Transformers 文件

Gemma2

Hugging Face's logo
加入 Hugging Face 社群

並獲得增強的文件體驗

開始使用

PyTorch TensorFlow Flax FlashAttention SDPA

Gemma2

Gemma 2 是一個語言模型家族,包含預訓練和指令微調變體,提供 2B、9B、27B 引數版本。其架構與之前的 Gemma 相似,但增加了交錯的區域性注意力(4096個詞元)和全域性注意力(8192個詞元),以及分組查詢注意力(GQA),以提高推理效能。

2B和9B模型透過知識蒸餾進行訓練,指令微調變體透過監督微調和強化學習進行後訓練。

您可以在 Gemma 2 集合中找到所有原始的 Gemma 2 檢查點。

點選右側邊欄的 Gemma 2 模型,檢視更多關於如何將 Gemma 應用於不同語言任務的示例。

以下示例展示瞭如何使用 PipelineAutoModel 類,以及透過命令列與模型進行聊天。

流水線
自動模型
Transformers CLI
import torch
from transformers import pipeline

pipe = pipeline(
    task="text-generation",
    model="google/gemma-2-9b",
    torch_dtype=torch.bfloat16,
    device="cuda",
)

pipe("Explain quantum computing simply. ", max_new_tokens=50)

量化透過以較低精度表示權重來減少大型模型的記憶體負擔。有關更多可用量化後端,請參閱量化概述。

以下示例使用 bitsandbytes 將權重僅量化為 int4。

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig

quantization_config = BitsAndBytesConfig(load_in_4bit=True)
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-27b")
model = AutoModelForCausalLM.from_pretrained(
    "google/gemma-2-27b",
    torch_dtype=torch.bfloat16,
    device_map="auto",
    attn_implementation="sdpa"
)

input_text = "Explain quantum computing simply."
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")

outputs = model.generate(**input_ids, max_new_tokens=32, cache_implementation="static")
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

使用 AttentionMaskVisualizer 可以更好地理解模型能夠或不能關注的詞元。

from transformers.utils.attention_visualizer import AttentionMaskVisualizer
visualizer = AttentionMaskVisualizer("google/gemma-2b")
visualizer("You are an assistant. Make sure you print me")

注意事項

  • 使用 HybridCache 例項以在 Gemma 2 中啟用快取。Gemma 2 不支援諸如 DynamicCache 或張量元組等 KV 快取策略,因為它每隔一層使用滑動視窗注意力。

    from transformers import AutoTokenizer, AutoModelForCausalLM, HybridCache
    
    model = AutoModelForCausalLM.from_pretrained("google/gemma-2-2b")
    tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b")
    
    inputs = tokenizer(text="My name is Gemma", return_tensors="pt")
    max_generated_length = inputs.input_ids.shape[1] + 10
    past_key_values = HybridCache(config=model.config, max_batch_size=1,
    max_cache_len=max_generated_length, device=model.device, dtype=model.dtype)
    outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)

Gemma2Config

transformers.Gemma2Config

< >

( vocab_size = 256000 hidden_size = 2304 intermediate_size = 9216 num_hidden_layers = 26 num_attention_heads = 8 num_key_value_heads = 4 head_dim = 256 hidden_activation = 'gelu_pytorch_tanh' max_position_embeddings = 8192 initializer_range = 0.02 rms_norm_eps = 1e-06 use_cache = True pad_token_id = 0 eos_token_id = 1 bos_token_id = 2 tie_word_embeddings = True rope_theta = 10000.0 attention_bias = False attention_dropout = 0.0 query_pre_attn_scalar = 256 sliding_window = 4096 layer_types = None final_logit_softcapping = 30.0 attn_logit_softcapping = 50.0 **kwargs )

引數

  • vocab_size (int, 可選, 預設為 256000) — Gemma2 模型的詞彙表大小。定義了呼叫 Gemma2Model 時傳入的 inputs_ids 可以表示的不同詞元的數量。
  • hidden_size (int, 可選, 預設為 2304) — 隱藏表示的維度。
  • intermediate_size (int, 可選, 預設為 9216) — MLP 表示的維度。
  • num_hidden_layers (int, 可選, 預設為 26) — Transformer 解碼器中的隱藏層數量。
  • num_attention_heads (int, 可選, 預設為 8) — Transformer 解碼器中每個注意力層的注意力頭數量。
  • num_key_value_heads (int, 可選, 預設為 4) — 用於實現分組查詢注意力(Grouped Query Attention)的 key_value 頭數量。如果 num_key_value_heads=num_attention_heads,模型將使用多頭注意力(MHA);如果 num_key_value_heads=1,模型將使用多查詢注意力(MQA),否則使用 GQA。將多頭檢查點轉換為 GQA 檢查點時,每個分組的 key 和 value 頭應該透過對其組內所有原始頭進行均值池化來構建。有關更多詳細資訊,請檢視 此論文。如果未指定,則預設為 num_attention_heads
  • head_dim (int, 可選, 預設為 256) — 注意力頭維度。
  • hidden_activation (strfunction, 可選, 預設為 "gelu_pytorch_tanh") — 解碼器中的非線性啟用函式(函式或字串)。如果未指定,則預設為 "gelu_pytorch_tanh""gelu_pytorch_tanh" 使用 "gelu" 啟用函式的近似值。
  • max_position_embeddings (int, 可選, 預設為 8192) — 此模型可能使用的最大序列長度。
  • initializer_range (float, 可選, 預設為 0.02) — 用於初始化所有權重矩陣的 truncated_normal_initializer 的標準差。
  • rms_norm_eps (float, 可選, 預設為 1e-06) — rms 歸一化層使用的 epsilon 值。
  • use_cache (bool, 可選, 預設為 True) — 模型是否應返回最後的 key/value 注意力(並非所有模型都使用)。僅當 config.is_decoder=True 時相關。
  • pad_token_id (int, 可選, 預設為 0) — 填充詞元 ID。
  • eos_token_id (int, 可選, 預設為 1) — 流結束詞元 ID。
  • bos_token_id (int, 可選, 預設為 2) — 流開始詞元 ID。
  • tie_word_embeddings (bool, 可選, 預設為 True) — 是否繫結詞嵌入。
  • rope_theta (float, 可選, 預設為 10000.0) — RoPE 嵌入的基週期。
  • attention_bias (bool, 預設為 False, 可選, 預設為 False) — 在自注意力中,是否在查詢、鍵、值和輸出投影層中使用偏置。
  • attention_dropout (float, 可選, 預設為 0.0) — 注意力機率的 dropout 比率。
  • query_pre_attn_scalar (float, 可選, 預設為 256) — 用於注意力分數上的縮放因子。
  • sliding_window (int, 可選, 預設為 4096) — 在 Gemma2 中,每隔一層使用滑動視窗注意力。這是滑動視窗的大小。
  • layer_types (list, 可選) — 每層的注意力模式。
  • final_logit_softcapping (float, 可選, 預設為 30.0) — 對 logits 應用 tanh 軟上限時的縮放因子。
  • attn_logit_softcapping (float, 可選, 預設為 50.0) — 對注意力分數應用 tanh 軟上限時的縮放因子。

這是一個配置類,用於儲存 Gemma2Model 的配置。它用於根據指定的引數例項化 Gemma2 模型,定義模型架構。使用預設值例項化配置將生成與 Gemma2-7B 類似的配置。例如:google/gemma2-7b。配置物件繼承自 PretrainedConfig,可用於控制模型輸出。有關更多資訊,請閱讀 PretrainedConfig 的文件。

>>> from transformers import Gemma2Model, Gemma2Config
>>> # Initializing a Gemma2 gemma2-7b style configuration
>>> configuration = Gemma2Config()
>>> # Initializing a model from the gemma2-7b style configuration
>>> model = Gemma2Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config

Gemma2Model

class transformers.Gemma2Model

< >

( config: Gemma2Config )

引數

  • config (Gemma2Config) — 模型的配置類,包含模型的所有引數。使用配置檔案初始化不會載入與模型相關的權重,只加載配置。請檢視 from_pretrained() 方法以載入模型權重。

裸 Gemma2 模型輸出原始隱藏狀態,頂部沒有任何特定頭部。

此模型繼承自 PreTrainedModel。請檢視超類文件,瞭解庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭部等)。

此模型也是 PyTorch torch.nn.Module 子類。將其作為常規 PyTorch 模組使用,並參考 PyTorch 文件以獲取所有與通用用法和行為相關的事項。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None **flash_attn_kwargs: typing_extensions.Unpack[transformers.modeling_flash_attention_utils.FlashAttentionKwargs] ) transformers.modeling_outputs.BaseModelOutputWithPast or tuple(torch.FloatTensor)

引數

  • input_ids (形狀為 (batch_size, sequence_length)torch.LongTensor可選) — 詞彙表中輸入序列標記的索引。預設情況下會忽略填充。

    索引可以使用 AutoTokenizer 獲取。有關詳細資訊,請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (形狀為 (batch_size, sequence_length)torch.Tensor可選) — 避免對填充標記索引執行注意力的掩碼。掩碼值選擇在 [0, 1] 之間:

    • 1 表示未遮蓋的標記,
    • 0 表示遮蓋的標記。

    什麼是注意力掩碼?

  • position_ids (形狀為 (batch_size, sequence_length)torch.LongTensor可選) — 每個輸入序列標記在位置嵌入中的位置索引。選擇範圍為 [0, config.n_positions - 1]

    什麼是位置 ID?

  • past_key_values (~cache_utils.Cache可選) — 預先計算的隱藏狀態(自注意力塊和交叉注意力塊中的鍵和值),可用於加速順序解碼。這通常包括模型在解碼上一階段返回的 past_key_values,當 use_cache=Trueconfig.use_cache=True 時。

    允許兩種格式:

    • Cache 例項,請參閱我們的 kv 快取指南
    • 長度為 config.n_layerstuple(torch.FloatTensor) 元組,每個元組包含 2 個形狀為 (batch_size, num_heads, sequence_length, embed_size_per_head) 的張量。這也被稱為舊版快取格式。

    模型將輸出與作為輸入提供的相同快取格式。如果沒有傳入 past_key_values,將返回舊版快取格式。

    如果使用 past_key_values,使用者可以選擇僅輸入最後一個 input_ids(那些未將其過去的鍵值狀態提供給此模型的)形狀為 (batch_size, 1),而不是所有 input_ids 形狀為 (batch_size, sequence_length)

  • inputs_embeds (形狀為 (batch_size, sequence_length, hidden_size)torch.FloatTensor可選) — (可選)您可以選擇直接傳入嵌入表示,而不是傳入 input_ids。如果您想更好地控制如何將 input_ids 索引轉換為關聯向量,而不是模型內部的嵌入查詢矩陣,這將非常有用。
  • use_cache (bool可選) — 如果設定為 True,則返回 past_key_values 鍵值狀態,可用於加速解碼(請參閱 past_key_values)。
  • output_attentions (bool可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量中的 attentions
  • output_hidden_states (bool可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量中的 hidden_states
  • cache_position (形狀為 (sequence_length)torch.LongTensor可選) — 描述輸入序列標記在序列中位置的索引。與 position_ids 不同,此張量不受填充影響。它用於在正確位置更新快取並推斷完整的序列長度。

返回

transformers.modeling_outputs.BaseModelOutputWithPasttuple(torch.FloatTensor)

transformers.modeling_outputs.BaseModelOutputWithPasttorch.FloatTensor 元組(如果傳入 return_dict=False 或當 config.return_dict=False 時),包含根據配置 (Gemma2Config) 和輸入的不同元素。

  • last_hidden_state (torch.FloatTensor, 形狀為 (batch_size, sequence_length, hidden_size)) — 模型最後一層輸出的隱藏狀態序列。

    如果使用了 past_key_values,則只輸出形狀為 (batch_size, 1, hidden_size) 的序列的最後一個隱藏狀態。

  • past_key_values (Cache可選,當傳入 use_cache=True 或當 config.use_cache=True 時返回) — 這是一個 Cache 例項。有關更多詳細資訊,請參閱我們的 kv 快取指南

    包含預先計算的隱藏狀態(自注意力塊中的鍵和值,如果 config.is_encoder_decoder=True,則可選地包含交叉注意力塊中的鍵和值),可用於(請參閱 past_key_values 輸入)加速順序解碼。

  • hidden_states (tuple(torch.FloatTensor)可選,當傳入 output_hidden_states=True 或當 config.output_hidden_states=True 時返回) — torch.FloatTensor 元組(如果模型有嵌入層,則一個用於嵌入輸出,加上每個層的一個輸出),形狀為 (batch_size, sequence_length, hidden_size)

    模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。

  • attentions (tuple(torch.FloatTensor)可選,當傳入 output_attentions=True 或當 config.output_attentions=True 時返回) — torch.FloatTensor 元組(每個層一個),形狀為 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

Gemma2Model 的 forward 方法,重寫了 __call__ 特殊方法。

雖然前向傳播的配方需要在該函式中定義,但之後應呼叫 Module 例項而不是此函式,因為前者負責執行預處理和後處理步驟,而後者則默默地忽略它們。

Gemma2ForCausalLM

class transformers.Gemma2ForCausalLM

< >

( config )

引數

  • config (Gemma2ForCausalLM) — 模型的配置類,包含模型的所有引數。使用配置檔案初始化不會載入與模型相關的權重,只加載配置。請檢視 from_pretrained() 方法以載入模型權重。

用於因果語言建模的 Gemma2 模型。

此模型繼承自 PreTrainedModel。請檢視超類文件,瞭解庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭部等)。

此模型也是 PyTorch torch.nn.Module 子類。將其作為常規 PyTorch 模組使用,並參考 PyTorch 文件以獲取所有與通用用法和行為相關的事項。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None logits_to_keep: typing.Union[int, torch.Tensor] = 0 **loss_kwargs ) transformers.modeling_outputs.CausalLMOutputWithPast or tuple(torch.FloatTensor)

引數

  • input_ids (形狀為 (batch_size, sequence_length)torch.LongTensor可選) — 詞彙表中輸入序列標記的索引。預設情況下會忽略填充。

    索引可以使用 AutoTokenizer 獲取。有關詳細資訊,請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (形狀為 (batch_size, sequence_length)torch.Tensor可選) — 避免對填充標記索引執行注意力的掩碼。掩碼值選擇在 [0, 1] 之間:

    • 1 表示未遮蓋的標記,
    • 0 表示遮蓋的標記。

    什麼是注意力掩碼?

  • position_ids (形狀為 (batch_size, sequence_length)torch.LongTensor可選) — 每個輸入序列標記在位置嵌入中的位置索引。選擇範圍為 [0, config.n_positions - 1]

    什麼是位置 ID?

  • past_key_values (~cache_utils.Cache可選) — 預先計算的隱藏狀態(自注意力塊和交叉注意力塊中的鍵和值),可用於加速順序解碼。這通常包括模型在解碼上一階段返回的 past_key_values,當 use_cache=Trueconfig.use_cache=True 時。

    允許兩種格式:

    • Cache 例項,請參閱我們的 kv 快取指南
    • 長度為 config.n_layerstuple(torch.FloatTensor) 元組,每個元組包含 2 個形狀為 (batch_size, num_heads, sequence_length, embed_size_per_head) 的張量。這也被稱為舊版快取格式。

    模型將輸出與作為輸入提供的相同快取格式。如果沒有傳入 past_key_values,將返回舊版快取格式。

    如果使用 past_key_values,使用者可以選擇僅輸入最後一個 input_ids(那些未將其過去的鍵值狀態提供給此模型的)形狀為 (batch_size, 1),而不是所有 input_ids 形狀為 (batch_size, sequence_length)

  • inputs_embeds (形狀為 (batch_size, sequence_length, hidden_size)torch.FloatTensor可選) — (可選)您可以選擇直接傳入嵌入表示,而不是傳入 input_ids。如果您想更好地控制如何將 input_ids 索引轉換為關聯向量,而不是模型內部的嵌入查詢矩陣,這將非常有用。
  • labels (形狀為 (batch_size, sequence_length)torch.LongTensor可選) — 用於計算掩碼語言建模損失的標籤。索引應在 [0, ..., config.vocab_size] 或 -100 之間(請參閱 input_ids 文件字串)。索引設定為 -100 的標記將被忽略(掩碼),損失僅針對標籤在 [0, ..., config.vocab_size] 中的標記計算。
  • use_cache (bool可選) — 如果設定為 True,則返回 past_key_values 鍵值狀態,可用於加速解碼(請參閱 past_key_values)。
  • output_attentions (bool可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量中的 attentions
  • output_hidden_states (bool可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量中的 hidden_states
  • cache_position (形狀為 (sequence_length)torch.LongTensor可選) — 描述輸入序列標記在序列中位置的索引。與 position_ids 不同,此張量不受填充影響。它用於在正確位置更新快取並推斷完整的序列長度。
  • logits_to_keep (Union[int, torch.Tensor],預設為 0) — 如果是 int,則計算最後 logits_to_keep 個標記的 logits。如果是 0,則計算所有 input_ids 的 logits(特殊情況)。生成時只需要最後一個標記的 logits,並且僅計算該標記的 logits 可以節省記憶體,這對於長序列或大詞彙量來說非常重要。如果是 torch.Tensor,則必須是與序列長度維度中要保留的索引相對應的 1D 張量。當使用打包張量格式(批次和序列長度的單維度)時,這很有用。

返回

transformers.modeling_outputs.CausalLMOutputWithPasttuple(torch.FloatTensor)

transformers.modeling_outputs.CausalLMOutputWithPasttorch.FloatTensor 元組(如果傳入 return_dict=False 或當 config.return_dict=False 時),包含根據配置 (Gemma2Config) 和輸入的不同元素。

  • loss (torch.FloatTensor 形狀為 (1,)可選,當提供 labels 時返回) — 語言建模損失(用於下一個 token 預測)。

  • logits (形狀為 (batch_size, sequence_length, config.vocab_size)torch.FloatTensor) — 語言建模頭部的預測分數(SoftMax 之前的每個詞彙標記的分數)。

  • past_key_values (Cache可選,當傳入 use_cache=True 或當 config.use_cache=True 時返回) — 這是一個 Cache 例項。有關更多詳細資訊,請參閱我們的 kv 快取指南

    包含預計算的隱藏狀態(自注意力塊中的鍵和值),可用於(參見 past_key_values 輸入)加速順序解碼。

  • hidden_states (tuple(torch.FloatTensor)可選,當傳入 output_hidden_states=True 或當 config.output_hidden_states=True 時返回) — torch.FloatTensor 元組(如果模型有嵌入層,則一個用於嵌入輸出,加上每個層的一個輸出),形狀為 (batch_size, sequence_length, hidden_size)

    模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。

  • attentions (tuple(torch.FloatTensor)可選,當傳入 output_attentions=True 或當 config.output_attentions=True 時返回) — torch.FloatTensor 元組(每個層一個),形狀為 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

Gemma2ForCausalLM 的 forward 方法,重寫了 __call__ 特殊方法。

雖然前向傳播的配方需要在該函式中定義,但之後應呼叫 Module 例項而不是此函式,因為前者負責執行預處理和後處理步驟,而後者則默默地忽略它們。

示例

>>> from transformers import AutoTokenizer, Gemma2ForCausalLM

>>> model = Gemma2ForCausalLM.from_pretrained("google/gemma-2-9b")
>>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b")

>>> prompt = "What is your favorite condiment?"
>>> inputs = tokenizer(prompt, return_tensors="pt")

>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"What is your favorite condiment?"

Gemma2ForSequenceClassification

class transformers.Gemma2ForSequenceClassification

< >

( config )

引數

  • config (Gemma2ForSequenceClassification) — 模型的配置類,包含模型的所有引數。使用配置檔案初始化不會載入與模型相關的權重,只加載配置。請檢視 from_pretrained() 方法以載入模型權重。

Gemma2 模型 transformer,頂部帶有一個序列分類頭(線性層)。

Gemma2ForSequenceClassification 與其他因果模型(例如 GPT-2)一樣,使用最後一個標記進行分類。

由於它對最後一個標記進行分類,因此需要知道最後一個標記的位置。如果配置中定義了 pad_token_id,它會找到每行中不是填充標記的最後一個標記。如果未定義 pad_token_id,它只會取批處理中每行的最後一個值。由於當傳入 inputs_embeds 而不是 input_ids 時它無法猜測填充標記,因此它會執行相同的操作(取批處理中每行的最後一個值)。

此模型繼承自 PreTrainedModel。請檢視超類文件,瞭解庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭部等)。

此模型也是 PyTorch torch.nn.Module 子類。將其作為常規 PyTorch 模組使用,並參考 PyTorch 文件以獲取所有與通用用法和行為相關的事項。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None ) transformers.modeling_outputs.SequenceClassifierOutputWithPast or tuple(torch.FloatTensor)

引數

  • input_ids (形狀為 (batch_size, sequence_length)torch.LongTensor可選) — 詞彙表中輸入序列標記的索引。預設情況下會忽略填充。

    索引可以使用 AutoTokenizer 獲取。有關詳細資訊,請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (形狀為 (batch_size, sequence_length)torch.Tensor可選) — 避免對填充標記索引執行注意力的掩碼。掩碼值選擇在 [0, 1] 之間:

    • 1 表示未遮蓋的標記,
    • 0 表示遮蓋的標記。

    什麼是注意力掩碼?

  • position_ids (形狀為 (batch_size, sequence_length)torch.LongTensor可選) — 每個輸入序列標記在位置嵌入中的位置索引。選擇範圍為 [0, config.n_positions - 1]

    什麼是位置 ID?

  • past_key_values (~cache_utils.Cache可選) — 預先計算的隱藏狀態(自注意力塊和交叉注意力塊中的鍵和值),可用於加速順序解碼。這通常包括模型在解碼上一階段返回的 past_key_values,當 use_cache=Trueconfig.use_cache=True 時。

    允許兩種格式:

    • Cache 例項,請參閱我們的 kv 快取指南
    • 長度為 config.n_layerstuple(torch.FloatTensor) 元組,每個元組包含 2 個形狀為 (batch_size, num_heads, sequence_length, embed_size_per_head) 的張量。這也被稱為舊版快取格式。

    模型將輸出與作為輸入提供的相同快取格式。如果沒有傳入 past_key_values,將返回舊版快取格式。

    如果使用 past_key_values,使用者可以選擇僅輸入最後一個 input_ids(那些未將其過去的鍵值狀態提供給此模型的)形狀為 (batch_size, 1),而不是所有 input_ids 形狀為 (batch_size, sequence_length)

  • inputs_embeds (形狀為 (batch_size, sequence_length, hidden_size)torch.FloatTensor可選) — (可選)您可以選擇直接傳入嵌入表示,而不是傳入 input_ids。如果您想更好地控制如何將 input_ids 索引轉換為關聯向量,而不是模型內部的嵌入查詢矩陣,這將非常有用。
  • labels (形狀為 (batch_size,)torch.LongTensor可選) — 用於計算序列分類/迴歸損失的標籤。索引應在 [0, ..., config.num_labels - 1] 之間。如果 config.num_labels == 1,則計算迴歸損失(均方損失),如果 config.num_labels > 1,則計算分類損失(交叉熵)。
  • use_cache (bool可選) — 如果設定為 True,則返回 past_key_values 鍵值狀態,可用於加速解碼(請參閱 past_key_values)。
  • output_attentions (bool, 可選) — 是否返回所有注意力層的注意力張量。更多詳細資訊請參閱返回張量中的 attentions
  • output_hidden_states (bool, 可選) — 是否返回所有層的隱藏狀態。更多詳細資訊請參閱返回張量中的 hidden_states

返回

transformers.modeling_outputs.SequenceClassifierOutputWithPasttuple(torch.FloatTensor)

一個 transformers.modeling_outputs.SequenceClassifierOutputWithPast 或一個 torch.FloatTensor 元組(如果傳遞 return_dict=False 或當 config.return_dict=False 時),包含根據配置(Gemma2Config)和輸入而變化的各種元素。

  • loss (形狀為 (1,)torch.FloatTensor可選,當提供 labels 時返回) — 分類損失(如果 config.num_labels==1,則為迴歸損失)。

  • logits (形狀為 (batch_size, config.num_labels)torch.FloatTensor) — 分類(如果 config.num_labels==1,則為迴歸)分數(SoftMax 之前)。

  • past_key_values (Cache可選,當傳入 use_cache=True 或當 config.use_cache=True 時返回) — 這是一個 Cache 例項。有關更多詳細資訊,請參閱我們的 kv 快取指南

    包含預計算的隱藏狀態(自注意力塊中的鍵和值),可用於(參見 past_key_values 輸入)加速順序解碼。

  • hidden_states (tuple(torch.FloatTensor)可選,當傳入 output_hidden_states=True 或當 config.output_hidden_states=True 時返回) — torch.FloatTensor 元組(如果模型有嵌入層,則一個用於嵌入輸出,加上每個層的一個輸出),形狀為 (batch_size, sequence_length, hidden_size)

    模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。

  • attentions (tuple(torch.FloatTensor)可選,當傳入 output_attentions=True 或當 config.output_attentions=True 時返回) — torch.FloatTensor 元組(每個層一個),形狀為 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

Gemma2ForSequenceClassification 的 forward 方法,重寫了 __call__ 特殊方法。

雖然前向傳播的配方需要在該函式中定義,但之後應呼叫 Module 例項而不是此函式,因為前者負責執行預處理和後處理步驟,而後者則默默地忽略它們。

單標籤分類示例

>>> import torch
>>> from transformers import AutoTokenizer, Gemma2ForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("google/gemma2-7b")
>>> model = Gemma2ForSequenceClassification.from_pretrained("google/gemma2-7b")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_id = logits.argmax().item()
>>> model.config.id2label[predicted_class_id]
...

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = Gemma2ForSequenceClassification.from_pretrained("google/gemma2-7b", num_labels=num_labels)

>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...

多標籤分類示例

>>> import torch
>>> from transformers import AutoTokenizer, Gemma2ForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("google/gemma2-7b")
>>> model = Gemma2ForSequenceClassification.from_pretrained("google/gemma2-7b", problem_type="multi_label_classification")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = Gemma2ForSequenceClassification.from_pretrained(
...     "google/gemma2-7b", num_labels=num_labels, problem_type="multi_label_classification"
... )

>>> labels = torch.sum(
...     torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss

Gemma2ForTokenClassification

class transformers.Gemma2ForTokenClassification

< >

( config )

引數

  • config (Gemma2ForTokenClassification) — 模型配置類,包含模型的所有引數。用配置檔案初始化不會載入與模型相關的權重,只加載配置。請檢視 from_pretrained() 方法來載入模型權重。

Gemma2 transformer,頂部帶有一個 token 分類頭(隱藏狀態輸出上方的線性層),例如用於命名實體識別(NER)任務。

此模型繼承自 PreTrainedModel。請檢視超類文件,瞭解庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭部等)。

此模型也是 PyTorch torch.nn.Module 子類。將其作為常規 PyTorch 模組使用,並參考 PyTorch 文件以獲取所有與通用用法和行為相關的事項。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None ) transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

引數

  • input_ids (形狀為 (batch_size, sequence_length)torch.LongTensor可選) — 詞彙表中輸入序列 token 的索引。預設情況下會忽略填充。

    索引可以使用 AutoTokenizer 獲取。有關詳細資訊,請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是 input IDs?

  • attention_mask (形狀為 (batch_size, sequence_length)torch.Tensor可選) — 掩碼,用於避免對填充 token 索引執行注意力。掩碼值選擇範圍在 [0, 1]

    • 1 表示未被掩碼的 token,
    • 0 表示被掩碼的 token。

    什麼是注意力掩碼?

  • position_ids (形狀為 (batch_size, sequence_length)torch.LongTensor可選) — 每個輸入序列 token 在位置嵌入中的位置索引。選擇範圍在 [0, config.n_positions - 1]

    什麼是位置 ID?

  • past_key_values (~cache_utils.Cache, 可選) — 預先計算的隱藏狀態(自注意力塊和交叉注意力塊中的鍵和值),可用於加速順序解碼。這通常包括模型在解碼上一階段返回的 past_key_values,當 use_cache=Trueconfig.use_cache=True 時。

    允許兩種格式:

    • 一個 Cache 例項,請參閱我們的 kv 快取指南
    • 長度為 config.n_layerstuple(torch.FloatTensor) 元組,每個元組包含 2 個形狀為 (batch_size, num_heads, sequence_length, embed_size_per_head) 的張量)。這也被稱為傳統快取格式。

    模型將輸出與輸入相同的快取格式。如果沒有傳入 past_key_values,將返回傳統快取格式。

    如果使用了 past_key_values,使用者可以選擇只輸入最後一個 input_ids(那些沒有將其過去的鍵值狀態提供給此模型的 token),形狀為 (batch_size, 1),而不是所有 input_ids,形狀為 (batch_size, sequence_length)

  • inputs_embeds (形狀為 (batch_size, sequence_length, hidden_size)torch.FloatTensor可選) — 可選地,除了傳遞 input_ids,您也可以選擇直接傳遞嵌入表示。如果您想對如何將 input_ids 索引轉換為相關向量有比模型內部嵌入查詢矩陣更多的控制,這將很有用。
  • labels (形狀為 (batch_size,)torch.LongTensor可選) — 用於計算序列分類/迴歸損失的標籤。索引應在 [0, ..., config.num_labels - 1] 範圍內。如果 config.num_labels == 1,則計算迴歸損失(均方誤差損失),如果 config.num_labels > 1,則計算分類損失(交叉熵)。
  • use_cache (bool, 可選) — 如果設定為 True,則返回 past_key_values 鍵值狀態,可用於加速解碼(請參閱 past_key_values)。
  • output_attentions (bool, 可選) — 是否返回所有注意力層的注意力張量。更多詳細資訊請參閱返回張量中的 attentions
  • output_hidden_states (bool, 可選) — 是否返回所有層的隱藏狀態。更多詳細資訊請參閱返回張量中的 hidden_states

返回

transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

一個 transformers.modeling_outputs.TokenClassifierOutput 或一個 torch.FloatTensor 元組(如果傳遞 return_dict=False 或當 config.return_dict=False 時),包含根據配置(Gemma2Config)和輸入而變化的各種元素。

  • loss (形狀為 (1,)torch.FloatTensor可選,當提供 labels 時返回) — 分類損失。

  • logits (形狀為 (batch_size, sequence_length, config.num_labels)torch.FloatTensor) — 分類分數(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor)可選,當傳入 output_hidden_states=True 或當 config.output_hidden_states=True 時返回) — torch.FloatTensor 元組(如果模型有嵌入層,則一個用於嵌入輸出,加上每個層的一個輸出),形狀為 (batch_size, sequence_length, hidden_size)

    模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。

  • attentions (tuple(torch.FloatTensor)可選,當傳入 output_attentions=True 或當 config.output_attentions=True 時返回) — torch.FloatTensor 元組(每個層一個),形狀為 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

Gemma2ForTokenClassification 的 forward 方法,重寫了 __call__ 特殊方法。

雖然前向傳播的配方需要在該函式中定義,但之後應呼叫 Module 例項而不是此函式,因為前者負責執行預處理和後處理步驟,而後者則默默地忽略它們。

示例

>>> from transformers import AutoTokenizer, Gemma2ForTokenClassification
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("google/gemma2-7b")
>>> model = Gemma2ForTokenClassification.from_pretrained("google/gemma2-7b")

>>> inputs = tokenizer(
...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_token_class_ids = logits.argmax(-1)

>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> predicted_tokens_classes
...

>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...
< > 在 GitHub 上更新

© . This site is unofficial and not affiliated with Hugging Face, Inc.