 tokenizers 庫支援)。基於 Unigram。該分詞器繼承自 PreTrainedTokenizerFast,其中包含大部分主要方法。使用者應參考此超類以獲取有關這些方法的更多資訊

build_inputs_with_special_tokens

< >

( token_ids_0: list token_ids_1: typing.Optional[list[int]] = None ) List[int]

引數

  • token_ids_0 (List[int]) — 將新增特殊詞元的 ID 列表
  • token_ids_1 (List[int], 可選) — 序列對的可選第二個 ID 列表。

返回

List[int]

包含適當特殊標記的 輸入 ID 列表。

透過連線和新增特殊詞元,從一個序列或一對序列為序列分類任務構建模型輸入。一個 BigBird 序列具有以下格式:

  • 單個序列:[CLS] X [SEP]
  • 序列對:[CLS] A [SEP] B [SEP]

get_special_tokens_mask

< >

( token_ids_0: list token_ids_1: typing.Optional[list[int]] = None already_has_special_tokens: bool = False ) List[int]

引數

  • token_ids_0 (List[int]) — id 列表。
  • token_ids_1 (List[int], 可選) — 序列對的可選第二個 ID 列表。
  • already_has_special_tokens (bool, 可選, 預設為 False) — 如果詞元列表已經為模型格式化了特殊詞元,則設定為 True

返回

List[int]

一個範圍為 [0, 1] 的整數列表:1 表示特殊標記,0 表示序列標記。

從沒有新增特殊詞元的詞元列表中檢索序列 ID。當使用分詞器的 prepare_for_model 方法新增特殊詞元時,會呼叫此方法。

BigBird 特定輸出

class transformers.models.big_bird.modeling_big_bird.BigBirdForPreTrainingOutput

< >

( loss: typing.Optional[torch.FloatTensor] = None prediction_logits: typing.Optional[torch.FloatTensor] = None seq_relationship_logits: typing.Optional[torch.FloatTensor] = None hidden_states: typing.Optional[tuple[torch.FloatTensor]] = None attentions: typing.Optional[tuple[torch.FloatTensor]] = None )

引數

  • loss (*可選*, 當提供 labels 時返回, 形狀為 (1,)torch.FloatTensor) — 總損失,是掩碼語言建模損失和下一序列預測(分類)損失的和。
  • prediction_logits (形狀為 (batch_size, sequence_length, config.vocab_size)torch.FloatTensor) — 語言建模頭的預測分數(SoftMax 前每個詞彙表詞元的分數)。
  • seq_relationship_logits (形狀為 (batch_size, 2)torch.FloatTensor) — 下一序列預測(分類)頭的預測分數(SoftMax 前的 True/False 連續性分數)。
  • hidden_states (tuple[torch.FloatTensor], 可選, 當傳遞 output_hidden_states=Trueconfig.output_hidden_states=True 時返回) — 形狀為 (batch_size, sequence_length, hidden_size)torch.FloatTensor 元組(一個是嵌入層的輸出,如果模型有嵌入層,+ 一個是每一層的輸出)。

    模型在每一層輸出的隱藏狀態,以及可選的初始嵌入輸出。

  • attentions (tuple[torch.FloatTensor], 可選, 當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — 形狀為 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元組(每層一個)。

    注意力 softmax 之後的注意力權重,用於計算自注意力頭中的加權平均值。

BigBirdForPreTraining 的輸出型別。

Pytorch
隱藏 Pytorch 內容

BigBirdModel

class transformers.BigBirdModel

< >

( config add_pooling_layer = True )

引數

  • config (BigBirdModel) — 包含模型所有引數的模型配置類。使用配置檔案初始化不會載入與模型相關的權重,只加載配置。請檢視 from_pretrained() 方法以載入模型權重。
  • add_pooling_layer (bool, 可選, 預設為 True) — 是否新增池化層

基礎的 Big Bird 模型,輸出原始的隱藏狀態,頂部沒有任何特定的頭。

該模型繼承自 PreTrainedModel。請檢視超類的文件以瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪注意力頭等)。

此模型也是 PyTorch torch.nn.Module 的子類。可以像常規 PyTorch 模組一樣使用它,並參考 PyTorch 文件瞭解所有與常規用法和行為相關的事項。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None encoder_hidden_states: typing.Optional[torch.FloatTensor] = None encoder_attention_mask: typing.Optional[torch.FloatTensor] = None past_key_values: typing.Optional[tuple[tuple[torch.FloatTensor]]] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None **kwargs ) transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentionstuple(torch.FloatTensor)

引數

  • input_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 詞彙表中輸入序列標記的索引。預設情況下,填充將被忽略。

    索引可以使用 AutoTokenizer 獲取。有關詳細資訊,請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入ID?

  • attention_mask (torch.FloatTensor,形狀為 (batch_size, sequence_length)可選) — 用於避免對填充標記索引執行注意力操作的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示標記未被遮蓋
    • 0 表示標記被遮蓋

    什麼是注意力掩碼?

  • token_type_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 段標記索引,用於指示輸入的第一部分和第二部分。索引在 [0, 1] 中選擇:

    • 0 對應於 *句子 A* 標記,
    • 1 對應於 *句子 B* 標記。

    什麼是 token type ID?

  • position_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 每個輸入序列標記在位置嵌入中的位置索引。在 [0, config.n_positions - 1] 範圍內選擇。

    什麼是 position ID?

  • head_mask (torch.FloatTensor,形狀為 (num_heads,)(num_layers, num_heads)可選) — 用於置零自注意力模組中選定頭的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示頭未被遮蓋
    • 0 表示頭被遮蓋
  • inputs_embeds (torch.FloatTensor,形狀為 (batch_size, sequence_length, hidden_size)可選) — 可選地,你可以選擇直接傳遞嵌入表示,而不是傳遞 input_ids。如果你想比模型內部的嵌入查詢矩陣更好地控制如何將 input_ids 索引轉換為關聯向量,這會很有用。
  • encoder_hidden_states (torch.FloatTensor,形狀為 (batch_size, sequence_length, hidden_size)可選) — 編碼器最後一層輸出的隱藏狀態序列。如果模型被配置為解碼器,則在交叉注意力中使用。
  • encoder_attention_mask (torch.FloatTensor,形狀為 (batch_size, sequence_length)可選) — 用於避免對編碼器輸入的填充標記索引執行注意力操作的掩碼。如果模型被配置為解碼器,則此掩碼用於交叉注意力。掩碼值在 [0, 1] 中選擇:

    • 1 表示標記未被遮蓋
    • 0 表示標記被遮蓋
  • past_key_values (tuple[tuple[torch.FloatTensor]]可選) — 預先計算的隱藏狀態(自注意力塊和交叉注意力塊中的鍵和值),可用於加速順序解碼。這通常包括模型在解碼的前一個階段返回的 `past_key_values`,當 `use_cache=True` 或 `config.use_cache=True` 時。

    允許兩種格式:

    • Cache 例項,請參閱我們的 kv 快取指南
    • 長度為 `config.n_layers` 的 `tuple(torch.FloatTensor)` 元組,每個元組包含2個形狀為 `(batch_size, num_heads, sequence_length, embed_size_per_head)` 的張量。這也稱為舊式快取格式。

    模型將輸出與輸入相同的快取格式。如果未傳遞 `past_key_values`,將返回舊式快取格式。

    如果使用 `past_key_values`,使用者可以選擇性地只輸入形狀為 `(batch_size, 1)` 的最後一個 `input_ids`(那些沒有為該模型提供其過去鍵值狀態的 `input_ids`),而不是形狀為 `(batch_size, sequence_length)` 的所有 `input_ids`。

  • use_cache (bool可選) — 如果設定為 True,將返回 `past_key_values` 鍵值狀態,可用於加速解碼(請參閱 `past_key_values`)。
  • output_attentions (bool可選) — 是否返回所有注意力層的注意力張量。有關詳細資訊,請參閱返回張量下的 `attentions`。
  • output_hidden_states (bool可選) — 是否返回所有層的隱藏狀態。有關詳細資訊,請參閱返回張量下的 `hidden_states`。
  • return_dict (bool可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。

返回

transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentionstuple(torch.FloatTensor)

一個 transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions 或一個 `torch.FloatTensor` 的元組(如果傳遞了 `return_dict=False` 或者 `config.return_dict=False`),包含根據配置(BigBirdConfig)和輸入而變化的不同元素。

  • last_hidden_state (torch.FloatTensor, 形狀為 (batch_size, sequence_length, hidden_size)) — 模型最後一層輸出的隱藏狀態序列。

  • pooler_output (torch.FloatTensor,形狀為 (batch_size, hidden_size)) — 序列的第一個標記(分類標記)的最後一層隱藏狀態,經過用於輔助預訓練任務的層的進一步處理。例如,對於 BERT 系列模型,這將返回經過線性層和 tanh 啟用函式處理後的分類標記。線性層權重是在預訓練期間從下一句預測(分類)目標中訓練的。

  • hidden_states (tuple(torch.FloatTensor)可選,當傳遞 `output_hidden_states=True` 或 `config.output_hidden_states=True` 時返回) — `torch.FloatTensor` 的元組(一個用於嵌入層的輸出,如果模型有嵌入層,+ 一個用於每層的輸出),形狀為 `(batch_size, sequence_length, hidden_size)`。

    模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。

  • attentions (tuple(torch.FloatTensor)可選,當傳遞 `output_attentions=True` 或 `config.output_attentions=True` 時返回) — `torch.FloatTensor` 的元組(每層一個),形狀為 `(batch_size, num_heads, sequence_length, sequence_length)`。

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

  • cross_attentions (tuple(torch.FloatTensor)可選,當傳遞 `output_attentions=True` 和 `config.add_cross_attention=True` 或 `config.output_attentions=True` 時返回) — `torch.FloatTensor` 的元組(每層一個),形狀為 `(batch_size, num_heads, sequence_length, sequence_length)`。

    解碼器交叉注意力層的注意力權重,在注意力 softmax 之後,用於計算交叉注意力頭中的加權平均。

  • past_key_values (`Cache`,*可選*,當傳遞 `use_cache=True` 或 `config.use_cache=True` 時返回) — 這是一個 Cache 例項。更多詳情,請參閱我們的 kv 快取指南

    包含預先計算的隱藏狀態(自注意力塊中的鍵和值,以及當 `config.is_encoder_decoder=True` 時交叉注意力塊中的鍵和值),可用於(請參閱 `past_key_values` 輸入)加速順序解碼。

BigBirdModel 的 forward 方法重寫了 `__call__` 特殊方法。

儘管前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

BigBirdForPreTraining

class transformers.BigBirdForPreTraining

< >

( config )

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.FloatTensor] = None next_sentence_label: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.models.big_bird.modeling_big_bird.BigBirdForPreTrainingOutputtuple(torch.FloatTensor)

引數

  • input_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 詞彙表中輸入序列標記的索引。預設情況下,填充將被忽略。

    索引可以使用 AutoTokenizer 獲取。有關詳細資訊,請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入ID?

  • attention_mask (torch.FloatTensor,形狀為 (batch_size, sequence_length)可選) — 用於避免對填充標記索引執行注意力操作的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示標記未被遮蓋
    • 0 表示標記被遮蓋

    什麼是注意力掩碼?

  • token_type_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 段標記索引,用於指示輸入的第一部分和第二部分。索引在 [0, 1] 中選擇:

    • 0 對應於 *句子 A* 標記,
    • 1 對應於 *句子 B* 標記。

    什麼是 token type ID?

  • position_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 每個輸入序列標記在位置嵌入中的位置索引。在 [0, config.n_positions - 1] 範圍內選擇。

    什麼是 position ID?

  • head_mask (torch.FloatTensor,形狀為 (num_heads,)(num_layers, num_heads)可選) — 用於置零自注意力模組中選定頭的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示頭未被遮蓋
    • 0 表示頭被遮蓋
  • inputs_embeds (torch.FloatTensor,形狀為 (batch_size, sequence_length, hidden_size)可選) — 可選地,你可以選擇直接傳遞嵌入表示,而不是傳遞 input_ids。如果你想比模型內部的嵌入查詢矩陣更好地控制如何將 input_ids 索引轉換為關聯向量,這會很有用。
  • labels (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 用於計算掩碼語言建模損失的標籤。索引應在 `[-100, 0, ..., config.vocab_size]` 中(請參閱 `input_ids` 文件字串)。索引設定為 `-100` 的標記將被忽略(遮蓋),損失僅對標籤在 `[0, ..., config.vocab_size]` 中的標記計算。
  • next_sentence_label (torch.LongTensor,形狀為 (batch_size,)可選) — 用於計算下一序列預測(分類)損失的標籤。如果指定,nsp 損失將新增到 masked_lm 損失中。輸入應為序列對(請參閱 `input_ids` 文件字串)。索引應在 `[0, 1]` 中:

    • 0 表示序列 B 是序列 A 的延續,
    • 1 表示序列 B 是一個隨機序列。
  • output_attentions (bool可選) — 是否返回所有注意力層的注意力張量。有關詳細資訊,請參閱返回張量下的 `attentions`。
  • output_hidden_states (bool可選) — 是否返回所有層的隱藏狀態。有關詳細資訊,請參閱返回張量下的 `hidden_states`。
  • return_dict (bool可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。

返回

transformers.models.big_bird.modeling_big_bird.BigBirdForPreTrainingOutputtuple(torch.FloatTensor)

一個 transformers.models.big_bird.modeling_big_bird.BigBirdForPreTrainingOutput 或一個 `torch.FloatTensor` 的元組(如果傳遞了 `return_dict=False` 或者 `config.return_dict=False`),包含根據配置(BigBirdConfig)和輸入而變化的不同元素。

  • loss (*可選*,當提供了 `labels` 時返回,torch.FloatTensor,形狀為 (1,)) — 總損失,是掩碼語言建模損失和下一序列預測(分類)損失的和。

  • prediction_logits (torch.FloatTensor 形狀為 (batch_size, sequence_length, config.vocab_size)) — 語言建模頭的預測分數(SoftMax 之前的每個詞彙 token 的分數)。

  • seq_relationship_logits (torch.FloatTensor 形狀為 (batch_size, 2)) — 下一序列預測(分類)頭的預測分數(SoftMax 之前的 True/False 延續分數)。

  • hidden_states (tuple[torch.FloatTensor]可選,當傳遞 `output_hidden_states=True` 或 `config.output_hidden_states=True` 時返回) — `torch.FloatTensor` 的元組(一個用於嵌入層的輸出,如果模型有嵌入層,+ 一個用於每層的輸出),形狀為 `(batch_size, sequence_length, hidden_size)`。

    模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。

  • attentions (tuple[torch.FloatTensor]可選,當傳遞 `output_attentions=True` 或 `config.output_attentions=True` 時返回) — `torch.FloatTensor` 的元組(每層一個),形狀為 `(batch_size, num_heads, sequence_length, sequence_length)`。

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

BigBirdForPreTraining 的 forward 方法重寫了 `__call__` 特殊方法。

儘管前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> from transformers import AutoTokenizer, BigBirdForPreTraining
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = BigBirdForPreTraining.from_pretrained("google/bigbird-roberta-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> prediction_logits = outputs.prediction_logits
>>> seq_relationship_logits = outputs.seq_relationship_logits

BigBirdForCausalLM

class transformers.BigBirdForCausalLM

< >

( config )

引數

  • config (BigBirdForCausalLM) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化不會載入與模型關聯的權重,只會載入配置。請檢視 from_pretrained() 方法以載入模型權重。

BigBird 模型,在頂部帶有用於 CLM 微調的 `語言建模` 頭。

該模型繼承自 PreTrainedModel。請檢視超類的文件以瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪注意力頭等)。

此模型也是 PyTorch torch.nn.Module 的子類。可以像常規 PyTorch 模組一樣使用它,並參考 PyTorch 文件瞭解所有與常規用法和行為相關的事項。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None encoder_hidden_states: typing.Optional[torch.FloatTensor] = None encoder_attention_mask: typing.Optional[torch.FloatTensor] = None past_key_values: typing.Optional[tuple[tuple[torch.FloatTensor]]] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None **kwargs ) transformers.modeling_outputs.CausalLMOutputWithCrossAttentionstuple(torch.FloatTensor)

引數

  • input_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 詞彙表中輸入序列標記的索引。預設情況下,填充將被忽略。

    索引可以使用 AutoTokenizer 獲取。有關詳細資訊,請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入ID?

  • attention_mask (torch.FloatTensor,形狀為 (batch_size, sequence_length)可選) — 用於避免對填充標記索引執行注意力操作的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示標記未被遮蓋
    • 0 表示標記被遮蓋

    什麼是注意力掩碼?

  • token_type_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 段標記索引,用於指示輸入的第一部分和第二部分。索引在 [0, 1] 中選擇:

    • 0 對應於 *句子 A* 標記,
    • 1 對應於 *句子 B* 標記。

    什麼是 token type ID?

  • position_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 每個輸入序列標記在位置嵌入中的位置索引。在 [0, config.n_positions - 1] 範圍內選擇。

    什麼是 position ID?

  • head_mask (torch.FloatTensor,形狀為 (num_heads,)(num_layers, num_heads)可選) — 用於置零自注意力模組中選定頭的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示頭未被遮蓋
    • 0 表示頭被遮蓋
  • inputs_embeds (torch.FloatTensor,形狀為 (batch_size, sequence_length, hidden_size)可選) — 可選地,你可以選擇直接傳遞嵌入表示,而不是傳遞 input_ids。如果你想比模型內部的嵌入查詢矩陣更好地控制如何將 input_ids 索引轉換為關聯向量,這會很有用。
  • encoder_hidden_states (torch.FloatTensor,形狀為 (batch_size, sequence_length, hidden_size)可選) — 編碼器最後一層輸出的隱藏狀態序列。如果模型被配置為解碼器,則在交叉注意力機制中使用。
  • encoder_attention_mask (torch.FloatTensor,形狀為 (batch_size, sequence_length)可選) — 用於避免對編碼器輸入的填充標記索引執行注意力的掩碼。如果模型被配置為解碼器,則此掩碼在交叉注意力機制中使用。掩碼值選自 [0, 1]

    • 1 表示標記未被遮蓋
    • 0 表示標記已被遮蓋
  • past_key_values (tuple[tuple[torch.FloatTensor]], 可選) — 預計算的隱藏狀態(自注意力和交叉注意力塊中的鍵和值),可用於加速序列解碼。這通常由模型在之前的解碼階段返回的 past_key_values 組成,當 use_cache=Trueconfig.use_cache=True 時。

    允許兩種格式:

    • 一個 Cache 例項,請參閱我們的 kv 快取指南
    • 一個長度為 config.n_layerstuple(torch.FloatTensor) 元組,其中每個元組包含 2 個形狀為 (batch_size, num_heads, sequence_length, embed_size_per_head) 的張量。這也稱為舊版快取格式。

    模型將輸出與輸入相同的快取格式。如果沒有傳遞 past_key_values,將返回舊版快取格式。

    如果使用 past_key_values,使用者可以選擇只輸入最後一個 input_ids(那些沒有為其提供過去鍵值狀態的 input_ids),其形狀為 (batch_size, 1),而不是所有形狀為 (batch_size, sequence_length)input_ids

  • labels (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 用於計算從左到右語言建模損失(下一個詞預測)的標籤。索引應在 [-100, 0, ..., config.vocab_size] 範圍內(參見 input_ids 文件字串)。索引設定為 -100 的標記將被忽略(遮蓋),損失僅對標籤在 [0, ..., config.vocab_size] 範圍內的標記進行計算。
  • use_cache (bool, 可選) — 如果設定為 True,將返回 past_key_values 鍵值狀態,可用於加速解碼(參見 past_key_values)。
  • output_attentions (bool, 可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參見返回張量下的 attentions
  • output_hidden_states (bool, 可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參見返回張量下的 hidden_states
  • return_dict (bool, 可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。

返回

transformers.modeling_outputs.CausalLMOutputWithCrossAttentionstuple(torch.FloatTensor)

一個 transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或一個 torch.FloatTensor 元組(如果傳遞了 return_dict=False 或當 config.return_dict=False 時),根據配置(BigBirdConfig)和輸入包含各種元素。

  • loss (torch.FloatTensor 形狀為 (1,)可選,當提供 labels 時返回) — 語言建模損失(用於下一個 token 預測)。

  • logits (形狀為 (batch_size, sequence_length, config.vocab_size)torch.FloatTensor) — 語言建模頭部的預測分數(SoftMax 之前的每個詞彙標記的分數)。

  • hidden_states (tuple(torch.FloatTensor)可選,當傳遞 `output_hidden_states=True` 或 `config.output_hidden_states=True` 時返回) — `torch.FloatTensor` 的元組(一個用於嵌入層的輸出,如果模型有嵌入層,+ 一個用於每層的輸出),形狀為 `(batch_size, sequence_length, hidden_size)`。

    模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。

  • attentions (tuple(torch.FloatTensor)可選,當傳遞 `output_attentions=True` 或 `config.output_attentions=True` 時返回) — `torch.FloatTensor` 的元組(每層一個),形狀為 `(batch_size, num_heads, sequence_length, sequence_length)`。

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

  • cross_attentions (tuple(torch.FloatTensor), 可選, 當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — torch.FloatTensor 的元組(每層一個),形狀為 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 後的交叉注意力權重,用於計算交叉注意力頭中的加權平均。

  • past_key_values (`Cache`,*可選*,當傳遞 `use_cache=True` 或 `config.use_cache=True` 時返回) — 這是一個 Cache 例項。更多詳情,請參閱我們的 kv 快取指南

    包含預先計算的隱藏狀態(注意力塊中的鍵和值),可用於(參見 past_key_values 輸入)加速順序解碼。

BigBirdForCausalLM 的 forward 方法,重寫了 __call__ 特殊方法。

儘管前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

BigBirdForMaskedLM

class transformers.BigBirdForMaskedLM

< >

( config )

引數

  • config (BigBirdForMaskedLM) — 模型配置類,包含模型的所有引數。使用配置檔案初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。

帶有 language modeling 頭的 Big Bird 模型。

該模型繼承自 PreTrainedModel。請檢視超類的文件以瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪注意力頭等)。

此模型也是 PyTorch torch.nn.Module 的子類。可以像常規 PyTorch 模組一樣使用它,並參考 PyTorch 文件瞭解所有與常規用法和行為相關的事項。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None encoder_hidden_states: typing.Optional[torch.FloatTensor] = None encoder_attention_mask: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.MaskedLMOutputtuple(torch.FloatTensor)

引數

  • input_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 詞彙表中輸入序列標記的索引。預設情況下將忽略填充。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參見 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (torch.FloatTensor,形狀為 (batch_size, sequence_length)可選) — 用於避免對填充標記索引執行注意力的掩碼。掩碼值選自 [0, 1]

    • 1 表示標記未被遮蓋
    • 0 表示標記已被遮蓋

    什麼是注意力掩碼?

  • token_type_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 段標記索引,用於指示輸入的第一部分和第二部分。索引選自 [0, 1]

    • 0 對應於 句子 A 的標記,
    • 1 對應於 句子 B 的標記。

    什麼是標記型別 ID?

  • position_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 每個輸入序列標記在位置嵌入中的位置索引。選自範圍 [0, config.n_positions - 1]

    什麼是位置 ID?

  • head_mask (torch.FloatTensor,形狀為 (num_heads,)(num_layers, num_heads)可選) — 用於使自注意力模組的選定頭無效的掩碼。掩碼值選自 [0, 1]

    • 1 表示頭未被遮蓋
    • 0 表示頭已被遮蓋
  • inputs_embeds (torch.FloatTensor,形狀為 (batch_size, sequence_length, hidden_size)可選) — 可選地,你可以選擇直接傳遞嵌入表示,而不是傳遞 input_ids。如果你想比模型內部的嵌入查詢矩陣更好地控制如何將 input_ids 索引轉換為相關向量,這將非常有用。
  • encoder_hidden_states (torch.FloatTensor,形狀為 (batch_size, sequence_length, hidden_size)可選) — 編碼器最後一層輸出的隱藏狀態序列。如果模型被配置為解碼器,則在交叉注意力機制中使用。
  • encoder_attention_mask (torch.FloatTensor,形狀為 (batch_size, sequence_length)可選) — 用於避免對編碼器輸入的填充標記索引執行注意力的掩碼。如果模型被配置為解碼器,則此掩碼在交叉注意力機制中使用。掩碼值選自 [0, 1]

    • 1 表示標記未被遮蓋
    • 0 表示標記已被遮蓋
  • labels (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 用於計算遮蓋語言建模損失的標籤。索引應在 [-100, 0, ..., config.vocab_size] 範圍內(參見 input_ids 文件字串)。索引設定為 -100 的標記將被忽略(遮蓋),損失僅對標籤在 [0, ..., config.vocab_size] 範圍內的標記進行計算。
  • output_attentions (bool, 可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參見返回張量下的 attentions
  • output_hidden_states (bool, 可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參見返回張量下的 hidden_states
  • return_dict (bool, 可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。

返回

transformers.modeling_outputs.MaskedLMOutputtuple(torch.FloatTensor)

一個 transformers.modeling_outputs.MaskedLMOutput 或一個 torch.FloatTensor 元組(如果傳遞了 return_dict=False 或當 config.return_dict=False 時),根據配置(BigBirdConfig)和輸入包含各種元素。

  • loss (形狀為 (1,)torch.FloatTensor可選,當提供 labels 時返回) — 掩碼語言建模 (MLM) 損失。

  • logits (形狀為 (batch_size, sequence_length, config.vocab_size)torch.FloatTensor) — 語言建模頭部的預測分數(SoftMax 之前的每個詞彙標記的分數)。

  • hidden_states (tuple(torch.FloatTensor)可選,當傳遞 `output_hidden_states=True` 或 `config.output_hidden_states=True` 時返回) — `torch.FloatTensor` 的元組(一個用於嵌入層的輸出,如果模型有嵌入層,+ 一個用於每層的輸出),形狀為 `(batch_size, sequence_length, hidden_size)`。

    模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。

  • attentions (tuple(torch.FloatTensor)可選,當傳遞 `output_attentions=True` 或 `config.output_attentions=True` 時返回) — `torch.FloatTensor` 的元組(每層一個),形狀為 `(batch_size, num_heads, sequence_length, sequence_length)`。

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

BigBirdForMaskedLM 的 forward 方法,重寫了 __call__ 特殊方法。

儘管前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> import torch
>>> from transformers import AutoTokenizer, BigBirdForMaskedLM
>>> from datasets import load_dataset

>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = BigBirdForMaskedLM.from_pretrained("google/bigbird-roberta-base")
>>> squad_ds = load_dataset("rajpurkar/squad_v2", split="train")
>>> # select random long article
>>> LONG_ARTICLE_TARGET = squad_ds[81514]["context"]
>>> # select random sentence
>>> LONG_ARTICLE_TARGET[332:398]
'the highest values are very close to the theoretical maximum value'

>>> # add mask_token
>>> LONG_ARTICLE_TO_MASK = LONG_ARTICLE_TARGET.replace("maximum", "[MASK]")
>>> inputs = tokenizer(LONG_ARTICLE_TO_MASK, return_tensors="pt")
>>> # long article input
>>> list(inputs["input_ids"].shape)
[1, 919]

>>> with torch.no_grad():
...     logits = model(**inputs).logits
>>> # retrieve index of [MASK]
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]
>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
>>> tokenizer.decode(predicted_token_id)
'maximum'
>>> labels = tokenizer(LONG_ARTICLE_TARGET, return_tensors="pt")["input_ids"]
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)
>>> outputs = model(**inputs, labels=labels)
>>> round(outputs.loss.item(), 2)
1.99

BigBirdForSequenceClassification

class transformers.BigBirdForSequenceClassification

< >

( config )

引數

BigBird Transformer 模型,頂部帶有一個序列分類/迴歸頭(一個在池化輸出之上的線性層),例如用於 GLUE 任務。

該模型繼承自 PreTrainedModel。請檢視超類的文件以瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪注意力頭等)。

此模型也是 PyTorch torch.nn.Module 的子類。可以像常規 PyTorch 模組一樣使用它,並參考 PyTorch 文件瞭解所有與常規用法和行為相關的事項。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.SequenceClassifierOutputtuple(torch.FloatTensor)

引數

  • input_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 詞彙表中輸入序列標記的索引。預設情況下將忽略填充。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參見 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (torch.FloatTensor,形狀為 (batch_size, sequence_length)可選) — 用於避免對填充標記索引執行注意力的掩碼。掩碼值選自 [0, 1]

    • 1 表示標記未被遮蓋
    • 0 表示標記已被遮蓋

    什麼是注意力掩碼?

  • token_type_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 段標記索引,用於指示輸入的第一部分和第二部分。索引選自 [0, 1]

    • 0 對應於 句子 A 的標記,
    • 1 對應於 句子 B 的標記。

    什麼是標記型別 ID?

  • position_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 每個輸入序列標記在位置嵌入中的位置索引。選自範圍 [0, config.n_positions - 1]

    什麼是位置 ID?

  • head_mask (torch.FloatTensor,形狀為 (num_heads,)(num_layers, num_heads)可選) — 用於使自注意力模組的選定頭無效的掩碼。掩碼值選自 [0, 1]

    • 1 表示頭未被遮蓋
    • 0 表示頭已被遮蓋
  • inputs_embeds (torch.FloatTensor,形狀為 (batch_size, sequence_length, hidden_size)可選) — 可選地,你可以選擇直接傳遞嵌入表示,而不是傳遞 input_ids。如果你想比模型內部的嵌入查詢矩陣更好地控制如何將 input_ids 索引轉換為相關向量,這將非常有用。
  • labels (torch.LongTensor,形狀為 (batch_size,)可選) — 用於計算序列分類/迴歸損失的標籤。索引應在 [0, ..., config.num_labels - 1] 範圍內。如果 config.num_labels == 1,則計算迴歸損失(均方損失),如果 config.num_labels > 1,則計算分類損失(交叉熵)。
  • output_attentions (bool, 可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參見返回張量下的 attentions
  • output_hidden_states (bool, 可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參見返回張量下的 hidden_states
  • return_dict (bool, 可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。

返回

transformers.modeling_outputs.SequenceClassifierOutputtuple(torch.FloatTensor)

一個 transformers.modeling_outputs.SequenceClassifierOutput 或一個 torch.FloatTensor 元組(如果傳遞了 return_dict=False 或當 config.return_dict=False 時),根據配置(BigBirdConfig)和輸入包含各種元素。

  • loss (形狀為 (1,)torch.FloatTensor可選,當提供 labels 時返回) — 分類損失(如果 config.num_labels==1,則為迴歸損失)。

  • logits (形狀為 (batch_size, config.num_labels)torch.FloatTensor) — 分類(如果 config.num_labels==1,則為迴歸)分數(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor)可選,當傳遞 `output_hidden_states=True` 或 `config.output_hidden_states=True` 時返回) — `torch.FloatTensor` 的元組(一個用於嵌入層的輸出,如果模型有嵌入層,+ 一個用於每層的輸出),形狀為 `(batch_size, sequence_length, hidden_size)`。

    模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。

  • attentions (tuple(torch.FloatTensor)可選,當傳遞 `output_attentions=True` 或 `config.output_attentions=True` 時返回) — `torch.FloatTensor` 的元組(每層一個),形狀為 `(batch_size, num_heads, sequence_length, sequence_length)`。

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

BigBirdForSequenceClassification 的 forward 方法,重寫了 __call__ 特殊方法。

儘管前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> import torch
>>> from transformers import AutoTokenizer, BigBirdForSequenceClassification
>>> from datasets import load_dataset

>>> tokenizer = AutoTokenizer.from_pretrained("l-yohai/bigbird-roberta-base-mnli")
>>> model = BigBirdForSequenceClassification.from_pretrained("l-yohai/bigbird-roberta-base-mnli")
>>> squad_ds = load_dataset("rajpurkar/squad_v2", split="train")
>>> LONG_ARTICLE = squad_ds[81514]["context"]
>>> inputs = tokenizer(LONG_ARTICLE, return_tensors="pt")
>>> # long input article
>>> list(inputs["input_ids"].shape)
[1, 919]

>>> with torch.no_grad():
...     logits = model(**inputs).logits
>>> predicted_class_id = logits.argmax().item()
>>> model.config.id2label[predicted_class_id]
'LABEL_0'
>>> num_labels = len(model.config.id2label)
>>> model = BigBirdForSequenceClassification.from_pretrained(
...     "l-yohai/bigbird-roberta-base-mnli", num_labels=num_labels
... )
>>> labels = torch.tensor(1)
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
1.13

BigBirdForMultipleChoice

class transformers.BigBirdForMultipleChoice

< >

( config )

引數

  • config (BigBirdForMultipleChoice) — 模型配置類,包含模型的所有引數。使用配置檔案初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。

Big Bird 模型,頂部帶有一個多項選擇分類頭(一個在池化輸出之上的線性層和一個 softmax),例如用於 RocStories/SWAG 任務。

該模型繼承自 PreTrainedModel。請檢視超類的文件以瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪注意力頭等)。

此模型也是 PyTorch torch.nn.Module 的子類。可以像常規 PyTorch 模組一樣使用它,並參考 PyTorch 文件瞭解所有與常規用法和行為相關的事項。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.MultipleChoiceModelOutputtuple(torch.FloatTensor)

引數

  • input_ids (torch.LongTensor,形狀為 (batch_size, num_choices, sequence_length)) — 詞彙表中輸入序列標記的索引。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參見 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (torch.FloatTensor,形狀為 (batch_size, sequence_length)可選) — 用於避免對填充標記索引執行注意力的掩碼。掩碼值選自 [0, 1]

    • 1 表示標記未被遮蓋
    • 0 表示標記已被遮蓋

    什麼是注意力掩碼?

  • token_type_ids (torch.LongTensor,形狀為 (batch_size, num_choices, sequence_length)可選) — 段標記索引,用於指示輸入的第一部分和第二部分。索引選自 [0, 1]

    • 0 對應於 句子 A 的標記,
    • 1 對應於 句子 B 的標記。

    什麼是標記型別 ID?

  • position_ids (torch.LongTensor,形狀為 (batch_size, num_choices, sequence_length)可選) — 每個輸入序列標記在位置嵌入中的位置索引。選自範圍 [0, config.max_position_embeddings - 1]

    什麼是位置 ID?

  • head_mask (torch.FloatTensor,形狀為 (num_heads,)(num_layers, num_heads)可選) — 用於使自注意力模組的選定頭無效的掩碼。掩碼值選自 [0, 1]

    • 1 表示頭未被遮蓋
    • 0 表示頭已被遮蓋
  • inputs_embeds (torch.FloatTensor,形狀為 (batch_size, num_choices, sequence_length, hidden_size)可選) — 可選地,你可以選擇直接傳遞嵌入表示,而不是傳遞 input_ids。如果你想比模型內部的嵌入查詢矩陣更好地控制如何將 input_ids 索引轉換為相關向量,這將非常有用。
  • labels (torch.LongTensor,形狀為 (batch_size,)可選) — 用於計算多項選擇分類損失的標籤。索引應在 [0, ..., num_choices-1] 範圍內,其中 num_choices 是輸入張量第二維的大小。(參見上面的 input_ids
  • output_attentions (bool, 可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的 attentions
  • output_hidden_states (bool, 可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的 hidden_states
  • return_dict (bool, 可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。

返回

transformers.modeling_outputs.MultipleChoiceModelOutputtuple(torch.FloatTensor)

一個 transformers.modeling_outputs.MultipleChoiceModelOutput 或一個 torch.FloatTensor 的元組(如果傳遞了 return_dict=False 或當 config.return_dict=False 時),根據配置(BigBirdConfig)和輸入,包含各種元素。

  • loss (形狀為 (1,)torch.FloatTensor可選,當提供 labels 時返回) — 分類損失。

  • logits (形狀為 (batch_size, num_choices)torch.FloatTensor) — num_choices 是輸入張量的第二維大小。(請參閱上面的 input_ids)。

    分類分數(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor)可選,當傳遞 `output_hidden_states=True` 或 `config.output_hidden_states=True` 時返回) — `torch.FloatTensor` 的元組(一個用於嵌入層的輸出,如果模型有嵌入層,+ 一個用於每層的輸出),形狀為 `(batch_size, sequence_length, hidden_size)`。

    模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。

  • attentions (tuple(torch.FloatTensor)可選,當傳遞 `output_attentions=True` 或 `config.output_attentions=True` 時返回) — `torch.FloatTensor` 的元組(每層一個),形狀為 `(batch_size, num_heads, sequence_length, sequence_length)`。

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

BigBirdForMultipleChoice 的前向方法,覆蓋了 __call__ 特殊方法。

儘管前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> from transformers import AutoTokenizer, BigBirdForMultipleChoice
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = BigBirdForMultipleChoice.from_pretrained("google/bigbird-roberta-base")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0)  # choice0 is correct (according to Wikipedia ;)), batch size 1

>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels)  # batch size is 1

>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits

BigBirdForTokenClassification

class transformers.BigBirdForTokenClassification

< >

( config )

引數

  • config (BigBirdForTokenClassification) — 包含模型所有引數的模型配置類。使用配置檔案初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。

Big Bird transformer,在其頂部帶有一個詞元分類頭(一個在隱藏狀態輸出之上的線性層),例如用於命名實體識別(NER)任務。

該模型繼承自 PreTrainedModel。請檢視超類的文件以瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪注意力頭等)。

此模型也是 PyTorch torch.nn.Module 的子類。可以像常規 PyTorch 模組一樣使用它,並參考 PyTorch 文件瞭解所有與常規用法和行為相關的事項。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

引數

  • input_ids (torch.LongTensor,形狀為 (batch_size, sequence_length), 可選) — 詞彙表中輸入序列詞元的索引。預設情況下,填充將被忽略。

    可以使用 AutoTokenizer 獲取索引。詳情請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (torch.FloatTensor,形狀為 (batch_size, sequence_length), 可選) — 用於避免在填充詞元索引上執行注意力的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示詞元未被掩碼
    • 0 表示詞元被掩碼

    什麼是注意力掩碼?

  • token_type_ids (torch.LongTensor,形狀為 (batch_size, sequence_length), 可選) — 段詞元索引,用於指示輸入的第一和第二部分。索引在 [0, 1] 中選擇:

    • 0 對應於一個 句子 A 的詞元,
    • 1 對應於一個 句子 B 的詞元。

    什麼是詞元型別 ID?

  • position_ids (torch.LongTensor,形狀為 (batch_size, sequence_length), 可選) — 每個輸入序列詞元在位置嵌入中的位置索引。在 [0, config.n_positions - 1] 範圍內選擇。

    什麼是位置 ID?

  • head_mask (torch.FloatTensor,形狀為 (num_heads,)(num_layers, num_heads), 可選) — 用於置零自注意力模組中選定頭的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示頭未被掩碼
    • 0 表示頭被掩碼
  • inputs_embeds (torch.FloatTensor,形狀為 (batch_size, sequence_length, hidden_size), 可選) — 可選地,你可以選擇直接傳遞一個嵌入表示,而不是傳遞 input_ids。如果你想對如何將 input_ids 索引轉換為關聯向量進行更多控制,而不是使用模型內部的嵌入查詢矩陣,這很有用。
  • labels (torch.LongTensor,形狀為 (batch_size, sequence_length), 可選) — 用於計算詞元分類損失的標籤。索引應在 [0, ..., config.num_labels - 1] 範圍內。
  • output_attentions (bool, 可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的 attentions
  • output_hidden_states (bool, 可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的 hidden_states
  • return_dict (bool, 可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。

返回

transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

一個 transformers.modeling_outputs.TokenClassifierOutput 或一個 torch.FloatTensor 的元組(如果傳遞了 return_dict=False 或當 config.return_dict=False 時),根據配置(BigBirdConfig)和輸入,包含各種元素。

  • loss (形狀為 (1,)torch.FloatTensor可選,當提供 labels 時返回) — 分類損失。

  • logits (形狀為 (batch_size, sequence_length, config.num_labels)torch.FloatTensor) — 分類分數(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor)可選,當傳遞 `output_hidden_states=True` 或 `config.output_hidden_states=True` 時返回) — `torch.FloatTensor` 的元組(一個用於嵌入層的輸出,如果模型有嵌入層,+ 一個用於每層的輸出),形狀為 `(batch_size, sequence_length, hidden_size)`。

    模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。

  • attentions (tuple(torch.FloatTensor)可選,當傳遞 `output_attentions=True` 或 `config.output_attentions=True` 時返回) — `torch.FloatTensor` 的元組(每層一個),形狀為 `(batch_size, num_heads, sequence_length, sequence_length)`。

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

BigBirdForTokenClassification 的前向方法,覆蓋了 __call__ 特殊方法。

儘管前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> from transformers import AutoTokenizer, BigBirdForTokenClassification
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = BigBirdForTokenClassification.from_pretrained("google/bigbird-roberta-base")

>>> inputs = tokenizer(
...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_token_class_ids = logits.argmax(-1)

>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> predicted_tokens_classes
...

>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...

BigBirdForQuestionAnswering

class transformers.BigBirdForQuestionAnswering

< >

( config add_pooling_layer = False )

引數

  • config (BigBirdForQuestionAnswering) — 包含模型所有引數的模型配置類。使用配置檔案初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。
  • add_pooling_layer (bool, 可選, 預設為 True) — 是否新增一個池化層

Big Bird transformer,在其頂部帶有一個片段分類頭,用於像 SQuAD 這樣的抽取式問答任務(一個在隱藏狀態輸出之上的線性層,用於計算 span start logitsspan end logits)。

該模型繼承自 PreTrainedModel。請檢視超類的文件以瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪注意力頭等)。

此模型也是 PyTorch torch.nn.Module 的子類。可以像常規 PyTorch 模組一樣使用它,並參考 PyTorch 文件瞭解所有與常規用法和行為相關的事項。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None question_lengths: typing.Optional[torch.LongTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None start_positions: typing.Optional[torch.LongTensor] = None end_positions: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.models.big_bird.modeling_big_bird.BigBirdForQuestionAnsweringModelOutputtuple(torch.FloatTensor)

引數

  • input_ids (torch.LongTensor,形狀為 (batch_size, sequence_length), 可選) — 詞彙表中輸入序列詞元的索引。預設情況下,填充將被忽略。

    可以使用 AutoTokenizer 獲取索引。詳情請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (torch.FloatTensor,形狀為 (batch_size, sequence_length), 可選) — 用於避免在填充詞元索引上執行注意力的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示詞元未被掩碼
    • 0 表示詞元被掩碼

    什麼是注意力掩碼?

  • question_lengths (torch.LongTensor,形狀為 (batch_size, 1), 可選) — 批次中問題的長度。
  • token_type_ids (torch.LongTensor,形狀為 (batch_size, sequence_length), 可選) — 段詞元索引,用於指示輸入的第一和第二部分。索引在 [0, 1] 中選擇:

    • 0 對應於一個 句子 A 的詞元,
    • 1 對應於一個 句子 B 的詞元。

    什麼是詞元型別 ID?

  • position_ids (torch.LongTensor,形狀為 (batch_size, sequence_length), 可選) — 每個輸入序列詞元在位置嵌入中的位置索引。在 [0, config.n_positions - 1] 範圍內選擇。

    什麼是位置 ID?

  • head_mask (torch.FloatTensor,形狀為 (num_heads,)(num_layers, num_heads), 可選) — 用於置零自注意力模組中選定頭的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示頭未被掩碼
    • 0 表示頭被掩碼
  • inputs_embeds (torch.FloatTensor,形狀為 (batch_size, sequence_length, hidden_size), 可選) — 可選地,你可以選擇直接傳遞一個嵌入表示,而不是傳遞 input_ids。如果你想對如何將 input_ids 索引轉換為關聯向量進行更多控制,而不是使用模型內部的嵌入查詢矩陣,這很有用。
  • start_positions (torch.LongTensor,形狀為 (batch_size,), 可選) — 標記片段開始位置(索引)的標籤,用於計算詞元分類損失。位置被限制在序列長度(sequence_length)內。超出序列的位置在計算損失時不被考慮。
  • end_positions (torch.LongTensor,形狀為 (batch_size,), 可選) — 標記片段結束位置(索引)的標籤,用於計算詞元分類損失。位置被限制在序列長度(sequence_length)內。超出序列的位置在計算損失時不被考慮。
  • output_attentions (bool, 可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的 attentions
  • output_hidden_states (bool, 可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的 hidden_states
  • return_dict (bool, 可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。

返回

transformers.models.big_bird.modeling_big_bird.BigBirdForQuestionAnsweringModelOutputtuple(torch.FloatTensor)

一個 transformers.models.big_bird.modeling_big_bird.BigBirdForQuestionAnsweringModelOutput 或一個 torch.FloatTensor 的元組(如果傳遞了 return_dict=False 或當 config.return_dict=False 時),根據配置(BigBirdConfig)和輸入,包含各種元素。

  • loss (torch.FloatTensor of shape (1,), 可選, 當提供 labels 時返回) — 總範圍提取損失是起始位置和結束位置的交叉熵之和。

  • start_logits (torch.FloatTensor,形狀為 (batch_size, sequence_length)可選,預設為 None) — 跨度開始分數(SoftMax 之前)。

  • end_logits (torch.FloatTensor,形狀為 (batch_size, sequence_length)可選,預設為 None) — 跨度結束分數(SoftMax 之前)。

  • pooler_output (torch.FloatTensor,形狀為 (batch_size, 1)) — 來自 BigBigModel 的池化器輸出

  • hidden_states (tuple[torch.FloatTensor]可選,當傳遞 `output_hidden_states=True` 或 `config.output_hidden_states=True` 時返回) — `torch.FloatTensor` 的元組(一個用於嵌入層的輸出,如果模型有嵌入層,+ 一個用於每層的輸出),形狀為 `(batch_size, sequence_length, hidden_size)`。

    模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。

  • attentions (tuple[torch.FloatTensor]可選,當傳遞 `output_attentions=True` 或 `config.output_attentions=True` 時返回) — `torch.FloatTensor` 的元組(每層一個),形狀為 `(batch_size, num_heads, sequence_length, sequence_length)`。

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

BigBirdForQuestionAnswering 的前向方法,覆蓋了 __call__ 特殊方法。

儘管前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> import torch
>>> from transformers import AutoTokenizer, BigBirdForQuestionAnswering
>>> from datasets import load_dataset

>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = BigBirdForQuestionAnswering.from_pretrained("google/bigbird-roberta-base")
>>> squad_ds = load_dataset("rajpurkar/squad_v2", split="train")
>>> # select random article and question
>>> LONG_ARTICLE = squad_ds[81514]["context"]
>>> QUESTION = squad_ds[81514]["question"]
>>> QUESTION
'During daytime how high can the temperatures reach?'

>>> inputs = tokenizer(QUESTION, LONG_ARTICLE, return_tensors="pt")
>>> # long article and question input
>>> list(inputs["input_ids"].shape)
[1, 929]

>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()
>>> predict_answer_token_ids = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> predict_answer_token = tokenizer.decode(predict_answer_token_ids)
>>> target_start_index, target_end_index = torch.tensor([130]), torch.tensor([132])
>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss
JAX
隱藏 JAX 內容

FlaxBigBirdModel

class transformers.FlaxBigBirdModel

< >

( config: BigBirdConfig input_shape: typing.Optional[tuple] = None seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )

引數

  • config (BigBirdConfig) — 包含模型所有引數的模型配置類。使用配置檔案初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。
  • dtype (jax.numpy.dtype, 可選, 預設為 jax.numpy.float32) — 計算的資料型別。可以是 jax.numpy.float32jax.numpy.float16(在 GPU 上)和 jax.numpy.bfloat16(在 TPU 上)之一。

    這可用於在 GPU 或 TPU 上啟用混合精度訓練或半精度推理。如果指定,所有計算將使用給定的 dtype 執行。

    請注意,這僅指定計算的 dtype,不影響模型引數的 dtype。

    如果你希望更改模型引數的 dtype,請參閱 to_fp16()to_bf16()

裸的 BigBird 模型 transformer,輸出原始隱藏狀態,頂部沒有任何特定的頭。

該模型繼承自 FlaxPreTrainedModel。請檢視超類文件以瞭解該庫為其所有模型實現的通用方法(例如下載、儲存和轉換 PyTorch 模型的權重)。

該模型也是一個 flax.linen.Module 子類。請像常規的 Flax linen 模組一樣使用它,並參考 Flax 文件瞭解所有與一般用法和行為相關的事項。

最後,此模型支援固有的 JAX 功能,例如

__call__

< >

( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: typing.Optional[dict] = None dropout_rng: typing.Optional[PRNGKey] = None indices_rng: typing.Optional[PRNGKey] = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None past_key_values: typing.Optional[dict] = None ) transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPoolingtuple(torch.FloatTensor)

引數

  • input_ids (numpy.ndarray,形狀為 (batch_size, sequence_length)) — 詞彙表中輸入序列詞元的索引。

    可以使用 AutoTokenizer 獲取索引。詳情請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (numpy.ndarray,形狀為 (batch_size, sequence_length), 可選) — 用於避免在填充詞元索引上執行注意力的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示詞元未被掩碼
    • 0 表示詞元被掩碼

    什麼是注意力掩碼?

  • token_type_ids (numpy.ndarray,形狀為 (batch_size, sequence_length), 可選) — 段詞元索引,用於指示輸入的第一和第二部分。索引在 [0, 1] 中選擇:

    • 0 對應於一個 句子 A 的詞元,
    • 1 對應於一個 句子 B 的詞元。

    什麼是詞元型別 ID?

  • position_ids (numpy.ndarray,形狀為 (batch_size, sequence_length), 可選) — 每個輸入序列詞元在位置嵌入中的位置索引。在 [0, config.max_position_embeddings - 1] 範圍內選擇。
  • head_mask (numpy.ndarray,形狀為 (batch_size, sequence_length), 可選) -- 用於置零注意力模組中選定頭的掩碼。掩碼值在 [0, 1]` 中選擇:

    • 1 表示頭未被掩碼
    • 0 表示頭被掩碼
  • return_dict (bool, 可選) — 是否返回一個 ModelOutput 物件而不是一個普通的元組。

返回

transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPoolingtuple(torch.FloatTensor)

一個 transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling 或一個 torch.FloatTensor 的元組(如果傳遞了 return_dict=Falseconfig.return_dict=False),包含根據配置(BigBirdConfig)和輸入而變化的不同元素。

  • last_hidden_state (形狀為 (batch_size, sequence_length, hidden_size)jnp.ndarray) — 模型最後一層輸出的隱藏狀態序列。

  • pooler_output (jnp.ndarray,形狀為 (batch_size, hidden_size)) — 序列中第一個標記(分類標記)的最後一層隱藏狀態,經過一個線性層和一個 Tanh 啟用函式進一步處理。該線性層的權重是在預訓練期間透過下一句預測(分類)目標進行訓練的。

  • hidden_states (tuple(jnp.ndarray)可選,當傳遞 output_hidden_states=Trueconfig.output_hidden_states=True 時返回) — 形狀為 (batch_size, sequence_length, hidden_size)jnp.ndarray 元組(一個用於嵌入層的輸出,一個用於每一層的輸出)。

    模型在每個層輸出的隱藏狀態加上初始嵌入輸出。

  • attentions (tuple(jnp.ndarray)可選,當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — 形狀為 (batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray 元組(每層一個)。

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

FlaxBigBirdPreTrainedModel 的前向方法覆蓋了 __call__ 特殊方法。

儘管前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> from transformers import AutoTokenizer, FlaxBigBirdModel

>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = FlaxBigBirdModel.from_pretrained("google/bigbird-roberta-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

FlaxBigBirdForPreTraining

class transformers.FlaxBigBirdForPreTraining

< >

( config: BigBirdConfig input_shape: typing.Optional[tuple] = None seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )

引數

  • config (BigBirdConfig) — 模型配置類,包含模型的所有引數。使用配置檔案進行初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。
  • dtype (jax.numpy.dtype, 可選, 預設為 jax.numpy.float32) — 計算的資料型別。可以是 jax.numpy.float32jax.numpy.float16(在 GPU 上)和 jax.numpy.bfloat16(在 TPU 上)之一。

    這可用於在 GPU 或 TPU 上啟用混合精度訓練或半精度推理。如果指定,所有計算都將使用給定的 dtype 執行。

    請注意,這僅指定計算的資料型別,不影響模型引數的資料型別。

    如果您希望更改模型引數的資料型別,請參閱 to_fp16()to_bf16()

BigBird 模型,頂部帶有兩個頭,與預訓練時相同:一個掩碼語言建模頭和一個下一句預測(分類)頭。

該模型繼承自 FlaxPreTrainedModel。請檢視超類文件以瞭解該庫為其所有模型實現的通用方法(例如下載、儲存和轉換 PyTorch 模型的權重)。

該模型也是一個 flax.linen.Module 子類。請像常規的 Flax linen 模組一樣使用它,並參考 Flax 文件瞭解所有與一般用法和行為相關的事項。

最後,此模型支援固有的 JAX 功能,例如

__call__

< >

( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: typing.Optional[dict] = None dropout_rng: typing.Optional[PRNGKey] = None indices_rng: typing.Optional[PRNGKey] = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None past_key_values: typing.Optional[dict] = None ) transformers.models.big_bird.modeling_flax_big_bird.FlaxBigBirdForPreTrainingOutputtuple(torch.FloatTensor)

引數

  • input_ids (numpy.ndarray,形狀為 (batch_size, sequence_length)) — 詞彙表中輸入序列標記的索引。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (numpy.ndarray,形狀為 (batch_size, sequence_length)可選) — 用於避免對填充標記索引執行注意力計算的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示標記未被掩碼
    • 0 表示標記已被掩碼

    什麼是注意力掩碼?

  • token_type_ids (numpy.ndarray,形狀為 (batch_size, sequence_length)可選) — 用於指示輸入的第一部分和第二部分的片段標記索引。索引在 [0, 1] 中選擇:

    • 0 對應於句子 A 的標記,
    • 1 對應於句子 B 的標記。

    什麼是標記型別 ID?

  • position_ids (numpy.ndarray,形狀為 (batch_size, sequence_length)可選) — 每個輸入序列標記在位置嵌入中的位置索引。在 [0, config.max_position_embeddings - 1] 範圍內選擇。
  • head_mask (numpy.ndarray,形狀為 (batch_size, sequence_length)可選) -- 用於置零注意力模組中選定頭的掩碼。掩碼值在 [0, 1]` 中選擇:

    • 1 表示頭未被掩碼
    • 0 表示頭已被掩碼
  • return_dict (bool, 可選) — 是否返回一個 ModelOutput 物件而不是一個普通的元組。

返回

transformers.models.big_bird.modeling_flax_big_bird.FlaxBigBirdForPreTrainingOutputtuple(torch.FloatTensor)

一個 transformers.models.big_bird.modeling_flax_big_bird.FlaxBigBirdForPreTrainingOutput 或一個 torch.FloatTensor 的元組(如果傳遞了 return_dict=Falseconfig.return_dict=False),包含根據配置(BigBirdConfig)和輸入而變化的不同元素。

  • prediction_logits (jnp.ndarray,形狀為 (batch_size, sequence_length, config.vocab_size)) — 語言建模頭的預測分數(SoftMax 之前的每個詞彙標記的分數)。

  • seq_relationship_logits (jnp.ndarray,形狀為 (batch_size, 2)) — 下一句預測(分類)頭的預測分數(SoftMax 之前的 True/False 延續分數)。

  • hidden_states (tuple(jnp.ndarray)可選,當傳遞 output_hidden_states=Trueconfig.output_hidden_states=True 時返回) — 形狀為 (batch_size, sequence_length, hidden_size)jnp.ndarray 元組(一個用於嵌入層的輸出,一個用於每一層的輸出)。

    模型在每個層輸出的隱藏狀態加上初始嵌入輸出。

  • attentions (tuple(jnp.ndarray)可選,當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — 形狀為 (batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray 元組(每層一個)。

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

FlaxBigBirdPreTrainedModel 的前向方法覆蓋了 __call__ 特殊方法。

儘管前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> from transformers import AutoTokenizer, FlaxBigBirdForPreTraining

>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = FlaxBigBirdForPreTraining.from_pretrained("google/bigbird-roberta-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
>>> outputs = model(**inputs)

>>> prediction_logits = outputs.prediction_logits
>>> seq_relationship_logits = outputs.seq_relationship_logits

FlaxBigBirdForCausalLM

class transformers.FlaxBigBirdForCausalLM

< >

( config: BigBirdConfig input_shape: typing.Optional[tuple] = None seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )

引數

  • config (BigBirdConfig) — 模型配置類,包含模型的所有引數。使用配置檔案進行初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。
  • dtype (jax.numpy.dtype, 可選, 預設為 jax.numpy.float32) — 計算的資料型別。可以是 jax.numpy.float32jax.numpy.float16(在 GPU 上)和 jax.numpy.bfloat16(在 TPU 上)之一。

    這可用於在 GPU 或 TPU 上啟用混合精度訓練或半精度推理。如果指定,所有計算都將使用給定的 dtype 執行。

    請注意,這僅指定計算的資料型別,不影響模型引數的資料型別。

    如果您希望更改模型引數的資料型別,請參閱 to_fp16()to_bf16()

BigBird 模型,頂部帶有一個語言建模頭(隱藏狀態輸出之上是一個線性層),例如用於自迴歸任務。

該模型繼承自 FlaxPreTrainedModel。請檢視超類文件以瞭解該庫為其所有模型實現的通用方法(例如下載、儲存和轉換 PyTorch 模型的權重)。

該模型也是一個 flax.linen.Module 子類。請像常規的 Flax linen 模組一樣使用它,並參考 Flax 文件瞭解所有與一般用法和行為相關的事項。

最後,此模型支援固有的 JAX 功能,例如

__call__

< >

( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: typing.Optional[dict] = None dropout_rng: typing.Optional[PRNGKey] = None indices_rng: typing.Optional[PRNGKey] = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None past_key_values: typing.Optional[dict] = None ) transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentionstuple(torch.FloatTensor)

引數

  • input_ids (numpy.ndarray,形狀為 (batch_size, sequence_length)) — 詞彙表中輸入序列標記的索引。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (numpy.ndarray,形狀為 (batch_size, sequence_length)可選) — 用於避免對填充標記索引執行注意力計算的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示標記未被掩碼
    • 0 表示標記已被掩碼

    什麼是注意力掩碼?

  • token_type_ids (numpy.ndarray,形狀為 (batch_size, sequence_length)可選) — 用於指示輸入的第一部分和第二部分的片段標記索引。索引在 [0, 1] 中選擇:

    • 0 對應於句子 A 的標記,
    • 1 對應於句子 B 的標記。

    什麼是標記型別 ID?

  • position_ids (numpy.ndarray,形狀為 (batch_size, sequence_length)可選) — 每個輸入序列標記在位置嵌入中的位置索引。在 [0, config.max_position_embeddings - 1] 範圍內選擇。
  • head_mask (numpy.ndarray,形狀為 (batch_size, sequence_length)可選) -- 用於置零注意力模組中選定頭的掩碼。掩碼值在 [0, 1]` 中選擇:

    • 1 表示頭未被掩碼
    • 0 表示頭已被掩碼
  • return_dict (bool, 可選) — 是否返回一個 ModelOutput 物件而不是一個普通的元組。

返回

transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentionstuple(torch.FloatTensor)

一個 transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions 或一個 torch.FloatTensor 的元組(如果傳遞了 return_dict=Falseconfig.return_dict=False),包含根據配置(BigBirdConfig)和輸入而變化的不同元素。

  • logits (形狀為 (batch_size, sequence_length, config.vocab_size)jnp.ndarray) — 語言建模頭的預測分數(SoftMax 之前每個詞彙 token 的分數)。

  • hidden_states (tuple(jnp.ndarray)可選,當傳遞 output_hidden_states=Trueconfig.output_hidden_states=True 時返回) — 形狀為 (batch_size, sequence_length, hidden_size)jnp.ndarray 元組(一個用於嵌入層的輸出,一個用於每一層的輸出)。

    模型在每個層輸出的隱藏狀態加上初始嵌入輸出。

  • attentions (tuple(jnp.ndarray)可選,當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — 形狀為 (batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray 元組(每層一個)。

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

  • cross_attentions (tuple(jnp.ndarray)可選,當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — 形狀為 (batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray 元組(每層一個)。

    注意力 softmax 後的交叉注意力權重,用於計算交叉注意力頭中的加權平均。

  • past_key_values (tuple(tuple(jnp.ndarray))可選,當傳遞 use_cache=Trueconfig.use_cache=True 時返回) — 長度為 config.n_layersjnp.ndarray 元組的元組,每個元組包含自注意力和交叉注意力層的快取鍵、值狀態(如果模型用於編碼器-解碼器設定)。僅當 config.is_decoder = True 時相關。

    包含預先計算的隱藏狀態(注意力塊中的鍵和值),可用於(參見 past_key_values 輸入)加速順序解碼。

FlaxBigBirdPreTrainedModel 的前向方法覆蓋了 __call__ 特殊方法。

儘管前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> from transformers import AutoTokenizer, FlaxBigBirdForCausalLM

>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = FlaxBigBirdForCausalLM.from_pretrained("google/bigbird-roberta-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
>>> outputs = model(**inputs)

>>> # retrieve logts for next token
>>> next_token_logits = outputs.logits[:, -1]

FlaxBigBirdForMaskedLM

class transformers.FlaxBigBirdForMaskedLM

< >

( config: BigBirdConfig input_shape: typing.Optional[tuple] = None seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )

引數

  • config (BigBirdConfig) — 模型配置類,包含模型的所有引數。使用配置檔案進行初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。
  • dtype (jax.numpy.dtype, 可選, 預設為 jax.numpy.float32) — 計算的資料型別。可以是 jax.numpy.float32jax.numpy.float16(在 GPU 上)和 jax.numpy.bfloat16(在 TPU 上)之一。

    這可用於在 GPU 或 TPU 上啟用混合精度訓練或半精度推理。如果指定,所有計算都將使用給定的 dtype 執行。

    請注意,這僅指定計算的資料型別,不影響模型引數的資料型別。

    如果您希望更改模型引數的資料型別,請參閱 to_fp16()to_bf16()

BigBird 模型,頂部帶有一個語言建模頭。

該模型繼承自 FlaxPreTrainedModel。請檢視超類文件以瞭解該庫為其所有模型實現的通用方法(例如下載、儲存和轉換 PyTorch 模型的權重)。

該模型也是一個 flax.linen.Module 子類。請像常規的 Flax linen 模組一樣使用它,並參考 Flax 文件瞭解所有與一般用法和行為相關的事項。

最後,此模型支援固有的 JAX 功能,例如

__call__

< >

( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: typing.Optional[dict] = None dropout_rng: typing.Optional[PRNGKey] = None indices_rng: typing.Optional[PRNGKey] = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None past_key_values: typing.Optional[dict] = None ) transformers.modeling_flax_outputs.FlaxMaskedLMOutputtuple(torch.FloatTensor)

引數

  • input_ids (numpy.ndarray,形狀為 (batch_size, sequence_length)) — 詞彙表中輸入序列標記的索引。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (numpy.ndarray,形狀為 (batch_size, sequence_length)可選) — 用於避免對填充標記索引執行注意力計算的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示標記未被掩碼
    • 0 表示標記已被掩碼

    什麼是注意力掩碼?

  • token_type_ids (numpy.ndarray,形狀為 (batch_size, sequence_length)可選) — 用於指示輸入的第一部分和第二部分的片段標記索引。索引在 [0, 1] 中選擇:

    • 0 對應於句子 A 的標記,
    • 1 對應於句子 B 的標記。

    什麼是標記型別 ID?

  • position_ids (numpy.ndarray,形狀為 (batch_size, sequence_length)可選) — 每個輸入序列標記在位置嵌入中的位置索引。在 [0, config.max_position_embeddings - 1] 範圍內選擇。
  • head_mask (numpy.ndarray,形狀為 (batch_size, sequence_length)可選) -- 用於置零注意力模組中選定頭的掩碼。掩碼值在 [0, 1]` 中選擇:

    • 1 表示頭未被掩碼
    • 0 表示頭已被掩碼
  • return_dict (bool, 可選) — 是否返回一個 ModelOutput 物件而不是一個普通的元組。

返回

transformers.modeling_flax_outputs.FlaxMaskedLMOutputtuple(torch.FloatTensor)

一個 transformers.modeling_flax_outputs.FlaxMaskedLMOutput 或一個 torch.FloatTensor 的元組(如果傳遞了 return_dict=Falseconfig.return_dict=False),包含根據配置(BigBirdConfig)和輸入而變化的不同元素。

  • logits (形狀為 (batch_size, sequence_length, config.vocab_size)jnp.ndarray) — 語言建模頭的預測分數(SoftMax 之前每個詞彙 token 的分數)。

  • hidden_states (tuple(jnp.ndarray)可選,當傳遞 output_hidden_states=Trueconfig.output_hidden_states=True 時返回) — 形狀為 (batch_size, sequence_length, hidden_size)jnp.ndarray 元組(一個用於嵌入層的輸出,一個用於每一層的輸出)。

    模型在每個層輸出的隱藏狀態加上初始嵌入輸出。

  • attentions (tuple(jnp.ndarray)可選,當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — 形狀為 (batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray 元組(每層一個)。

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

FlaxBigBirdPreTrainedModel 的前向方法覆蓋了 __call__ 特殊方法。

儘管前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> from transformers import AutoTokenizer, FlaxBigBirdForMaskedLM

>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = FlaxBigBirdForMaskedLM.from_pretrained("google/bigbird-roberta-base")

>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="jax")

>>> outputs = model(**inputs)
>>> logits = outputs.logits

FlaxBigBirdForSequenceClassification

class transformers.FlaxBigBirdForSequenceClassification

< >

( config: BigBirdConfig input_shape: typing.Optional[tuple] = None seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )

引數

  • config (BigBirdConfig) — 模型配置類,包含模型的所有引數。使用配置檔案進行初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。
  • dtype (jax.numpy.dtype, 可選, 預設為 jax.numpy.float32) — 計算的資料型別。可以是 jax.numpy.float32jax.numpy.float16(在 GPU 上)和 jax.numpy.bfloat16(在 TPU 上)之一。

    這可用於在 GPU 或 TPU 上啟用混合精度訓練或半精度推理。如果指定,所有計算都將使用給定的 dtype 執行。

    請注意,這僅指定計算的資料型別,不影響模型引數的資料型別。

    如果您希望更改模型引數的資料型別,請參閱 to_fp16()to_bf16()

BigBird Transformer 模型,頂部帶有一個序列分類/迴歸頭(一個在池化輸出之上的線性層),例如用於 GLUE 任務。

該模型繼承自 FlaxPreTrainedModel。請檢視超類文件以瞭解該庫為其所有模型實現的通用方法(例如下載、儲存和轉換 PyTorch 模型的權重)。

該模型也是一個 flax.linen.Module 子類。請像常規的 Flax linen 模組一樣使用它,並參考 Flax 文件瞭解所有與一般用法和行為相關的事項。

最後,此模型支援固有的 JAX 功能,例如

__call__

< >

( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: typing.Optional[dict] = None dropout_rng: typing.Optional[PRNGKey] = None indices_rng: typing.Optional[PRNGKey] = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None past_key_values: typing.Optional[dict] = None ) transformers.modeling_flax_outputs.FlaxSequenceClassifierOutputtuple(torch.FloatTensor)

引數

  • input_ids (numpy.ndarray,形狀為 (batch_size, sequence_length)) — 詞彙表中輸入序列詞元的索引。

    可以使用 AutoTokenizer 獲取索引。詳見 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (numpy.ndarray,形狀為 (batch_size, sequence_length)可選) — 用於避免對填充詞元索引執行注意力操作的掩碼。掩碼值的選擇範圍為 [0, 1]

    • 1 表示詞元未被掩碼
    • 0 表示詞元被掩碼

    什麼是注意力掩碼?

  • token_type_ids (numpy.ndarray,形狀為 (batch_size, sequence_length)可選) — 用於指示輸入的第一和第二部分的片段詞元索引。索引的選擇範圍為 [0, 1]

    • 0 對應於 *A 句子* 的詞元,
    • 1 對應於 *B 句子* 的詞元。

    什麼是詞元型別 ID?

  • position_ids (numpy.ndarray,形狀為 (batch_size, sequence_length)可選) — 位置嵌入中每個輸入序列詞元的位置索引。選擇範圍為 [0, config.max_position_embeddings - 1]
  • head_mask (numpy.ndarray,形狀為 (batch_size, sequence_length)可選) -- 用於置零注意力模組中選定頭的掩碼。掩碼值的選擇範圍為 [0, 1]`:

    • 1 表示頭未被掩碼
    • 0 表示頭被掩碼
  • return_dict (bool可選) — 是否返回 ModelOutput 而不是普通的元組。

返回

transformers.modeling_flax_outputs.FlaxSequenceClassifierOutputtuple(torch.FloatTensor)

一個 transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput 或一個 torch.FloatTensor 的元組 (如果傳遞了 return_dict=Falseconfig.return_dict=False),它包含根據配置 (BigBirdConfig) 和輸入而定的各種元素。

  • logits (形狀為 (batch_size, config.num_labels)jnp.ndarray) — 分類(如果 config.num_labels==1,則為迴歸)分數(SoftMax 之前)。

  • hidden_states (tuple(jnp.ndarray)可選,當傳遞 output_hidden_states=Trueconfig.output_hidden_states=True 時返回) — 形狀為 (batch_size, sequence_length, hidden_size)jnp.ndarray 元組(一個用於嵌入層的輸出,一個用於每一層的輸出)。

    模型在每個層輸出的隱藏狀態加上初始嵌入輸出。

  • attentions (tuple(jnp.ndarray)可選,當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — 形狀為 (batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray 元組(每層一個)。

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

FlaxBigBirdPreTrainedModel 的前向方法覆蓋了 __call__ 特殊方法。

儘管前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> from transformers import AutoTokenizer, FlaxBigBirdForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = FlaxBigBirdForSequenceClassification.from_pretrained("google/bigbird-roberta-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")

>>> outputs = model(**inputs)
>>> logits = outputs.logits

FlaxBigBirdForMultipleChoice

class transformers.FlaxBigBirdForMultipleChoice

< >

( config: BigBirdConfig input_shape: typing.Optional[tuple] = None seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )

引數

  • config (BigBirdConfig) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化時,不會載入與模型相關的權重,僅載入配置。請查閱 from_pretrained() 方法來載入模型權重。
  • dtype (jax.numpy.dtype可選,預設為 jax.numpy.float32) — 計算的資料型別。可以是 jax.numpy.float32jax.numpy.float16 (在 GPU 上) 和 jax.numpy.bfloat16 (在 TPU 上) 中的一種。

    該引數可用於在 GPU 或 TPU 上啟用混合精度訓練或半精度推理。如果指定,所有計算都將使用給定的 `dtype` 執行。

    請注意,這僅指定了計算的資料型別,不影響模型引數的資料型別。

    如果你希望更改模型引數的資料型別,請參閱 to_fp16()to_bf16()

帶有選擇題分類頭的 BigBird 模型 (在池化輸出之上有一個線性層和一個 softmax),例如用於 RocStories/SWAG 任務。

該模型繼承自 FlaxPreTrainedModel。請檢視超類文件以瞭解該庫為其所有模型實現的通用方法(例如下載、儲存和轉換 PyTorch 模型的權重)。

該模型也是一個 flax.linen.Module 子類。請像常規的 Flax linen 模組一樣使用它,並參考 Flax 文件瞭解所有與一般用法和行為相關的事項。

最後,此模型支援固有的 JAX 功能,例如

__call__

< >

( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: typing.Optional[dict] = None dropout_rng: typing.Optional[PRNGKey] = None indices_rng: typing.Optional[PRNGKey] = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None past_key_values: typing.Optional[dict] = None ) transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutputtuple(torch.FloatTensor)

引數

  • input_ids (numpy.ndarray,形狀為 (batch_size, num_choices, sequence_length)) — 詞彙表中輸入序列詞元的索引。

    可以使用 AutoTokenizer 獲取索引。詳見 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (numpy.ndarray,形狀為 (batch_size, num_choices, sequence_length)可選) — 用於避免對填充詞元索引執行注意力操作的掩碼。掩碼值的選擇範圍為 [0, 1]

    • 1 表示詞元未被掩碼
    • 0 表示詞元被掩碼

    什麼是注意力掩碼?

  • token_type_ids (numpy.ndarray,形狀為 (batch_size, num_choices, sequence_length)可選) — 用於指示輸入的第一和第二部分的片段詞元索引。索引的選擇範圍為 [0, 1]

    • 0 對應於 *A 句子* 的詞元,
    • 1 對應於 *B 句子* 的詞元。

    什麼是詞元型別 ID?

  • position_ids (numpy.ndarray,形狀為 (batch_size, num_choices, sequence_length)可選) — 位置嵌入中每個輸入序列詞元的位置索引。選擇範圍為 [0, config.max_position_embeddings - 1]
  • head_mask (numpy.ndarray,形狀為 (batch_size, num_choices, sequence_length)可選) -- 用於置零注意力模組中選定頭的掩碼。掩碼值的選擇範圍為 [0, 1]`:

    • 1 表示頭未被掩碼
    • 0 表示頭被掩碼
  • return_dict (bool可選) — 是否返回 ModelOutput 而不是普通的元組。

返回

transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutputtuple(torch.FloatTensor)

一個 transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput 或一個 torch.FloatTensor 的元組 (如果傳遞了 return_dict=Falseconfig.return_dict=False),它包含根據配置 (BigBirdConfig) 和輸入而定的各種元素。

  • logits (形狀為 (batch_size, num_choices)jnp.ndarray) — num_choices 是輸入張量的第二個維度。(請參閱上面的 input_ids)。

    分類分數(SoftMax 之前)。

  • hidden_states (tuple(jnp.ndarray)可選,當傳遞 output_hidden_states=Trueconfig.output_hidden_states=True 時返回) — 形狀為 (batch_size, sequence_length, hidden_size)jnp.ndarray 元組(一個用於嵌入層的輸出,一個用於每一層的輸出)。

    模型在每個層輸出的隱藏狀態加上初始嵌入輸出。

  • attentions (tuple(jnp.ndarray)可選,當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — 形狀為 (batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray 元組(每層一個)。

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

FlaxBigBirdPreTrainedModel 的前向方法覆蓋了 __call__ 特殊方法。

儘管前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> from transformers import AutoTokenizer, FlaxBigBirdForMultipleChoice

>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = FlaxBigBirdForMultipleChoice.from_pretrained("google/bigbird-roberta-base")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."

>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="jax", padding=True)
>>> outputs = model(**{k: v[None, :] for k, v in encoding.items()})

>>> logits = outputs.logits

FlaxBigBirdForTokenClassification

class transformers.FlaxBigBirdForTokenClassification

< >

( config: BigBirdConfig input_shape: typing.Optional[tuple] = None seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )

引數

  • config (BigBirdConfig) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化時,不會載入與模型相關的權重,僅載入配置。請查閱 from_pretrained() 方法來載入模型權重。
  • dtype (jax.numpy.dtype可選,預設為 jax.numpy.float32) — 計算的資料型別。可以是 jax.numpy.float32jax.numpy.float16 (在 GPU 上) 和 jax.numpy.bfloat16 (在 TPU 上) 中的一種。

    該引數可用於在 GPU 或 TPU 上啟用混合精度訓練或半精度推理。如果指定,所有計算都將使用給定的 `dtype` 執行。

    請注意,這僅指定了計算的資料型別,不影響模型引數的資料型別。

    如果你希望更改模型引數的資料型別,請參閱 to_fp16()to_bf16()

帶有詞元分類頭的 BigBird 模型 (在隱藏狀態輸出之上有一個線性層),例如用於命名實體識別 (NER) 任務。

該模型繼承自 FlaxPreTrainedModel。請檢視超類文件以瞭解該庫為其所有模型實現的通用方法(例如下載、儲存和轉換 PyTorch 模型的權重)。

該模型也是一個 flax.linen.Module 子類。請像常規的 Flax linen 模組一樣使用它,並參考 Flax 文件瞭解所有與一般用法和行為相關的事項。

最後,此模型支援固有的 JAX 功能,例如

__call__

< >

( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: typing.Optional[dict] = None dropout_rng: typing.Optional[PRNGKey] = None indices_rng: typing.Optional[PRNGKey] = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None past_key_values: typing.Optional[dict] = None ) transformers.modeling_flax_outputs.FlaxTokenClassifierOutputtuple(torch.FloatTensor)

引數

  • input_ids (numpy.ndarray,形狀為 (batch_size, sequence_length)) — 詞彙表中輸入序列詞元的索引。

    可以使用 AutoTokenizer 獲取索引。詳見 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (numpy.ndarray,形狀為 (batch_size, sequence_length)可選) — 用於避免對填充詞元索引執行注意力操作的掩碼。掩碼值的選擇範圍為 [0, 1]

    • 1 表示詞元未被掩碼
    • 0 表示詞元被掩碼

    什麼是注意力掩碼?

  • token_type_ids (numpy.ndarray,形狀為 (batch_size, sequence_length)可選) — 用於指示輸入的第一和第二部分的片段詞元索引。索引的選擇範圍為 [0, 1]

    • 0 對應於 *A 句子* 的詞元,
    • 1 對應於 *B 句子* 的詞元。

    什麼是詞元型別 ID?

  • position_ids (numpy.ndarray,形狀為 (batch_size, sequence_length)可選) — 位置嵌入中每個輸入序列詞元的位置索引。選擇範圍為 [0, config.max_position_embeddings - 1]
  • head_mask (numpy.ndarray,形狀為 (batch_size, sequence_length)可選) -- 用於置零注意力模組中選定頭的掩碼。掩碼值的選擇範圍為 [0, 1]`:

    • 1 表示頭未被掩碼
    • 0 表示頭被掩碼
  • return_dict (bool可選) — 是否返回 ModelOutput 而不是普通的元組。

返回

transformers.modeling_flax_outputs.FlaxTokenClassifierOutputtuple(torch.FloatTensor)

一個 transformers.modeling_flax_outputs.FlaxTokenClassifierOutput 或一個 torch.FloatTensor 的元組 (如果傳遞了 return_dict=Falseconfig.return_dict=False),它包含根據配置 (BigBirdConfig) 和輸入而定的各種元素。

  • logits (jnp.ndarray,形狀為 (batch_size, sequence_length, config.num_labels)) — 分類得分(SoftMax 之前)。

  • hidden_states (tuple(jnp.ndarray)可選,當傳遞 output_hidden_states=Trueconfig.output_hidden_states=True 時返回) — 形狀為 (batch_size, sequence_length, hidden_size)jnp.ndarray 元組(一個用於嵌入層的輸出,一個用於每一層的輸出)。

    模型在每個層輸出的隱藏狀態加上初始嵌入輸出。

  • attentions (tuple(jnp.ndarray)可選,當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — 形狀為 (batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray 元組(每層一個)。

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

FlaxBigBirdPreTrainedModel 的前向方法覆蓋了 __call__ 特殊方法。

儘管前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> from transformers import AutoTokenizer, FlaxBigBirdForTokenClassification

>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = FlaxBigBirdForTokenClassification.from_pretrained("google/bigbird-roberta-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")

>>> outputs = model(**inputs)
>>> logits = outputs.logits

FlaxBigBirdForQuestionAnswering

class transformers.FlaxBigBirdForQuestionAnswering

< >

( config: BigBirdConfig input_shape: typing.Optional[tuple] = None seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )

引數

  • config (BigBirdConfig) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化時,不會載入與模型相關的權重,僅載入配置。請查閱 from_pretrained() 方法來載入模型權重。
  • dtype (jax.numpy.dtype可選,預設為 jax.numpy.float32) — 計算的資料型別。可以是 jax.numpy.float32jax.numpy.float16 (在 GPU 上) 和 jax.numpy.bfloat16 (在 TPU 上) 中的一種。

    該引數可用於在 GPU 或 TPU 上啟用混合精度訓練或半精度推理。如果指定,所有計算都將使用給定的 `dtype` 執行。

    請注意,這僅指定了計算的資料型別,不影響模型引數的資料型別。

    如果你希望更改模型引數的資料型別,請參閱 to_fp16()to_bf16()

帶有片段分類頭的 BigBird 模型,用於 SQuAD 等抽取式問答任務 (在隱藏狀態輸出之上有一個線性層,用於計算 span start logitsspan end logits)。

該模型繼承自 FlaxPreTrainedModel。請檢視超類文件以瞭解該庫為其所有模型實現的通用方法(例如下載、儲存和轉換 PyTorch 模型的權重)。

該模型也是一個 flax.linen.Module 子類。請像常規的 Flax linen 模組一樣使用它,並參考 Flax 文件瞭解所有與一般用法和行為相關的事項。

最後,此模型支援固有的 JAX 功能,例如

__call__

< >

( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None question_lengths = None params: typing.Optional[dict] = None dropout_rng: typing.Optional[PRNGKey] = None indices_rng: typing.Optional[PRNGKey] = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.models.big_bird.modeling_flax_big_bird.FlaxBigBirdForQuestionAnsweringModelOutputtuple(torch.FloatTensor)

引數

  • input_ids (numpy.ndarray,形狀為 (batch_size, sequence_length)) — 詞彙表中輸入序列詞元的索引。

    可以使用 AutoTokenizer 獲取索引。詳見 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (numpy.ndarray,形狀為 (batch_size, sequence_length)可選) — 用於避免對填充詞元索引執行注意力操作的掩碼。掩碼值的選擇範圍為 [0, 1]

    • 1 表示詞元未被掩碼
    • 0 表示詞元被掩碼

    什麼是注意力掩碼?

  • token_type_ids (numpy.ndarray,形狀為 (batch_size, sequence_length)可選) — 用於指示輸入的第一和第二部分的片段詞元索引。索引的選擇範圍為 [0, 1]

    • 0 對應於 *A 句子* 的詞元,
    • 1 對應於 *B 句子* 的詞元。

    什麼是詞元型別 ID?

  • position_ids (numpy.ndarray,形狀為 (batch_size, sequence_length)可選) — 位置嵌入中每個輸入序列詞元的位置索引。選擇範圍為 [0, config.max_position_embeddings - 1]
  • head_mask (numpy.ndarray,形狀為 (batch_size, sequence_length)可選) -- 用於置零注意力模組中選定頭的掩碼。掩碼值的選擇範圍為 [0, 1]`:

    • 1 表示頭未被掩碼
    • 0 表示頭被掩碼
  • return_dict (bool可選) — 是否返回 ModelOutput 而不是普通的元組。

返回

transformers.models.big_bird.modeling_flax_big_bird.FlaxBigBirdForQuestionAnsweringModelOutputtuple(torch.FloatTensor)

一個 transformers.models.big_bird.modeling_flax_big_bird.FlaxBigBirdForQuestionAnsweringModelOutput 或一個元組(tuple),元組內元素為 torch.FloatTensor(如果傳遞了 return_dict=False 或當 config.return_dict=False 時)。它包含多個元素,具體取決於配置(BigBirdConfig)和輸入。

  • start_logits (jnp.ndarray,形狀為 (batch_size, sequence_length)) — 跨度開始得分(SoftMax 之前)。

  • end_logits (jnp.ndarray,形狀為 (batch_size, sequence_length)) — 跨度結束得分(SoftMax 之前)。

  • pooled_output (jnp.ndarray,形狀為 (batch_size, hidden_size)) — FlaxBigBirdModel 返回的 pooled_output。

  • hidden_states (tuple(jnp.ndarray)可選,當傳遞 output_hidden_states=Trueconfig.output_hidden_states=True 時返回) — 形狀為 (batch_size, sequence_length, hidden_size)jnp.ndarray 元組(一個用於嵌入層的輸出,一個用於每一層的輸出)。

    模型在每個層輸出的隱藏狀態加上初始嵌入輸出。

  • attentions (tuple(jnp.ndarray)可選,當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — 形狀為 (batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray 元組(每層一個)。

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

FlaxBigBirdForQuestionAnswering 的 forward 方法覆蓋了 __call__ 特殊方法。

儘管前向傳播的流程需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> from transformers import AutoTokenizer, FlaxBigBirdForQuestionAnswering

>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = FlaxBigBirdForQuestionAnswering.from_pretrained("google/bigbird-roberta-base")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="jax")

>>> outputs = model(**inputs)
>>> start_scores = outputs.start_logits
>>> end_scores = outputs.end_logits
< > 在 GitHub 上更新

© . This site is unofficial and not affiliated with Hugging Face, Inc.