Transformers 文件
CamemBERT
並獲得增強的文件體驗
開始使用
CamemBERT
概述
CamemBERT 模型由 Louis Martin、Benjamin Muller、Pedro Javier Ortiz Suárez、Yoann Dupont、Laurent Romary、Éric Villemonte de la Clergerie、Djamé Seddah 和 Benoît Sagot 在論文 CamemBERT: a Tasty French Language Model 中提出。它基於 Facebook 於 2019 年釋出的 RoBERTa 模型。這是一個在 138GB 法語文字上訓練的模型。
論文摘要如下:
預訓練語言模型目前在自然語言處理中無處不在。儘管它們取得了成功,但大多數可用模型要麼是在英語資料上訓練的,要麼是在多種語言資料的拼接上訓練的。這使得這些模型在除英語之外的所有語言中的實際應用非常有限。為了解決法語的這個問題,我們釋出了 CamemBERT,這是一個法語版本的雙向 Transformer 編碼器(BERT)。我們在多個下游任務中衡量了 CamemBERT 相對於多語言模型的效能,這些任務包括詞性標註、依存句法分析、命名實體識別和自然語言推理。CamemBERT 在大多數考慮的任務中都提升了現有技術水平。我們釋出 CamemBERT 的預訓練模型,希望能夠促進法語自然語言處理的研究和下游應用。
此模型由 ALMAnaCH 團隊 (Inria) 貢獻。原始程式碼可以在 這裡 找到。
此實現與 RoBERTa 相同。有關用法示例以及輸入和輸出的相關資訊,請參閱 RoBERTa 文件。
資源
CamembertConfig
class transformers.CamembertConfig
< 源 >( vocab_size = 30522 hidden_size = 768 num_hidden_layers = 12 num_attention_heads = 12 intermediate_size = 3072 hidden_act = 'gelu' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 512 type_vocab_size = 2 initializer_range = 0.02 layer_norm_eps = 1e-12 pad_token_id = 1 bos_token_id = 0 eos_token_id = 2 position_embedding_type = 'absolute' use_cache = True classifier_dropout = None **kwargs )
引數
- vocab_size (
int
, 可選, 預設為 30522) — BERT 模型的詞彙表大小。定義了在呼叫 CamembertModel 或 TFCamembertModel 時,可以透過inputs_ids
表示的不同詞元(token)的數量。 - hidden_size (
int
, 可選, 預設為 768) — 編碼器層和池化層的維度。 - num_hidden_layers (
int
, 可選, 預設為 12) — Transformer 編碼器中的隱藏層數量。 - num_attention_heads (
int
, 可選, 預設為 12) — Transformer 編碼器中每個注意力層的注意力頭數量。 - intermediate_size (
int
, 可選, 預設為 3072) — Transformer 編碼器中“中間層”(通常稱為前饋層)的維度。 - hidden_act (
str
或Callable
, 可選, 預設為"gelu"
) — 編碼器和池化層中的非線性啟用函式(函式或字串)。如果是字串,支援"gelu"
、"relu"
、"silu"
和"gelu_new"
。 - hidden_dropout_prob (
float
, 可選, 預設為 0.1) — 嵌入層、編碼器和池化層中所有全連線層的丟棄機率。 - attention_probs_dropout_prob (
float
, 可選, 預設為 0.1) — 注意力機率的丟棄率。 - max_position_embeddings (
int
, 可選, 預設為 512) — 此模型可能使用的最大序列長度。通常將其設定為一個較大的值以備不時之需(例如,512、1024 或 2048)。 - type_vocab_size (
int
, 可選, 預設為 2) —token_type_ids
的詞彙表大小,在呼叫 CamembertModel 或 TFCamembertModel 時傳入。 - initializer_range (
float
, 可選, 預設為 0.02) — 用於初始化所有權重矩陣的截斷正態分佈初始化器的標準差。 - layer_norm_eps (
float
, 可選, 預設為 1e-12) — 層歸一化層使用的 epsilon 值。 - position_embedding_type (
str
, 可選, 預設為"absolute"
) — 位置嵌入的型別。從"absolute"
、"relative_key"
、"relative_key_query"
中選擇一個。對於位置嵌入,請使用"absolute"
。有關"relative_key"
的更多資訊,請參閱 Self-Attention with Relative Position Representations (Shaw et al.)。有關"relative_key_query"
的更多資訊,請參閱 Improve Transformer Models with Better Relative Position Embeddings (Huang et al.) 中的 Method 4。 - is_decoder (
bool
, 可選, 預設為False
) — 模型是否用作解碼器。如果為False
,則模型用作編碼器。 - use_cache (
bool
, 可選, 預設為True
) — 模型是否應返回最後的鍵/值注意力(並非所有模型都使用)。僅在config.is_decoder=True
時相關。 - classifier_dropout (
float
, 可選) — 分類頭的丟棄率。
這是一個配置類,用於儲存 CamembertModel 或 TFCamembertModel 的配置。它用於根據指定的引數例項化 Camembert 模型,定義模型架構。使用預設值例項化配置將產生與 Camembert almanach/camembert-base 架構類似的配置。
配置物件繼承自 PretrainedConfig,可用於控制模型輸出。有關更多資訊,請閱讀 PretrainedConfig 的文件。
示例
>>> from transformers import CamembertConfig, CamembertModel
>>> # Initializing a Camembert almanach/camembert-base style configuration
>>> configuration = CamembertConfig()
>>> # Initializing a model (with random weights) from the almanach/camembert-base style configuration
>>> model = CamembertModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
CamembertTokenizer
class transformers.CamembertTokenizer
< source >( vocab_file bos_token = '<s>' eos_token = '</s>' sep_token = '</s>' cls_token = '<s>' unk_token = '<unk>' pad_token = '<pad>' mask_token = '<mask>' additional_special_tokens = ['<s>NOTUSED', '</s>NOTUSED', '<unk>NOTUSED'] sp_model_kwargs: typing.Optional[dict[str, typing.Any]] = None **kwargs )
引數
- vocab_file (
str
) — SentencePiece 檔案(通常副檔名為 .spm),其中包含例項化分詞器所需的詞彙表。 - bos_token (
str
, 可選, 預設為"<s>"
) — 預訓練期間使用的序列開始標記。可用作序列分類器標記。當使用特殊標記構建序列時,這不是用於序列開始的標記。實際使用的標記是
cls_token
。 - eos_token (
str
, 可選, 預設為"</s>"
) — 序列結束標記。當使用特殊標記構建序列時,這不是用於序列結束的標記。實際使用的標記是
sep_token
。 - sep_token (
str
, 可選, 預設為"</s>"
) — 分隔符標記,用於從多個序列構建一個序列時使用,例如用於序列分類的兩個序列,或用於問答任務的文字和問題。它也用作使用特殊標記構建的序列的最後一個標記。 - cls_token (
str
, 可選, 預設為"<s>"
) — 分類器標記,用於序列分類(對整個序列進行分類,而不是逐個標記分類)。當使用特殊標記構建序列時,它是序列的第一個標記。 - unk_token (
str
, 可選, 預設為"<unk>"
) — 未知標記。不在詞彙表中的標記無法轉換為 ID,將被設定為此標記。 - pad_token (
str
, 可選, 預設為"<pad>"
) — 用於填充的標記,例如在批處理不同長度的序列時使用。 - mask_token (
str
, 可選, 預設為"<mask>"
) — 用於掩蓋值的標記。這是使用掩碼語言建模訓練此模型時使用的標記。這是模型將嘗試預測的標記。 - additional_special_tokens (
list[str]
, 可選, 預設為['<s>NOTUSED', '</s>NOTUSED', '<unk>NOTUSED']
) — 分詞器使用的附加特殊標記。 - sp_model_kwargs (
dict
, 可選) — 將傳遞給SentencePieceProcessor.__init__()
方法。SentencePiece 的 Python 包裝器 可用於設定以下內容(除其他外):-
enable_sampling
: 啟用子詞正則化。 -
nbest_size
: Unigram 的取樣引數。對於 BPE-Dropout 無效。nbest_size = {0,1}
: 不執行取樣。nbest_size > 1
: 從 nbest_size 個結果中取樣。nbest_size < 0
: 假設 nbest_size 是無限的,並使用前向過濾-後向取樣演算法從所有假設(格)中取樣。
-
alpha
: Unigram 取樣的平滑引數,以及 BPE-dropout 的合併操作的丟棄機率。
-
- sp_model (
SentencePieceProcessor
) — 用於每次轉換(字串、標記和 ID)的 SentencePiece 處理器。
改編自 RobertaTokenizer 和 XLNetTokenizer。構建一個 CamemBERT 分詞器。基於 SentencePiece。
該分詞器繼承自 PreTrainedTokenizer,其中包含大多數主要方法。使用者應參考此超類以獲取有關這些方法的更多資訊。
build_inputs_with_special_tokens
< source >( token_ids_0: list token_ids_1: typing.Optional[list[int]] = None ) → list[int]
透過連線和新增特殊標記,從一個序列或一對序列為序列分類任務構建模型輸入。一個 CamemBERT 序列具有以下格式
- 單個序列:
<s> X </s>
- 序列對:
<s> A </s></s> B </s>
get_special_tokens_mask
< source >( token_ids_0: list token_ids_1: typing.Optional[list[int]] = None already_has_special_tokens: bool = False ) → list[int]
從沒有新增特殊標記的標記列表中檢索序列ID。此方法在使用分詞器prepare_for_model
方法新增特殊標記時呼叫。
create_token_type_ids_from_sequences
< source >( token_ids_0: list token_ids_1: typing.Optional[list[int]] = None ) → list[int]
從傳入的兩個序列中建立一個掩碼,用於序列對分類任務。CamemBERT 和 RoBERTa 一樣,不使用標記型別 ID,因此返回一個全零列表。
CamembertTokenizerFast
class transformers.CamembertTokenizerFast
< source >( vocab_file = None tokenizer_file = None bos_token = '<s>' eos_token = '</s>' sep_token = '</s>' cls_token = '<s>' unk_token = '<unk>' pad_token = '<pad>' mask_token = '<mask>' additional_special_tokens = ['<s>NOTUSED', '</s>NOTUSED', '<unk>NOTUSED'] **kwargs )
引數
- vocab_file (
str
) — SentencePiece 檔案(通常副檔名為 .spm),其中包含例項化分詞器所需的詞彙表。 - bos_token (
str
, 可選, 預設為"<s>"
) — 預訓練期間使用的序列開始標記。可用作序列分類器標記。當使用特殊標記構建序列時,這不是用於序列開始的標記。實際使用的標記是
cls_token
。 - eos_token (
str
, 可選, 預設為"</s>"
) — 序列結束標記。當使用特殊標記構建序列時,這不是用於序列結束的標記。實際使用的標記是
sep_token
。 - sep_token (
str
, 可選, 預設為"</s>"
) — 分隔符標記,用於從多個序列構建一個序列時使用,例如用於序列分類的兩個序列,或用於問答任務的文字和問題。它也用作使用特殊標記構建的序列的最後一個標記。 - cls_token (
str
, 可選, 預設為"<s>"
) — 分類器標記,用於序列分類(對整個序列進行分類,而不是逐個標記分類)。當使用特殊標記構建序列時,它是序列的第一個標記。 - unk_token (
str
, 可選, 預設為"<unk>"
) — 未知標記。不在詞彙表中的標記無法轉換為 ID,將被設定為此標記。 - pad_token (
str
, 可選, 預設為"<pad>"
) — 用於填充的標記,例如在批處理不同長度的序列時使用。 - mask_token (
str
, 可選, 預設為"<mask>"
) — 用於掩蓋值的標記。這是使用掩碼語言建模訓練此模型時使用的標記。這是模型將嘗試預測的標記。 - additional_special_tokens (
list[str]
, 可選, 預設為["<s>NOTUSED", "</s>NOTUSED"]
) — 分詞器使用的附加特殊標記。
構建一個“快速”的 CamemBERT 分詞器(由 HuggingFace 的 tokenizers 庫支援)。改編自 RobertaTokenizer 和 XLNetTokenizer。基於 BPE。
該分詞器繼承自 PreTrainedTokenizerFast,其中包含大多數主要方法。使用者應參考此超類以獲取有關這些方法的更多資訊。
build_inputs_with_special_tokens
< source >( token_ids_0: list token_ids_1: typing.Optional[list[int]] = None ) → list[int]
透過連線和新增特殊標記,從一個序列或一對序列為序列分類任務構建模型輸入。一個 CamemBERT 序列具有以下格式
- 單個序列:
<s> X </s>
- 序列對:
<s> A </s></s> B </s>
create_token_type_ids_from_sequences
< source >( token_ids_0: list token_ids_1: typing.Optional[list[int]] = None ) → list[int]
從傳入的兩個序列中建立一個掩碼,用於序列對分類任務。CamemBERT 和 RoBERTa 一樣,不使用標記型別 ID,因此返回一個全零列表。
CamembertModel
class transformers.CamembertModel
< source >( config add_pooling_layer = True )
引數
- config (CamembertModel) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法以載入模型權重。
- add_pooling_layer (
bool
, 可選, 預設為True
) — 是否新增池化層。
基礎的 Camembert 模型,輸出原始的隱藏狀態,頂部沒有任何特定的頭部。
此模型繼承自 PreTrainedModel。請查閱超類文件以瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭部等)。
此模型也是 PyTorch torch.nn.Module 的子類。可以像常規 PyTorch 模組一樣使用它,並參考 PyTorch 文件瞭解所有與常規用法和行為相關的事項。
forward
< source >( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None encoder_hidden_states: typing.Optional[torch.Tensor] = None encoder_attention_mask: typing.Optional[torch.Tensor] = None past_key_values: typing.Optional[list[torch.FloatTensor]] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions or tuple(torch.FloatTensor)
引數
- input_ids (
torch.Tensor
,形狀為(batch_size, sequence_length)
,可選) — 詞彙表中輸入序列標記的索引。預設情況下,填充將被忽略。可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形狀為(batch_size, sequence_length)
,可選) — 用於避免對填充標記索引執行注意力的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示標記未被掩蓋,
- 0 表示標記被掩蓋。
- token_type_ids (
torch.Tensor
,形狀為(batch_size, sequence_length)
,可選) — 分段標記索引,用於指示輸入的第一部分和第二部分。索引在[0, 1]
中選擇:- 0 對應於 句子 A 的標記,
- 1 對應於 句子 B 的標記。
- position_ids (
torch.Tensor
,形狀為(batch_size, sequence_length)
,可選) — 每個輸入序列標記在位置嵌入中的位置索引。在[0, config.n_positions - 1]
範圍內選擇。 - head_mask (
torch.Tensor
,形狀為(num_heads,)
或(num_layers, num_heads)
,可選) — 用於置零自注意力模組中選定頭部的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示頭部未被掩蓋,
- 0 表示頭部被掩蓋。
- inputs_embeds (
torch.Tensor
,形狀為(batch_size, sequence_length, hidden_size)
,可選) — 可選地,你可以選擇直接傳遞嵌入表示,而不是傳遞input_ids
。如果你希望比模型的內部嵌入查詢矩陣更多地控制如何將input_ids
索引轉換為關聯向量,這會很有用。 - encoder_hidden_states (
torch.Tensor
,形狀為(batch_size, sequence_length, hidden_size)
,可選) — 編碼器最後一層輸出的隱藏狀態序列。如果模型被配置為解碼器,則在交叉注意力中使用。 - encoder_attention_mask (
torch.Tensor
,形狀為(batch_size, sequence_length)
,可選) — 用於避免在編碼器輸入的填充標記索引上執行注意力操作的掩碼。如果模型被配置為解碼器,該掩碼會用於交叉注意力。掩碼值選自[0, 1]
:- 1 表示標記未被掩碼,
- 0 表示標記已被掩碼。
- past_key_values (
list[torch.FloatTensor]
,可選) — 預先計算的隱藏狀態(自注意力和交叉注意力塊中的鍵和值),可用於加速序列解碼。這通常由模型在解碼的先前階段返回的past_key_values
組成,當use_cache=True
或config.use_cache=True
時。允許兩種格式:
- 一個 Cache 例項,請參閱我們的 kv 快取指南;
- 一個長度為
config.n_layers
的tuple(torch.FloatTensor)
元組,每個元組包含 2 個形狀為(batch_size, num_heads, sequence_length, embed_size_per_head)
的張量。這也稱為舊版快取格式。
模型將輸出與輸入相同的快取格式。如果沒有傳遞
past_key_values
,將返回舊版快取格式。如果使用
past_key_values
,使用者可以選擇只輸入最後的input_ids
(那些沒有為其提供過去鍵值狀態的 ID),形狀為(batch_size, 1)
,而不是所有形狀為(batch_size, sequence_length)
的input_ids
。 - use_cache (
bool
,可選) — 如果設定為True
,將返回past_key_values
鍵值狀態,可用於加速解碼(請參閱past_key_values
)。 - output_attentions (
bool
,可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的attentions
。 - output_hidden_states (
bool
,可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的hidden_states
。 - return_dict (
bool
,可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。
返回
transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions 或 tuple(torch.FloatTensor)
一個 transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions 或一個 torch.FloatTensor
的元組(如果傳遞了 return_dict=False
或 config.return_dict=False
),根據配置(CamembertConfig)和輸入包含不同的元素。
-
last_hidden_state (
torch.FloatTensor
, 形狀為(batch_size, sequence_length, hidden_size)
) — 模型最後一層輸出的隱藏狀態序列。 -
pooler_output (
torch.FloatTensor
,形狀為(batch_size, hidden_size)
) — 序列中第一個標記(分類標記)的最後一層隱藏狀態,經過用於輔助預訓練任務的層進一步處理。例如,對於 BERT 系列模型,這將返回分類標記經過線性層和 tanh 啟用函式處理後的結果。線性層的權重是在預訓練期間根據下一句預測(分類)目標進行訓練的。 -
hidden_states (
tuple(torch.FloatTensor)
,可選,當傳遞output_hidden_states=True
或config.output_hidden_states=True
時返回) —torch.FloatTensor
的元組(如果模型有嵌入層,則一個為嵌入層的輸出,外加每個層的輸出),形狀為(batch_size, sequence_length, hidden_size)
。模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。
-
attentions (
tuple(torch.FloatTensor)
,可選,當傳遞output_attentions=True
或config.output_attentions=True
時返回) —torch.FloatTensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
-
cross_attentions (
tuple(torch.FloatTensor)
,可選,當傳遞output_attentions=True
和config.add_cross_attention=True
或config.output_attentions=True
時返回) —torch.FloatTensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。解碼器交叉注意力層的注意力權重,在注意力 softmax 之後,用於計算交叉注意力頭中的加權平均。
-
past_key_values (
Cache
,可選,當傳遞use_cache=True
或config.use_cache=True
時返回) — 這是一個 Cache 例項。更多詳細資訊,請參閱我們的 kv 快取指南。包含預先計算的隱藏狀態(自注意力塊中的鍵和值,如果
config.is_encoder_decoder=True
,則可選地包含交叉注意力塊中的鍵和值),可用於(請參閱past_key_values
輸入)加速序列解碼。
CamembertModel 的前向方法會覆蓋 __call__
特殊方法。
儘管前向傳遞的流程需要在此函式內定義,但之後應呼叫 Module
例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。
CamembertForCausalLM
class transformers.CamembertForCausalLM
< source >( config )
引數
- config (CamembertForCausalLM) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。
帶有 language modeling
頭的 CamemBERT 模型,用於因果語言模型(CLM)微調。
此模型繼承自 PreTrainedModel。請查閱超類文件以瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭部等)。
此模型也是 PyTorch torch.nn.Module 的子類。可以像常規 PyTorch 模組一樣使用它,並參考 PyTorch 文件瞭解所有與常規用法和行為相關的事項。
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None encoder_hidden_states: typing.Optional[torch.FloatTensor] = None encoder_attention_mask: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[tuple[tuple[torch.FloatTensor]]] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None **kwargs ) → transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或 tuple(torch.FloatTensor)
引數
- input_ids (
torch.LongTensor
,形狀為(batch_size, sequence_length)
,可選) — 詞彙表中輸入序列標記的索引。預設情況下,填充將被忽略。可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
,形狀為(batch_size, sequence_length)
,可選) — 用於避免在填充標記索引上執行注意力操作的掩碼。掩碼值選自[0, 1]
:- 1 表示標記未被掩碼,
- 0 表示標記已被掩碼。
- token_type_ids (
torch.LongTensor
,形狀為(batch_size, sequence_length)
,可選) — 段標記索引,用於指示輸入的第一部分和第二部分。索引選自[0, 1]
:- 0 對應於*句子 A*標記,
- 1 對應於*句子 B*標記。僅當模型初始化時
type_vocab_size
引數的值= 2 時才能使用此引數。此張量中的所有值應始終 < type_vocab_size。
- position_ids (
torch.LongTensor
,形狀為(batch_size, sequence_length)
,可選) — 每個輸入序列標記在位置嵌入中的位置索引。選自範圍[0, config.n_positions - 1]
。 - head_mask (
torch.FloatTensor
,形狀為(num_heads,)
或(num_layers, num_heads)
,可選) — 用於置零自注意力模組中選定頭的掩碼。掩碼值選自[0, 1]
:- 1 表示頭未被掩碼,
- 0 表示頭已被掩碼。
- inputs_embeds (
torch.FloatTensor
,形狀為(batch_size, sequence_length, hidden_size)
,可選) — 可選地,你可以選擇直接傳遞嵌入表示,而不是傳遞input_ids
。如果你想比模型內部的嵌入查詢矩陣更能控制如何將input_ids
索引轉換為相關向量,這將非常有用。 - encoder_hidden_states (
torch.FloatTensor
,形狀為(batch_size, sequence_length, hidden_size)
,可選) — 編碼器最後一層輸出的隱藏狀態序列。如果模型被配置為解碼器,則用於交叉注意力。 - encoder_attention_mask (
torch.FloatTensor
,形狀為(batch_size, sequence_length)
,可選) — 用於避免在編碼器輸入的填充標記索引上執行注意力操作的掩碼。如果模型被配置為解碼器,該掩碼會用於交叉注意力。掩碼值選自[0, 1]
:- 1 表示標記未被掩碼,
- 0 表示標記已被掩碼。
- labels (
torch.LongTensor
,形狀為(batch_size, sequence_length)
,可選) — 用於計算從左到右語言模型損失(下一個詞預測)的標籤。索引應在[-100, 0, ..., config.vocab_size]
範圍內(請參閱input_ids
文件字串)。索引設定為-100
的標記將被忽略(掩碼),損失僅針對標籤在[0, ..., config.vocab_size]
範圍內的標記進行計算。 - past_key_values (
tuple[tuple[torch.FloatTensor]]
,可選) — 預先計算的隱藏狀態(自注意力和交叉注意力塊中的鍵和值),可用於加速序列解碼。這通常由模型在解碼的先前階段返回的past_key_values
組成,當use_cache=True
或config.use_cache=True
時。允許兩種格式:
- 一個 Cache 例項,請參閱我們的 kv 快取指南;
- 一個長度為
config.n_layers
的tuple(torch.FloatTensor)
元組,每個元組包含 2 個形狀為(batch_size, num_heads, sequence_length, embed_size_per_head)
的張量。這也稱為舊版快取格式。
模型將輸出與輸入相同的快取格式。如果沒有傳遞
past_key_values
,將返回舊版快取格式。如果使用
past_key_values
,使用者可以選擇只輸入最後的input_ids
(那些沒有為其提供過去鍵值狀態的 ID),形狀為(batch_size, 1)
,而不是所有形狀為(batch_size, sequence_length)
的input_ids
。 - use_cache (
bool
,可選) — 如果設定為True
,將返回past_key_values
鍵值狀態,可用於加速解碼(請參閱past_key_values
)。 - output_attentions (
bool
,可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的attentions
。 - output_hidden_states (
bool
,可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的hidden_states
。 - return_dict (
bool
,可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。
返回
transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或 tuple(torch.FloatTensor)
一個 transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或一個 torch.FloatTensor
的元組(如果傳遞了 return_dict=False
或 config.return_dict=False
),根據配置(CamembertConfig)和輸入包含不同的元素。
-
loss (
torch.FloatTensor
形狀為(1,)
,可選,當提供labels
時返回) — 語言建模損失(用於下一個 token 預測)。 -
logits (形狀為
(batch_size, sequence_length, config.vocab_size)
的torch.FloatTensor
) — 語言建模頭部的預測分數(SoftMax 之前的每個詞彙標記的分數)。 -
hidden_states (
tuple(torch.FloatTensor)
,可選,當傳遞output_hidden_states=True
或config.output_hidden_states=True
時返回) —torch.FloatTensor
的元組(如果模型有嵌入層,則一個為嵌入層的輸出,外加每個層的輸出),形狀為(batch_size, sequence_length, hidden_size)
。模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。
-
attentions (
tuple(torch.FloatTensor)
,可選,當傳遞output_attentions=True
或config.output_attentions=True
時返回) —torch.FloatTensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
-
cross_attentions (
tuple(torch.FloatTensor)
,可選,當傳遞output_attentions=True
或config.output_attentions=True
時返回) —torch.FloatTensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 後的交叉注意力權重,用於計算交叉注意力頭中的加權平均。
-
past_key_values (
Cache
,可選,當傳遞use_cache=True
或config.use_cache=True
時返回) — 這是一個 Cache 例項。更多詳細資訊,請參閱我們的 kv 快取指南。包含預先計算的隱藏狀態(注意力塊中的鍵和值),可用於(參見
past_key_values
輸入)加速順序解碼。
CamembertForCausalLM 的前向方法會覆蓋 __call__
特殊方法。
儘管前向傳遞的流程需要在此函式內定義,但之後應呼叫 Module
例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。
示例
>>> from transformers import AutoTokenizer, CamembertForCausalLM, AutoConfig
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("almanach/camembert-base")
>>> config = AutoConfig.from_pretrained("almanach/camembert-base")
>>> config.is_decoder = True
>>> model = CamembertForCausalLM.from_pretrained("almanach/camembert-base", config=config)
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.logits
CamembertForMaskedLM
class transformers.CamembertForMaskedLM
< source >( config )
引數
- config (CamembertForMaskedLM) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。
帶有 language modeling
頭的 Camembert 模型。”
此模型繼承自 PreTrainedModel。請查閱超類文件以瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭部等)。
此模型也是 PyTorch torch.nn.Module 的子類。可以像常規 PyTorch 模組一樣使用它,並參考 PyTorch 文件瞭解所有與常規用法和行為相關的事項。
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None encoder_hidden_states: typing.Optional[torch.FloatTensor] = None encoder_attention_mask: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.MaskedLMOutput 或 tuple(torch.FloatTensor)
引數
- input_ids (
torch.LongTensor
,形狀為(batch_size, sequence_length)
,可選) — 詞彙表中輸入序列標記的索引。預設情況下,填充將被忽略。可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
,形狀為(batch_size, sequence_length)
,可選) — 用於避免在填充標記索引上執行注意力操作的掩碼。掩碼值選自[0, 1]
:- 1 表示標記未被掩碼,
- 0 表示標記已被掩碼。
- token_type_ids (
torch.LongTensor
,形狀為(batch_size, sequence_length)
,可選) — 段標記索引,用於指示輸入的第一部分和第二部分。索引選自[0, 1]
:- 0 對應於*句子 A*標記,
- 1 對應於*句子 B*標記。僅當模型初始化時
type_vocab_size
引數的值= 2 時才能使用此引數。此張量中的所有值應始終 < type_vocab_size。
- position_ids (
torch.LongTensor
,形狀為(batch_size, sequence_length)
,可選) — 每個輸入序列標記在位置嵌入中的位置索引。選自範圍[0, config.n_positions - 1]
。 - head_mask (
torch.FloatTensor
,形狀為(num_heads,)
或(num_layers, num_heads)
,可選) — 用於置零自注意力模組中選定頭的掩碼。掩碼值選自[0, 1]
:- 1 表示頭未被掩碼,
- 0 表示頭已被掩碼。
- inputs_embeds (
torch.FloatTensor
,形狀為(batch_size, sequence_length, hidden_size)
,可選) — 可選地,你可以選擇直接傳遞嵌入表示,而不是傳遞input_ids
。如果你想比模型內部的嵌入查詢矩陣更能控制如何將input_ids
索引轉換為相關向量,這將非常有用。 - encoder_hidden_states (
torch.FloatTensor
,形狀為(batch_size, sequence_length, hidden_size)
,可選) — 編碼器最後一層輸出的隱藏狀態序列。如果模型被配置為解碼器,則用於交叉注意力。 - encoder_attention_mask (
torch.FloatTensor
,形狀為(batch_size, sequence_length)
,可選) — 用於避免在編碼器輸入的填充標記索引上執行注意力操作的掩碼。如果模型被配置為解碼器,該掩碼會用於交叉注意力。掩碼值選自[0, 1]
:- 1 表示標記未被掩碼,
- 0 表示標記已被掩碼。
- labels (
torch.LongTensor
,形狀為(batch_size, sequence_length)
,可選) — 用於計算掩碼語言模型損失的標籤。索引應在[-100, 0, ..., config.vocab_size]
範圍內(請參閱input_ids
文件字串)。索引設定為-100
的標記將被忽略(掩碼),損失僅針對標籤在[0, ..., config.vocab_size]
範圍內的標記進行計算。 - output_attentions (
bool
,可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的attentions
。 - output_hidden_states (
bool
,可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的hidden_states
。 - return_dict (
bool
, 可選) — 是否返回 ModelOutput 而不是普通元組。
返回
transformers.modeling_outputs.MaskedLMOutput 或 tuple(torch.FloatTensor)
一個 transformers.modeling_outputs.MaskedLMOutput 或一個 torch.FloatTensor
的元組(如果傳遞了 return_dict=False
或 config.return_dict=False
),包含根據配置 (CamembertConfig) 和輸入而變化的各種元素。
-
loss (形狀為
(1,)
的torch.FloatTensor
,可選,當提供labels
時返回) — 掩碼語言建模 (MLM) 損失。 -
logits (形狀為
(batch_size, sequence_length, config.vocab_size)
的torch.FloatTensor
) — 語言建模頭部的預測分數(SoftMax 之前的每個詞彙標記的分數)。 -
hidden_states (
tuple(torch.FloatTensor)
,可選,當傳遞output_hidden_states=True
或config.output_hidden_states=True
時返回) —torch.FloatTensor
的元組(如果模型有嵌入層,則一個為嵌入層的輸出,外加每個層的輸出),形狀為(batch_size, sequence_length, hidden_size)
。模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。
-
attentions (
tuple(torch.FloatTensor)
,可選,當傳遞output_attentions=True
或config.output_attentions=True
時返回) —torch.FloatTensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
CamembertForMaskedLM 的 forward 方法,重寫了 __call__
特殊方法。
儘管前向傳遞的流程需要在此函式內定義,但之後應呼叫 Module
例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。
示例
>>> from transformers import AutoTokenizer, CamembertForMaskedLM
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("almanach/camembert-base")
>>> model = CamembertForMaskedLM.from_pretrained("almanach/camembert-base")
>>> inputs = tokenizer("The capital of France is <mask>.", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> # retrieve index of <mask>
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]
>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
>>> tokenizer.decode(predicted_token_id)
...
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
>>> # mask labels of non-<mask> tokens
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)
>>> outputs = model(**inputs, labels=labels)
>>> round(outputs.loss.item(), 2)
...
CamembertForSequenceClassification
class transformers.CamembertForSequenceClassification
< source >( config )
引數
- config (CamembertForSequenceClassification) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。
CamemBERT 模型,頂部帶有一個序列分類/迴歸頭(在池化輸出之上是一個線性層),例如用於 GLUE 任務。
此模型繼承自 PreTrainedModel。請查閱超類文件以瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭部等)。
此模型也是 PyTorch torch.nn.Module 的子類。可以像常規 PyTorch 模組一樣使用它,並參考 PyTorch 文件瞭解所有與常規用法和行為相關的事項。
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.SequenceClassifierOutput 或 tuple(torch.FloatTensor)
引數
- input_ids (
torch.LongTensor
,形狀為(batch_size, sequence_length)
, 可選) — 詞彙表中輸入序列標記的索引。預設情況下,填充將被忽略。可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
,形狀為(batch_size, sequence_length)
, 可選) — 用於避免在填充標記索引上執行注意力的掩碼。掩碼值選自[0, 1]
:- 1 表示標記未被遮蓋,
- 0 表示標記被遮蓋。
- token_type_ids (
torch.LongTensor
,形狀為(batch_size, sequence_length)
, 可選) — 用於指示輸入的第一部分和第二部分的片段標記索引。索引選自[0, 1]
:- 0 對應於句子 A 的標記,
- 1 對應於句子 B 的標記。此引數僅在模型使用值為
type_vocab_size
的引數初始化時才能使用= 2。此張量中的所有值應始終 < type_vocab_size。
- position_ids (
torch.LongTensor
,形狀為(batch_size, sequence_length)
, 可選) — 位置嵌入中每個輸入序列標記的位置索引。選自範圍[0, config.n_positions - 1]
。 - head_mask (
torch.FloatTensor
,形狀為(num_heads,)
或(num_layers, num_heads)
, 可選) — 用於使自注意力模組的選定頭無效的掩碼。掩碼值選自[0, 1]
:- 1 表示頭未被遮蓋,
- 0 表示頭被遮蓋。
- inputs_embeds (
torch.FloatTensor
,形狀為(batch_size, sequence_length, hidden_size)
, 可選) — 可選地,你可以選擇直接傳遞嵌入表示而不是input_ids
。如果你想比模型的內部嵌入查詢矩陣更多地控制如何將input_ids
索引轉換為關聯向量,這會很有用。 - labels (
torch.LongTensor
,形狀為(batch_size,)
, 可選) — 用於計算序列分類/迴歸損失的標籤。索引應在[0, ..., config.num_labels - 1]
範圍內。如果config.num_labels == 1
,則計算迴歸損失(均方損失),如果config.num_labels > 1
,則計算分類損失(交叉熵)。 - output_attentions (
bool
, 可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的attentions
。 - output_hidden_states (
bool
, 可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的hidden_states
。 - return_dict (
bool
, 可選) — 是否返回 ModelOutput 而不是普通元組。
返回
transformers.modeling_outputs.SequenceClassifierOutput 或 tuple(torch.FloatTensor)
一個 transformers.modeling_outputs.SequenceClassifierOutput 或一個 torch.FloatTensor
的元組(如果傳遞了 return_dict=False
或 config.return_dict=False
),包含根據配置 (CamembertConfig) 和輸入而變化的各種元素。
-
loss (形狀為
(1,)
的torch.FloatTensor
,可選,當提供labels
時返回) — 分類損失(如果 config.num_labels==1,則為迴歸損失)。 -
logits (形狀為
(batch_size, config.num_labels)
的torch.FloatTensor
) — 分類(如果 config.num_labels==1,則為迴歸)分數(SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
,可選,當傳遞output_hidden_states=True
或config.output_hidden_states=True
時返回) —torch.FloatTensor
的元組(如果模型有嵌入層,則一個為嵌入層的輸出,外加每個層的輸出),形狀為(batch_size, sequence_length, hidden_size)
。模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。
-
attentions (
tuple(torch.FloatTensor)
,可選,當傳遞output_attentions=True
或config.output_attentions=True
時返回) —torch.FloatTensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
CamembertForSequenceClassification 的 forward 方法,重寫了 __call__
特殊方法。
儘管前向傳遞的流程需要在此函式內定義,但之後應呼叫 Module
例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。
單標籤分類示例
>>> import torch
>>> from transformers import AutoTokenizer, CamembertForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("almanach/camembert-base")
>>> model = CamembertForSequenceClassification.from_pretrained("almanach/camembert-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_id = logits.argmax().item()
>>> model.config.id2label[predicted_class_id]
...
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = CamembertForSequenceClassification.from_pretrained("almanach/camembert-base", num_labels=num_labels)
>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...
多標籤分類示例
>>> import torch
>>> from transformers import AutoTokenizer, CamembertForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("almanach/camembert-base")
>>> model = CamembertForSequenceClassification.from_pretrained("almanach/camembert-base", problem_type="multi_label_classification")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = CamembertForSequenceClassification.from_pretrained(
... "almanach/camembert-base", num_labels=num_labels, problem_type="multi_label_classification"
... )
>>> labels = torch.sum(
... torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss
CamembertForMultipleChoice
class transformers.CamembertForMultipleChoice
< source >( config )
引數
- config (CamembertForMultipleChoice) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。
Camembert 模型,頂部帶有一個多項選擇分類頭(在池化輸出之上是一個線性層和一個 softmax),例如用於 RocStories/SWAG 任務。
此模型繼承自 PreTrainedModel。請查閱超類文件以瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭部等)。
此模型也是 PyTorch torch.nn.Module 的子類。可以像常規 PyTorch 模組一樣使用它,並參考 PyTorch 文件瞭解所有與常規用法和行為相關的事項。
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.MultipleChoiceModelOutput 或 tuple(torch.FloatTensor)
引數
- input_ids (
torch.LongTensor
,形狀為(batch_size, num_choices, sequence_length)
) — 詞彙表中輸入序列標記的索引。可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- token_type_ids (
torch.LongTensor
,形狀為(batch_size, num_choices, sequence_length)
, 可選) — 用於指示輸入的第一部分和第二部分的片段標記索引。索引選自[0, 1]
:- 0 對應於句子 A 的標記,
- 1 對應於句子 B 的標記。此引數僅在模型使用值為
type_vocab_size
的引數初始化時才能使用= 2。此張量中的所有值應始終 < type_vocab_size。
- attention_mask (
torch.FloatTensor
,形狀為(batch_size, sequence_length)
, 可選) — 用於避免在填充標記索引上執行注意力的掩碼。掩碼值選自[0, 1]
:- 1 表示標記未被遮蓋,
- 0 表示標記被遮蓋。
- labels (
torch.LongTensor
,形狀為(batch_size,)
, 可選) — 用於計算多項選擇分類損失的標籤。索引應在[0, ..., num_choices-1]
範圍內,其中num_choices
是輸入張量第二維的大小。(見上文的input_ids
) - position_ids (
torch.LongTensor
,形狀為(batch_size, num_choices, sequence_length)
, 可選) — 位置嵌入中每個輸入序列標記的位置索引。選自範圍[0, config.max_position_embeddings - 1]
。 - head_mask (
torch.FloatTensor
,形狀為(num_heads,)
或(num_layers, num_heads)
, 可選) — 用於使自注意力模組的選定頭無效的掩碼。掩碼值選自[0, 1]
:- 1 表示頭未被遮蓋,
- 0 表示頭被遮蓋。
- inputs_embeds (
torch.FloatTensor
,形狀為(batch_size, num_choices, sequence_length, hidden_size)
, 可選) — 可選地,你可以選擇直接傳遞嵌入表示而不是input_ids
。如果你想比模型的內部嵌入查詢矩陣更多地控制如何將input_ids
索引轉換為關聯向量,這會很有用。 - output_attentions (
bool
, 可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的attentions
。 - output_hidden_states (
bool
, 可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的hidden_states
。 - return_dict (
bool
, 可選) — 是否返回 ModelOutput 而不是普通元組。
返回
transformers.modeling_outputs.MultipleChoiceModelOutput 或 tuple(torch.FloatTensor)
一個 transformers.modeling_outputs.MultipleChoiceModelOutput 或一個 torch.FloatTensor
的元組(如果傳遞了 return_dict=False
或 config.return_dict=False
),包含根據配置 (CamembertConfig) 和輸入而變化的各種元素。
-
loss (形狀為 (1,) 的
torch.FloatTensor
,可選,當提供labels
時返回) — 分類損失。 -
logits (形狀為
(batch_size, num_choices)
的torch.FloatTensor
) — num_choices 是輸入張量的第二維大小。(請參閱上面的 input_ids)。分類分數(SoftMax 之前)。
-
hidden_states (
tuple(torch.FloatTensor)
,可選,當傳遞output_hidden_states=True
或config.output_hidden_states=True
時返回) —torch.FloatTensor
的元組(如果模型有嵌入層,則一個為嵌入層的輸出,外加每個層的輸出),形狀為(batch_size, sequence_length, hidden_size)
。模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。
-
attentions (
tuple(torch.FloatTensor)
,可選,當傳遞output_attentions=True
或config.output_attentions=True
時返回) —torch.FloatTensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
CamembertForMultipleChoice 的 forward 方法,重寫了 __call__
特殊方法。
儘管前向傳遞的流程需要在此函式內定義,但之後應呼叫 Module
例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。
示例
>>> from transformers import AutoTokenizer, CamembertForMultipleChoice
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("almanach/camembert-base")
>>> model = CamembertForMultipleChoice.from_pretrained("almanach/camembert-base")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0) # choice0 is correct (according to Wikipedia ;)), batch size 1
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels) # batch size is 1
>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits
CamembertForTokenClassification
class transformers.CamembertForTokenClassification
< source >( config )
引數
- config (CamembertForTokenClassification) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。
Camembert 模型,頂部帶有一個標記分類頭(在隱藏狀態輸出之上是一個線性層),例如用於命名實體識別 (NER) 任務。
此模型繼承自 PreTrainedModel。請查閱超類文件以瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭部等)。
此模型也是 PyTorch torch.nn.Module 的子類。可以像常規 PyTorch 模組一樣使用它,並參考 PyTorch 文件瞭解所有與常規用法和行為相關的事項。
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
引數
- input_ids (
torch.LongTensor
,形狀為(batch_size, sequence_length)
, 可選) — 詞彙表中輸入序列標記的索引。預設情況下,填充將被忽略。可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
,形狀為(batch_size, sequence_length)
, 可選) — 用於避免在填充標記索引上執行注意力的掩碼。掩碼值選自[0, 1]
:- 1 表示標記未被遮蓋,
- 0 表示標記被遮蓋。
- token_type_ids (
torch.LongTensor
,形狀為(batch_size, sequence_length)
, 可選) — 用於指示輸入的第一部分和第二部分的片段標記索引。索引選自[0, 1]
:- 0 對應於句子 A 的標記,
- 1 對應於句子 B 的標記。此引數僅在模型使用值為
type_vocab_size
的引數初始化時才能使用= 2。此張量中的所有值應始終 < type_vocab_size。
- position_ids (
torch.LongTensor
,形狀為(batch_size, sequence_length)
, 可選) — 位置嵌入中每個輸入序列標記的位置索引。選自範圍[0, config.n_positions - 1]
。 - head_mask (
torch.FloatTensor
,形狀為(num_heads,)
或(num_layers, num_heads)
, 可選) — 用於使自注意力模組的選定頭無效的掩碼。掩碼值選自[0, 1]
:- 1 表示頭未被遮蓋,
- 0 表示頭被遮蓋。
- inputs_embeds (
torch.FloatTensor
,形狀為(batch_size, sequence_length, hidden_size)
, 可選) — 可選地,你可以選擇直接傳遞嵌入表示而不是input_ids
。如果你想比模型的內部嵌入查詢矩陣更多地控制如何將input_ids
索引轉換為關聯向量,這會很有用。 - labels (
torch.LongTensor
,形狀為(batch_size, sequence_length)
, 可選) — 用於計算標記分類損失的標籤。索引應在[0, ..., config.num_labels - 1]
範圍內。 - output_attentions (
bool
, 可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的attentions
。 - output_hidden_states (
bool
, 可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的hidden_states
。 - return_dict (
bool
, 可選) — 是否返回 ModelOutput 而不是普通元組。
返回
transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
一個 transformers.modeling_outputs.TokenClassifierOutput 或一個 torch.FloatTensor
的元組(如果傳遞了 return_dict=False
或 config.return_dict=False
),包含根據配置 (CamembertConfig) 和輸入而變化的各種元素。
-
loss (形狀為
(1,)
的torch.FloatTensor
,可選,當提供labels
時返回) — 分類損失。 -
logits (形狀為
(batch_size, sequence_length, config.num_labels)
的torch.FloatTensor
) — 分類分數(SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
,可選,當傳遞output_hidden_states=True
或config.output_hidden_states=True
時返回) —torch.FloatTensor
的元組(如果模型有嵌入層,則一個為嵌入層的輸出,外加每個層的輸出),形狀為(batch_size, sequence_length, hidden_size)
。模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。
-
attentions (
tuple(torch.FloatTensor)
,可選,當傳遞output_attentions=True
或config.output_attentions=True
時返回) —torch.FloatTensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
CamembertForTokenClassification 的 forward 方法,重寫了 __call__
特殊方法。
儘管前向傳遞的流程需要在此函式內定義,但之後應呼叫 Module
例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。
示例
>>> from transformers import AutoTokenizer, CamembertForTokenClassification
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("almanach/camembert-base")
>>> model = CamembertForTokenClassification.from_pretrained("almanach/camembert-base")
>>> inputs = tokenizer(
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_token_class_ids = logits.argmax(-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> predicted_tokens_classes
...
>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...
CamembertForQuestionAnswering
class transformers.CamembertForQuestionAnswering
< source >( config )
引數
- config (CamembertForQuestionAnswering) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。
Camembert 模型,頂部帶有一個跨度分類頭,用於像 SQuAD 這樣的抽取式問答任務(在隱藏狀態輸出之上是一個線性層,用於計算 `span start logits` 和 `span end logits`)。
此模型繼承自 PreTrainedModel。請查閱超類文件以瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭部等)。
此模型也是 PyTorch torch.nn.Module 的子類。可以像常規 PyTorch 模組一樣使用它,並參考 PyTorch 文件瞭解所有與常規用法和行為相關的事項。
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None start_positions: typing.Optional[torch.LongTensor] = None end_positions: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.QuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)
引數
- input_ids (
torch.LongTensor
,形狀為(batch_size, sequence_length)
,可選) — 詞彙表中輸入序列標記的索引。預設情況下,填充將被忽略。可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
,形狀為(batch_size, sequence_length)
,可選) — 用於避免對填充標記索引執行注意力操作的掩碼。掩碼值選自[0, 1]
:- 1 表示標記未被遮蓋,
- 0 表示標記已被遮蓋。
- token_type_ids (
torch.LongTensor
,形狀為(batch_size, sequence_length)
,可選) — 段標記索引,用於指示輸入的第一部分和第二部分。索引選自[0,1]
:- 0 對應於 *A 句子* 的標記,
- 1 對應於 *B 句子* 的標記。此引數僅在模型使用值為
type_vocab_size
的引數初始化時才能使用= 2。此張量中的所有值應始終 < type_vocab_size。
- position_ids (
torch.LongTensor
,形狀為(batch_size, sequence_length)
,可選) — 位置嵌入中每個輸入序列標記的位置索引。選自範圍[0, config.n_positions - 1]
。 - head_mask (
torch.FloatTensor
,形狀為(num_heads,)
或(num_layers, num_heads)
,可選) — 用於置零自注意力模組中選定頭的掩碼。掩碼值選自[0, 1]
:- 1 表示頭未被遮蓋,
- 0 表示頭已被遮蓋。
- inputs_embeds (
torch.FloatTensor
,形狀為(batch_size, sequence_length, hidden_size)
,可選) — 或者,你可以選擇直接傳遞嵌入表示,而不是傳遞input_ids
。如果你希望比模型內部的嵌入查詢矩陣對如何將input_ids
索引轉換為相關向量有更多控制,這會很有用。 - start_positions (
torch.LongTensor
,形狀為(batch_size,)
,可選) — 標記的答案範圍開始位置(索引)的標籤,用於計算標記分類損失。位置被限制在序列長度(sequence_length
)之內。超出序列範圍的位置在計算損失時不會被考慮。 - end_positions (
torch.LongTensor
,形狀為(batch_size,)
,可選) — 標記的答案範圍結束位置(索引)的標籤,用於計算標記分類損失。位置被限制在序列長度(sequence_length
)之內。超出序列範圍的位置在計算損失時不會被考慮。 - output_attentions (
bool
,可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的attentions
。 - output_hidden_states (
bool
,可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的hidden_states
。 - return_dict (
bool
,可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。
返回
transformers.modeling_outputs.QuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)
transformers.modeling_outputs.QuestionAnsweringModelOutput 或 torch.FloatTensor
的元組(如果傳遞了 return_dict=False
或 config.return_dict=False
),根據配置(CamembertConfig)和輸入包含各種元素。
-
loss (
torch.FloatTensor
of shape(1,)
, 可選, 當提供labels
時返回) — 總範圍提取損失是起始位置和結束位置的交叉熵之和。 -
start_logits (
torch.FloatTensor
of shape(batch_size, sequence_length)
) — 範圍起始分數(SoftMax 之前)。 -
end_logits (
torch.FloatTensor
of shape(batch_size, sequence_length)
) — 範圍結束分數(SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
,可選,當傳遞output_hidden_states=True
或config.output_hidden_states=True
時返回) —torch.FloatTensor
的元組(如果模型有嵌入層,則一個為嵌入層的輸出,外加每個層的輸出),形狀為(batch_size, sequence_length, hidden_size)
。模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。
-
attentions (
tuple(torch.FloatTensor)
,可選,當傳遞output_attentions=True
或config.output_attentions=True
時返回) —torch.FloatTensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
CamembertForQuestionAnswering 的前向方法,覆蓋了 __call__
特殊方法。
儘管前向傳遞的流程需要在此函式內定義,但之後應呼叫 Module
例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。
示例
>>> from transformers import AutoTokenizer, CamembertForQuestionAnswering
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("almanach/camembert-base")
>>> model = CamembertForQuestionAnswering.from_pretrained("almanach/camembert-base")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> tokenizer.decode(predict_answer_tokens, skip_special_tokens=True)
...
>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])
>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss
>>> round(loss.item(), 2)
...
TFCamembertModel
class transformers.TFCamembertModel
< 原始碼 >( config *inputs **kwargs )
引數
- config (CamembertConfig) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。
原始的 CamemBERT 模型 Transformer,輸出原始的隱藏狀態,頂部沒有任何特定的頭。
該模型繼承自 TFPreTrainedModel。請檢視超類的文件,瞭解庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭等)。
該模型也是一個 keras.Model 子類。可以像常規的 TF 2.0 Keras 模型一樣使用它,並參考 TF 2.0 文件瞭解所有與常規用法和行為相關的事項。
transformers
中的 TensorFlow 模型和層接受兩種輸入格式
- 所有輸入作為關鍵字引數(如 PyTorch 模型),或
- 所有輸入作為第一個位置引數中的列表、元組或字典。
支援第二種格式的原因是,Keras 方法在將輸入傳遞給模型和層時更喜歡這種格式。由於這種支援,當使用像 model.fit()
這樣的方法時,事情應該對你“正常工作”——只需以 model.fit()
支援的任何格式傳遞你的輸入和標籤!然而,如果你想在 Keras 方法(如 fit()
和 predict()
)之外使用第二種格式,例如在使用 Keras Functional
API 建立自己的層或模型時,有三種可能性可以用來將所有輸入張量收集到第一個位置引數中
- 只有一個
input_ids
的單個張量,沒有其他:model(input_ids)
- 長度可變的列表,包含一個或多個輸入張量,按文件字串中給出的順序:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一個字典,其中包含一個或多個與文件字串中給出的輸入名稱關聯的輸入張量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
請注意,當使用子類化建立模型和層時,您無需擔心任何這些問題,因為您可以像呼叫任何其他 Python 函式一樣傳遞輸入!
呼叫
< 原始碼 >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None encoder_hidden_states: np.ndarray | tf.Tensor | None = None encoder_attention_mask: np.ndarray | tf.Tensor | None = None past_key_values: Optional[tuple[tuple[Union[np.ndarray, tf.Tensor]]]] = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: Optional[bool] = False ) → transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingAndCrossAttentions 或 tuple(tf.Tensor)
引數
- input_ids (
Numpy 陣列
或tf.Tensor
,形狀為(batch_size, sequence_length)
) — 詞彙表中輸入序列標記的索引。可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.call() 和 PreTrainedTokenizer.encode()。
- attention_mask (
Numpy 陣列
或tf.Tensor
,形狀為(batch_size, sequence_length)
,可選) — 用於避免對填充標記索引執行注意力操作的掩碼。掩碼值選自[0, 1]
:- 1 表示標記未被遮蓋,
- 0 表示標記已被遮蓋。
- token_type_ids (
Numpy 陣列
或tf.Tensor
,形狀為(batch_size, sequence_length)
,可選) — 段標記索引,用於指示輸入的第一部分和第二部分。索引選自[0, 1]
:- 0 對應於 *A 句子* 的標記,
- 1 對應於 *B 句子* 的標記。
- position_ids (
Numpy 陣列
或tf.Tensor
,形狀為(batch_size, sequence_length)
,可選) — 位置嵌入中每個輸入序列標記的位置索引。選自範圍[0, config.max_position_embeddings - 1]
。 - head_mask (
Numpy 陣列
或tf.Tensor
,形狀為(num_heads,)
或(num_layers, num_heads)
,可選) — 用於置零自注意力模組中選定頭的掩碼。掩碼值選自[0, 1]
:- 1 表示頭未被遮蓋,
- 0 表示頭已被遮蓋。
- inputs_embeds (
tf.Tensor
,形狀為(batch_size, sequence_length, hidden_size)
,可選) — 或者,你可以選擇直接傳遞嵌入表示,而不是傳遞input_ids
。如果你希望比模型內部的嵌入查詢矩陣對如何將input_ids
索引轉換為相關向量有更多控制,這會很有用。 - output_attentions (
bool
,可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的attentions
。此引數只能在即時模式下使用,在圖模式下將使用配置中的值。 - output_hidden_states (
bool
,可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的hidden_states
。此引數只能在即時模式下使用,在圖模式下將使用配置中的值。 - return_dict (
bool
,可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。此引數可以在即時模式下使用,在圖模式下該值將始終設定為 True。 - training (
bool
,可選,預設為False
) — 是否在訓練模式下使用模型(某些模組如 dropout 模組在訓練和評估之間有不同的行為)。 - encoder_hidden_states (
tf.Tensor
,形狀為(batch_size, sequence_length, hidden_size)
,可選) — 編碼器最後一層輸出的隱藏狀態序列。如果模型被配置為解碼器,則在交叉注意力中使用。 - encoder_attention_mask (
tf.Tensor
,形狀為(batch_size, sequence_length)
,可選) — 用於避免對編碼器輸入的填充標記索引執行注意力操作的掩碼。如果模型被配置為解碼器,此掩碼在交叉注意力中使用。掩碼值選自[0, 1]
:- 1 表示標記未被遮蓋,
- 0 表示標記已被遮蓋。
- past_key_values (長度為
config.n_layers
的tuple[tuple[tf.Tensor]]
) — 包含預先計算的注意力塊的鍵和值隱藏狀態。可用於加速解碼。如果使用past_key_values
,使用者可以選擇只輸入形狀為(batch_size, 1)
的最後一個decoder_input_ids
(那些沒有給出其過去鍵值狀態的 ID),而不是所有形狀為(batch_size, sequence_length)
的decoder_input_ids
。 - use_cache (
bool
,可選,預設為True
) — 如果設定為True
,則返回past_key_values
鍵值狀態,可用於加速解碼(參見past_key_values
)。訓練時設定為False
,生成時設定為True
。
返回
transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingAndCrossAttentions 或 tuple(tf.Tensor)
transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingAndCrossAttentions 或一個 tf.Tensor
的元組(如果傳遞了 return_dict=False
或 config.return_dict=False
),根據配置(CamembertConfig)和輸入包含各種元素。
-
last_hidden_state (
tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
) — 模型最後一層輸出的隱藏狀態序列。 -
pooler_output (
tf.Tensor
,形狀為(batch_size, hidden_size)
) — 序列第一個標記(分類標記)的最後一層隱藏狀態,經過線性層和 Tanh 啟用函式進一步處理。線性層權重是在預訓練期間從下一句預測(分類)目標中訓練的。此輸出通常不是輸入語義內容的良好摘要,通常最好對整個輸入序列的隱藏狀態進行平均或池化。
-
past_key_values (
list[tf.Tensor]
,可選,當傳遞use_cache=True
或config.use_cache=True
時返回) — 長度為config.n_layers
的tf.Tensor
列表,每個張量的形狀為(2, batch_size, num_heads, sequence_length, embed_size_per_head)
)。包含預先計算的隱藏狀態(注意力塊中的鍵和值),可用於(參見
past_key_values
輸入)加速順序解碼。 -
hidden_states (
tuple(tf.Tensor)
,可選,當傳遞output_hidden_states=True
或config.output_hidden_states=True
時返回) —tf.Tensor
的元組(一個用於嵌入的輸出 + 一個用於每層的輸出),形狀為(batch_size, sequence_length, hidden_size)
。模型在每個層輸出的隱藏狀態加上初始嵌入輸出。
-
attentions (
tuple(tf.Tensor)
,可選,當傳遞output_attentions=True
或config.output_attentions=True
時返回) —tf.Tensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
-
cross_attentions (
tuple(tf.Tensor)
,可選,當傳遞output_attentions=True
或config.output_attentions=True
時返回) —tf.Tensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。解碼器交叉注意力層的注意力權重,在注意力 softmax 之後,用於計算交叉注意力頭中的加權平均。
TFCamembertModel 的前向方法,覆蓋了 __call__
特殊方法。
儘管前向傳遞的流程需要在此函式內定義,但之後應呼叫 Module
例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。
示例
>>> from transformers import AutoTokenizer, TFCamembertModel
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("almanach/camembert-base")
>>> model = TFCamembertModel.from_pretrained("almanach/camembert-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)
>>> last_hidden_states = outputs.last_hidden_state
TFCamembertForCausalLM
class transformers.TFCamembertForCausalLM
< 原始碼 >( config: CamembertConfig *inputs **kwargs )
引數
- config (CamembertConfig) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。
帶有 language modeling
頭的 CamemBERT 模型,用於因果語言模型(CLM)微調。
該模型繼承自 TFPreTrainedModel。請檢視超類的文件,瞭解庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭等)。
該模型也是一個 keras.Model 子類。可以像常規的 TF 2.0 Keras 模型一樣使用它,並參考 TF 2.0 文件瞭解所有與常規用法和行為相關的事項。
transformers
中的 TensorFlow 模型和層接受兩種輸入格式
- 所有輸入作為關鍵字引數(如 PyTorch 模型),或
- 所有輸入作為第一個位置引數中的列表、元組或字典。
支援第二種格式的原因是,Keras 方法在將輸入傳遞給模型和層時更喜歡這種格式。由於這種支援,當使用像 model.fit()
這樣的方法時,事情應該對你“正常工作”——只需以 model.fit()
支援的任何格式傳遞你的輸入和標籤!然而,如果你想在 Keras 方法(如 fit()
和 predict()
)之外使用第二種格式,例如在使用 Keras Functional
API 建立自己的層或模型時,有三種可能性可以用來將所有輸入張量收集到第一個位置引數中
- 只有一個
input_ids
的單個張量,沒有其他:model(input_ids)
- 長度可變的列表,包含一個或多個輸入張量,按文件字串中給出的順序:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一個字典,其中包含一個或多個與文件字串中給出的輸入名稱關聯的輸入張量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
請注意,當使用子類化建立模型和層時,您無需擔心任何這些問題,因為您可以像呼叫任何其他 Python 函式一樣傳遞輸入!
呼叫
< 原始碼 >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None encoder_hidden_states: np.ndarray | tf.Tensor | None = None encoder_attention_mask: np.ndarray | tf.Tensor | None = None past_key_values: Optional[tuple[tuple[Union[np.ndarray, tf.Tensor]]]] = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → transformers.modeling_tf_outputs.TFCausalLMOutputWithCrossAttentions 或 tuple(tf.Tensor)
引數
- input_ids (
Numpy 陣列
或tf.Tensor
,形狀為(batch_size, sequence_length)
) — 詞彙表中輸入序列標記的索引。可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.call() 和 PreTrainedTokenizer.encode()。
- attention_mask (
Numpy 陣列
或tf.Tensor
,形狀為(batch_size, sequence_length)
,可選) — 用於避免對填充標記索引執行注意力操作的掩碼。掩碼值選自[0, 1]
:- 1 表示標記未被遮蓋,
- 0 表示標記已被遮蓋。
- token_type_ids (
Numpy 陣列
或tf.Tensor
,形狀為(batch_size, sequence_length)
,可選) — 段標記索引,用於指示輸入的第一部分和第二部分。索引選自[0, 1]
:- 0 對應於 *A 句子* 的標記,
- 1 對應於 *B 句子* 的標記。
- position_ids (
Numpy 陣列
或tf.Tensor
,形狀為(batch_size, sequence_length)
,可選) — 位置嵌入中每個輸入序列標記的位置索引。選自範圍[0, config.max_position_embeddings - 1]
。 - head_mask (
Numpy 陣列
或tf.Tensor
,形狀為(num_heads,)
或(num_layers, num_heads)
,可選) — 用於置零自注意力模組中選定頭的掩碼。掩碼值選自[0, 1]
:- 1 表示頭未被遮蓋,
- 0 表示頭已被遮蓋。
- inputs_embeds (
tf.Tensor
,形狀為(batch_size, sequence_length, hidden_size)
,可選) — 或者,你可以選擇直接傳遞嵌入表示,而不是傳遞input_ids
。如果你希望比模型內部的嵌入查詢矩陣對如何將input_ids
索引轉換為相關向量有更多控制,這會很有用。 - output_attentions (
bool
,可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的attentions
。此引數只能在即時模式下使用,在圖模式下將使用配置中的值。 - output_hidden_states (
bool
,可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的hidden_states
。此引數只能在即時模式下使用,在圖模式下將使用配置中的值。 - return_dict (
bool
,可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。此引數可以在即時模式下使用,在圖模式下該值將始終設定為 True。 - training (
bool
,可選,預設為False
) — 是否在訓練模式下使用模型(某些模組如 dropout 模組在訓練和評估之間有不同的行為)。 - encoder_hidden_states (
tf.Tensor
,形狀為(batch_size, sequence_length, hidden_size)
,可選) — 編碼器最後一層輸出的隱藏狀態序列。如果模型被配置為解碼器,則在交叉注意力中使用。 - encoder_attention_mask (
tf.Tensor
,形狀為(batch_size, sequence_length)
,可選) — 用於避免對編碼器輸入的填充標記索引執行注意力操作的掩碼。如果模型被配置為解碼器,此掩碼在交叉注意力中使用。掩碼值選自[0, 1]
:- 1 表示標記未被遮蓋,
- 0 表示標記已被遮蓋。
- past_key_values (長度為
config.n_layers
的tuple[tuple[tf.Tensor]]
) — 包含預先計算的注意力塊的鍵和值隱藏狀態。可用於加速解碼。如果使用past_key_values
,使用者可以選擇只輸入形狀為(batch_size, 1)
的最後一個decoder_input_ids
(那些沒有給出其過去鍵值狀態的 ID),而不是所有形狀為(batch_size, sequence_length)
的decoder_input_ids
。 - use_cache (
bool
,可選,預設為True
) — 如果設定為True
,則返回past_key_values
鍵值狀態,可用於加速解碼(參見past_key_values
)。訓練時設定為False
,生成時設定為True
。 - labels (
tf.Tensor
或np.ndarray
,形狀為(batch_size, sequence_length)
, 可選) — 用於計算交叉熵分類損失的標籤。索引應在[0, ..., config.vocab_size - 1]
範圍內。
返回
transformers.modeling_tf_outputs.TFCausalLMOutputWithCrossAttentions 或 tuple(tf.Tensor)
transformers.modeling_tf_outputs.TFCausalLMOutputWithCrossAttentions 或一個 tf.Tensor
的元組(如果傳遞了 return_dict=False
或當 config.return_dict=False
時),包含的各種元素取決於配置(CamembertConfig)和輸入。
-
loss (形狀為
(n,)
的tf.Tensor
,可選,其中n是非掩碼標籤的數量,當提供了labels
時返回) — 語言建模損失(用於下一標記預測)。 -
logits (
tf.Tensor
of shape(batch_size, sequence_length, config.vocab_size)
) — 語言模型頭部的預測分數(SoftMax 之前每個詞彙標記的分數)。 -
hidden_states (
tuple(tf.Tensor)
,可選,當傳遞output_hidden_states=True
或config.output_hidden_states=True
時返回) —tf.Tensor
的元組(一個用於嵌入的輸出 + 一個用於每層的輸出),形狀為(batch_size, sequence_length, hidden_size)
。模型在每個層輸出的隱藏狀態加上初始嵌入輸出。
-
attentions (
tuple(tf.Tensor)
,可選,當傳遞output_attentions=True
或config.output_attentions=True
時返回) —tf.Tensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
-
cross_attentions (
tuple(tf.Tensor)
,可選,當傳遞output_attentions=True
或config.output_attentions=True
時返回) —tf.Tensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。解碼器交叉注意力層的注意力權重,在注意力 softmax 之後,用於計算交叉注意力頭中的加權平均。
-
past_key_values (
list[tf.Tensor]
,可選,當傳遞use_cache=True
或config.use_cache=True
時返回) — 長度為config.n_layers
的tf.Tensor
列表,每個張量的形狀為(2, batch_size, num_heads, sequence_length, embed_size_per_head)
)。包含預先計算的隱藏狀態(注意力塊中的鍵和值),可用於(參見
past_key_values
輸入)加速順序解碼。
TFCamembertForCausalLM 的前向方法,重寫了 __call__
特殊方法。
儘管前向傳遞的流程需要在此函式內定義,但之後應呼叫 Module
例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。
示例
>>> from transformers import AutoTokenizer, TFCamembertForCausalLM
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("almanach/camembert-base")
>>> model = TFCamembertForCausalLM.from_pretrained("almanach/camembert-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)
>>> logits = outputs.logits
TFCamembertForMaskedLM
class transformers.TFCamembertForMaskedLM
< source >( config *inputs **kwargs )
引數
- config (CamembertConfig) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。
帶有“語言建模”頭的 CamemBERT 模型。
該模型繼承自 TFPreTrainedModel。請檢視超類的文件,瞭解庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭等)。
該模型也是一個 keras.Model 子類。可以像常規的 TF 2.0 Keras 模型一樣使用它,並參考 TF 2.0 文件瞭解所有與常規用法和行為相關的事項。
transformers
中的 TensorFlow 模型和層接受兩種輸入格式
- 所有輸入作為關鍵字引數(如 PyTorch 模型),或
- 所有輸入作為第一個位置引數中的列表、元組或字典。
支援第二種格式的原因是,Keras 方法在將輸入傳遞給模型和層時更喜歡這種格式。由於這種支援,當使用像 model.fit()
這樣的方法時,事情應該對你“正常工作”——只需以 model.fit()
支援的任何格式傳遞你的輸入和標籤!然而,如果你想在 Keras 方法(如 fit()
和 predict()
)之外使用第二種格式,例如在使用 Keras Functional
API 建立自己的層或模型時,有三種可能性可以用來將所有輸入張量收集到第一個位置引數中
- 只有一個
input_ids
的單個張量,沒有其他:model(input_ids)
- 長度可變的列表,包含一個或多個輸入張量,按文件字串中給出的順序:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一個字典,其中包含一個或多個與文件字串中給出的輸入名稱關聯的輸入張量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
請注意,當使用子類化建立模型和層時,您無需擔心任何這些問題,因為您可以像呼叫任何其他 Python 函式一樣傳遞輸入!
呼叫
< source >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → transformers.modeling_tf_outputs.TFMaskedLMOutput 或 tuple(tf.Tensor)
引數
- input_ids (
Numpy 陣列
或tf.Tensor
,形狀為(batch_size, sequence_length)
) — 詞彙表中輸入序列標記的索引。索引可以使用 AutoTokenizer 獲得。詳情請參閱 PreTrainedTokenizer.call() 和 PreTrainedTokenizer.encode()。
- attention_mask (
Numpy 陣列
或tf.Tensor
,形狀為(batch_size, sequence_length)
, 可選) — 用於避免在填充標記索引上執行注意力機制的掩碼。掩碼值的選擇範圍是[0, 1]
:- 1 表示標記未被掩碼,
- 0 表示標記已被掩碼。
- token_type_ids (
Numpy 陣列
或tf.Tensor
,形狀為(batch_size, sequence_length)
, 可選) — 分段標記索引,用於指示輸入的第一部分和第二部分。索引的選擇範圍是[0, 1]
:- 0 對應於一個 句子 A 的標記,
- 1 對應於一個 句子 B 的標記。
- position_ids (
Numpy 陣列
或tf.Tensor
,形狀為(batch_size, sequence_length)
, 可選) — 每個輸入序列標記在位置嵌入中的位置索引。選擇範圍在[0, config.max_position_embeddings - 1]
內。 - head_mask (
Numpy 陣列
或tf.Tensor
,形狀為(num_heads,)
或(num_layers, num_heads)
, 可選) — 用於置零自注意力模組中選定頭的掩碼。掩碼值的選擇範圍是[0, 1]
:- 1 表示頭未被掩碼,
- 0 表示頭已被掩碼。
- inputs_embeds (
tf.Tensor
,形狀為(batch_size, sequence_length, hidden_size)
, 可選) — 可選地,你可以不傳遞input_ids
,而是直接傳遞一個嵌入表示。如果你想比模型內部的嵌入查詢矩陣更好地控制如何將input_ids
索引轉換為相關向量,這會非常有用。 - output_attentions (
bool
, 可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的attentions
。此引數只能在即時模式(eager mode)下使用,在圖模式(graph mode)下將使用配置中的值。 - output_hidden_states (
bool
, 可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的hidden_states
。此引數只能在即時模式(eager mode)下使用,在圖模式(graph mode)下將使用配置中的值。 - return_dict (
bool
, 可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。此引數可以在即時模式(eager mode)下使用,在圖模式(graph mode)下該值將始終設定為 True。 - training (
bool
, 可選, 預設為False
) — 是否在訓練模式下使用模型(一些模組如 dropout 模組在訓練和評估之間有不同的行為)。 - labels (
tf.Tensor
,形狀為(batch_size, sequence_length)
, 可選) — 用於計算掩碼語言建模損失的標籤。索引應在[-100, 0, ..., config.vocab_size]
範圍內(見input_ids
文件字串)。索引設定為-100
的標記將被忽略(掩碼),損失僅對標籤在[0, ..., config.vocab_size]
範圍內的標記進行計算。
返回
transformers.modeling_tf_outputs.TFMaskedLMOutput 或 tuple(tf.Tensor)
transformers.modeling_tf_outputs.TFMaskedLMOutput 或一個 tf.Tensor
的元組(如果傳遞了 return_dict=False
或當 config.return_dict=False
時),包含的各種元素取決於配置(CamembertConfig)和輸入。
-
loss (
tf.Tensor
of shape(n,)
, 可選, 其中 n 是非掩碼標籤的數量,當提供labels
時返回) — 掩碼語言模型 (MLM) 損失。 -
logits (
tf.Tensor
of shape(batch_size, sequence_length, config.vocab_size)
) — 語言模型頭部的預測分數(SoftMax 之前每個詞彙標記的分數)。 -
hidden_states (
tuple(tf.Tensor)
,可選,當傳遞output_hidden_states=True
或config.output_hidden_states=True
時返回) —tf.Tensor
的元組(一個用於嵌入的輸出 + 一個用於每層的輸出),形狀為(batch_size, sequence_length, hidden_size)
。模型在每個層輸出的隱藏狀態加上初始嵌入輸出。
-
attentions (
tuple(tf.Tensor)
,可選,當傳遞output_attentions=True
或config.output_attentions=True
時返回) —tf.Tensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
TFCamembertForMaskedLM 的前向方法,重寫了 __call__
特殊方法。
儘管前向傳遞的流程需要在此函式內定義,但之後應呼叫 Module
例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。
示例
>>> from transformers import AutoTokenizer, TFCamembertForMaskedLM
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("almanach/camembert-base")
>>> model = TFCamembertForMaskedLM.from_pretrained("almanach/camembert-base")
>>> inputs = tokenizer("The capital of France is <mask>.", return_tensors="tf")
>>> logits = model(**inputs).logits
>>> # retrieve index of <mask>
>>> mask_token_index = tf.where((inputs.input_ids == tokenizer.mask_token_id)[0])
>>> selected_logits = tf.gather_nd(logits[0], indices=mask_token_index)
>>> predicted_token_id = tf.math.argmax(selected_logits, axis=-1)
>>> tokenizer.decode(predicted_token_id)
' Paris'
TFCamembertForSequenceClassification
class transformers.TFCamembertForSequenceClassification
< source >( config *inputs **kwargs )
引數
- config (CamembertConfig) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。
CamemBERT 模型,頂部帶有一個序列分類/迴歸頭(在池化輸出之上是一個線性層),例如用於 GLUE 任務。
該模型繼承自 TFPreTrainedModel。請檢視超類的文件,瞭解庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭等)。
該模型也是一個 keras.Model 子類。可以像常規的 TF 2.0 Keras 模型一樣使用它,並參考 TF 2.0 文件瞭解所有與常規用法和行為相關的事項。
transformers
中的 TensorFlow 模型和層接受兩種輸入格式
- 所有輸入作為關鍵字引數(如 PyTorch 模型),或
- 所有輸入作為第一個位置引數中的列表、元組或字典。
支援第二種格式的原因是,Keras 方法在將輸入傳遞給模型和層時更喜歡這種格式。由於這種支援,當使用像 model.fit()
這樣的方法時,事情應該對你“正常工作”——只需以 model.fit()
支援的任何格式傳遞你的輸入和標籤!然而,如果你想在 Keras 方法(如 fit()
和 predict()
)之外使用第二種格式,例如在使用 Keras Functional
API 建立自己的層或模型時,有三種可能性可以用來將所有輸入張量收集到第一個位置引數中
- 只有一個
input_ids
的單個張量,沒有其他:model(input_ids)
- 長度可變的列表,包含一個或多個輸入張量,按文件字串中給出的順序:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一個字典,其中包含一個或多個與文件字串中給出的輸入名稱關聯的輸入張量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
請注意,當使用子類化建立模型和層時,您無需擔心任何這些問題,因為您可以像呼叫任何其他 Python 函式一樣傳遞輸入!
呼叫
< source >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或 tuple(tf.Tensor)
引數
- input_ids (
Numpy 陣列
或tf.Tensor
,形狀為(batch_size, sequence_length)
) — 詞彙表中輸入序列標記的索引。索引可以使用 AutoTokenizer 獲得。詳情請參閱 PreTrainedTokenizer.call() 和 PreTrainedTokenizer.encode()。
- attention_mask (
Numpy 陣列
或tf.Tensor
,形狀為(batch_size, sequence_length)
, 可選) — 用於避免在填充標記索引上執行注意力機制的掩碼。掩碼值的選擇範圍是[0, 1]
:- 1 表示標記未被掩碼,
- 0 表示標記已被掩碼。
- token_type_ids (
Numpy 陣列
或tf.Tensor
,形狀為(batch_size, sequence_length)
, 可選) — 分段標記索引,用於指示輸入的第一部分和第二部分。索引的選擇範圍是[0, 1]
:- 0 對應於一個 句子 A 的標記,
- 1 對應於一個 句子 B 的標記。
- position_ids (
Numpy 陣列
或tf.Tensor
,形狀為(batch_size, sequence_length)
, 可選) — 每個輸入序列標記在位置嵌入中的位置索引。選擇範圍在[0, config.max_position_embeddings - 1]
內。 - head_mask (
Numpy 陣列
或tf.Tensor
,形狀為(num_heads,)
或(num_layers, num_heads)
, 可選) — 用於置零自注意力模組中選定頭的掩碼。掩碼值的選擇範圍是[0, 1]
:- 1 表示頭未被掩碼,
- 0 表示頭已被掩碼。
- inputs_embeds (
tf.Tensor
,形狀為(batch_size, sequence_length, hidden_size)
, 可選) — 可選地,你可以不傳遞input_ids
,而是直接傳遞一個嵌入表示。如果你想比模型內部的嵌入查詢矩陣更好地控制如何將input_ids
索引轉換為相關向量,這會非常有用。 - output_attentions (
bool
, 可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的attentions
。此引數只能在即時模式(eager mode)下使用,在圖模式(graph mode)下將使用配置中的值。 - output_hidden_states (
bool
, 可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的hidden_states
。此引數只能在即時模式(eager mode)下使用,在圖模式(graph mode)下將使用配置中的值。 - return_dict (
bool
, 可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。此引數可以在即時模式(eager mode)下使用,在圖模式(graph mode)下該值將始終設定為 True。 - training (
bool
, 可選, 預設為False
) — 是否在訓練模式下使用模型(一些模組如 dropout 模組在訓練和評估之間有不同的行為)。 - labels (
tf.Tensor
,形狀為(batch_size,)
, 可選) — 用於計算序列分類/迴歸損失的標籤。索引應在[0, ..., config.num_labels - 1]
範圍內。如果config.num_labels == 1
,則計算迴歸損失(均方損失),如果config.num_labels > 1
,則計算分類損失(交叉熵)。
返回
transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或 tuple(tf.Tensor)
transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或一個 tf.Tensor
的元組(如果傳遞了 return_dict=False
或當 config.return_dict=False
時),包含的各種元素取決於配置(CamembertConfig)和輸入。
-
loss (
tf.Tensor
,形狀為(batch_size, )
,可選,當提供labels
時返回) — 分類損失(如果 config.num_labels==1,則為迴歸損失)。 -
logits (
tf.Tensor
,形狀為(batch_size, config.num_labels)
) — 分類(或迴歸,如果 config.num_labels==1)分數(SoftMax 之前)。 -
hidden_states (
tuple(tf.Tensor)
,可選,當傳遞output_hidden_states=True
或config.output_hidden_states=True
時返回) —tf.Tensor
的元組(一個用於嵌入的輸出 + 一個用於每層的輸出),形狀為(batch_size, sequence_length, hidden_size)
。模型在每個層輸出的隱藏狀態加上初始嵌入輸出。
-
attentions (
tuple(tf.Tensor)
,可選,當傳遞output_attentions=True
或config.output_attentions=True
時返回) —tf.Tensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
TFCamembertForSequenceClassification 的前向方法,重寫了 __call__
特殊方法。
儘管前向傳遞的流程需要在此函式內定義,但之後應呼叫 Module
例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。
示例
>>> from transformers import AutoTokenizer, TFCamembertForSequenceClassification
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-emotion")
>>> model = TFCamembertForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-emotion")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> logits = model(**inputs).logits
>>> predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0])
>>> model.config.id2label[predicted_class_id]
'optimism'
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = TFCamembertForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-emotion", num_labels=num_labels)
>>> labels = tf.constant(1)
>>> loss = model(**inputs, labels=labels).loss
>>> round(float(loss), 2)
0.08
TFCamembertForMultipleChoice
class transformers.TFCamembertForMultipleChoice
< source >( config *inputs **kwargs )
引數
- config (CamembertConfig) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。
CamemBERT 模型,其頂部帶有一個多項選擇分類頭(池化輸出頂部的一個線性層和一個 softmax),例如用於 RocStories/SWAG 任務。
該模型繼承自 TFPreTrainedModel。請檢視超類的文件,瞭解庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭等)。
該模型也是一個 keras.Model 子類。可以像常規的 TF 2.0 Keras 模型一樣使用它,並參考 TF 2.0 文件瞭解所有與常規用法和行為相關的事項。
transformers
中的 TensorFlow 模型和層接受兩種輸入格式
- 所有輸入作為關鍵字引數(如 PyTorch 模型),或
- 所有輸入作為第一個位置引數中的列表、元組或字典。
支援第二種格式的原因是,Keras 方法在將輸入傳遞給模型和層時更喜歡這種格式。由於這種支援,當使用像 model.fit()
這樣的方法時,事情應該對你“正常工作”——只需以 model.fit()
支援的任何格式傳遞你的輸入和標籤!然而,如果你想在 Keras 方法(如 fit()
和 predict()
)之外使用第二種格式,例如在使用 Keras Functional
API 建立自己的層或模型時,有三種可能性可以用來將所有輸入張量收集到第一個位置引數中
- 只有一個
input_ids
的單個張量,沒有其他:model(input_ids)
- 長度可變的列表,包含一個或多個輸入張量,按文件字串中給出的順序:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一個字典,其中包含一個或多個與文件字串中給出的輸入名稱關聯的輸入張量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
請注意,當使用子類化建立模型和層時,您無需擔心任何這些問題,因為您可以像呼叫任何其他 Python 函式一樣傳遞輸入!
呼叫
< source >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput 或 tuple(tf.Tensor)
引數
- input_ids (
Numpy 陣列
或tf.Tensor
,形狀為(batch_size, num_choices, sequence_length)
) — 詞彙表中輸入序列標記的索引。索引可以使用 AutoTokenizer 獲得。詳情請參閱 PreTrainedTokenizer.call() 和 PreTrainedTokenizer.encode()。
- attention_mask (
Numpy 陣列
或tf.Tensor
,形狀為(batch_size, num_choices, sequence_length)
, 可選) — 用於避免在填充標記索引上執行注意力機制的掩碼。掩碼值的選擇範圍是[0, 1]
:- 1 表示標記未被掩碼,
- 0 表示標記已被掩碼。
- token_type_ids (
Numpy 陣列
或tf.Tensor
,形狀為(batch_size, num_choices, sequence_length)
, 可選) — 分段標記索引,用於指示輸入的第一部分和第二部分。索引的選擇範圍是[0, 1]
:- 0 對應於一個 句子 A 的標記,
- 1 對應於一個 句子 B 的標記。
- position_ids (
Numpy 陣列
或tf.Tensor
,形狀為(batch_size, num_choices, sequence_length)
, 可選) — 每個輸入序列標記在位置嵌入中的位置索引。選擇範圍在[0, config.max_position_embeddings - 1]
內。 - head_mask (
Numpy 陣列
或tf.Tensor
,形狀為(num_heads,)
或(num_layers, num_heads)
, 可選) — 用於置零自注意力模組中選定頭的掩碼。掩碼值的選擇範圍是[0, 1]
:- 1 表示頭未被掩碼,
- 0 表示頭已被掩碼。
- inputs_embeds (
tf.Tensor
,形狀為(batch_size, num_choices, sequence_length, hidden_size)
, 可選) — 可選地,你可以不傳遞input_ids
,而是直接傳遞一個嵌入表示。如果你想比模型內部的嵌入查詢矩陣更好地控制如何將input_ids
索引轉換為相關向量,這會非常有用。 - output_attentions (
bool
, 可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的attentions
。此引數只能在即時模式(eager mode)下使用,在圖模式(graph mode)下將使用配置中的值。 - output_hidden_states (
bool
, 可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的hidden_states
。此引數只能在即時模式(eager mode)下使用,在圖模式(graph mode)下將使用配置中的值。 - return_dict (
bool
, 可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。此引數可以在即時模式(eager mode)下使用,在圖模式(graph mode)下該值將始終設定為 True。 - training (
bool
, 可選, 預設為False
) — 是否在訓練模式下使用模型(一些模組如 dropout 模組在訓練和評估之間有不同的行為)。 - labels (
tf.Tensor
,形狀為(batch_size,)
, 可選) — 用於計算多項選擇分類損失的標籤。索引應在[0, ..., num_choices]
範圍內,其中num_choices
是輸入張量第二維的大小。(見上文的input_ids
)
返回
transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput 或 tuple(tf.Tensor)
transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput 或一個 tf.Tensor
的元組(如果傳遞了 return_dict=False
或當 config.return_dict=False
時),包含的各種元素取決於配置(CamembertConfig)和輸入。
-
loss (
tf.Tensor
,形狀為 (batch_size, ),可選,當提供labels
時返回) — 分類損失。 -
logits (
tf.Tensor
,形狀為(batch_size, num_choices)
) — num_choices 是輸入張量的第二維。(參見上面的 input_ids)。分類分數(SoftMax 之前)。
-
hidden_states (
tuple(tf.Tensor)
,可選,當傳遞output_hidden_states=True
或config.output_hidden_states=True
時返回) —tf.Tensor
的元組(一個用於嵌入的輸出 + 一個用於每層的輸出),形狀為(batch_size, sequence_length, hidden_size)
。模型在每個層輸出的隱藏狀態加上初始嵌入輸出。
-
attentions (
tuple(tf.Tensor)
,可選,當傳遞output_attentions=True
或config.output_attentions=True
時返回) —tf.Tensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
TFCamembertForMultipleChoice 的前向方法,重寫了 __call__
特殊方法。
儘管前向傳遞的流程需要在此函式內定義,但之後應呼叫 Module
例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。
示例
>>> from transformers import AutoTokenizer, TFCamembertForMultipleChoice
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("almanach/camembert-base")
>>> model = TFCamembertForMultipleChoice.from_pretrained("almanach/camembert-base")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="tf", padding=True)
>>> inputs = {k: tf.expand_dims(v, 0) for k, v in encoding.items()}
>>> outputs = model(inputs) # batch size is 1
>>> # the linear classifier still needs to be trained
>>> logits = outputs.logits
TFCamembertForTokenClassification
class transformers.TFCamembertForTokenClassification
< source >( config *inputs **kwargs )
引數
- config (CamembertConfig) — 包含模型所有引數的模型配置類。使用配置檔案初始化不會載入與模型關聯的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。
CamemBERT 模型,頂部帶有一個 token 分類頭(即在隱藏狀態輸出之上加一個線性層),例如用於命名實體識別(NER)任務。
該模型繼承自 TFPreTrainedModel。請檢視超類的文件,瞭解庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭等)。
該模型也是一個 keras.Model 子類。可以像常規的 TF 2.0 Keras 模型一樣使用它,並參考 TF 2.0 文件瞭解所有與常規用法和行為相關的事項。
transformers
中的 TensorFlow 模型和層接受兩種輸入格式
- 所有輸入作為關鍵字引數(如 PyTorch 模型),或
- 所有輸入作為第一個位置引數中的列表、元組或字典。
支援第二種格式的原因是,Keras 方法在將輸入傳遞給模型和層時更喜歡這種格式。由於這種支援,當使用像 model.fit()
這樣的方法時,事情應該對你“正常工作”——只需以 model.fit()
支援的任何格式傳遞你的輸入和標籤!然而,如果你想在 Keras 方法(如 fit()
和 predict()
)之外使用第二種格式,例如在使用 Keras Functional
API 建立自己的層或模型時,有三種可能性可以用來將所有輸入張量收集到第一個位置引數中
- 只有一個
input_ids
的單個張量,沒有其他:model(input_ids)
- 長度可變的列表,包含一個或多個輸入張量,按文件字串中給出的順序:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一個字典,其中包含一個或多個與文件字串中給出的輸入名稱關聯的輸入張量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
請注意,當使用子類化建立模型和層時,您無需擔心任何這些問題,因為您可以像呼叫任何其他 Python 函式一樣傳遞輸入!
呼叫
< source >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → transformers.modeling_tf_outputs.TFTokenClassifierOutput 或 tuple(tf.Tensor)
引數
- input_ids (
Numpy array
或tf.Tensor
,形狀為(batch_size, sequence_length)
) — 詞彙表中輸入序列 token 的索引。索引可以使用 AutoTokenizer 獲取。詳情請參閱 PreTrainedTokenizer.call() 和 PreTrainedTokenizer.encode()。
- attention_mask (
Numpy array
或tf.Tensor
,形狀為(batch_size, sequence_length)
,可選) — 用於避免對填充 token 索引進行注意力計算的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示 token 未被遮蔽,
- 0 表示 token 被遮蔽。
- token_type_ids (
Numpy array
或tf.Tensor
,形狀為(batch_size, sequence_length)
,可選) — 用於指示輸入的第一部分和第二部分的段 token 索引。索引在[0, 1]
中選擇:- 0 對應於 *A 句子* 的 token,
- 1 對應於 *B 句子* 的 token。
- position_ids (
Numpy array
或tf.Tensor
,形狀為(batch_size, sequence_length)
,可選) — 每個輸入序列 token 在位置嵌入中的位置索引。在[0, config.max_position_embeddings - 1]
範圍內選擇。 - head_mask (
Numpy array
或tf.Tensor
,形狀為(num_heads,)
或(num_layers, num_heads)
,可選) — 用於使自注意力模組中選定的頭無效的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示頭 未被遮蔽,
- 0 表示頭 被遮蔽。
- inputs_embeds (
tf.Tensor
,形狀為(batch_size, sequence_length, hidden_size)
,可選) — 可以選擇直接傳遞嵌入表示,而不是傳遞input_ids
。如果你希望比模型內部的嵌入查詢矩陣更能控制如何將input_ids
索引轉換為相關向量,這將非常有用。 - output_attentions (
bool
, 可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回的張量下的attentions
。此引數只能在 Eager 模式下使用,在圖模式下將使用配置中的值。 - output_hidden_states (
bool
, 可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回的張量下的hidden_states
。此引數只能在 Eager 模式下使用,在圖模式下將使用配置中的值。 - return_dict (
bool
, 可選) — 是否返回 ModelOutput 而不是普通的元組。此引數可在 Eager 模式下使用,在圖模式下該值將始終設定為 True。 - training (
bool
, 可選, 預設為False
) — 是否在訓練模式下使用模型(一些模組如 dropout 模組在訓練和評估之間有不同的行為)。 - labels (
tf.Tensor
,形狀為(batch_size, sequence_length)
,可選) — 用於計算 token 分類損失的標籤。索引應在[0, ..., config.num_labels - 1]
範圍內。
返回
transformers.modeling_tf_outputs.TFTokenClassifierOutput 或 tuple(tf.Tensor)
一個 transformers.modeling_tf_outputs.TFTokenClassifierOutput 或一個 tf.Tensor
元組(如果傳遞了 return_dict=False
或當 config.return_dict=False
時),包含根據配置 (CamembertConfig) 和輸入而異的各種元素。
-
loss (
tf.Tensor
,形狀為(n,)
,可選,其中 n 是未被掩蓋的標籤數量,當提供labels
時返回) — 分類損失。 -
logits (
tf.Tensor
,形狀為(batch_size, sequence_length, config.num_labels)
) — 分類分數(SoftMax 之前)。 -
hidden_states (
tuple(tf.Tensor)
,可選,當傳遞output_hidden_states=True
或config.output_hidden_states=True
時返回) —tf.Tensor
的元組(一個用於嵌入的輸出 + 一個用於每層的輸出),形狀為(batch_size, sequence_length, hidden_size)
。模型在每個層輸出的隱藏狀態加上初始嵌入輸出。
-
attentions (
tuple(tf.Tensor)
,可選,當傳遞output_attentions=True
或config.output_attentions=True
時返回) —tf.Tensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
TFCamembertForTokenClassification 的前向方法會覆蓋 __call__
特殊方法。
儘管前向傳遞的流程需要在此函式內定義,但之後應呼叫 Module
例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。
示例
>>> from transformers import AutoTokenizer, TFCamembertForTokenClassification
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("ydshieh/roberta-large-ner-english")
>>> model = TFCamembertForTokenClassification.from_pretrained("ydshieh/roberta-large-ner-english")
>>> inputs = tokenizer(
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="tf"
... )
>>> logits = model(**inputs).logits
>>> predicted_token_class_ids = tf.math.argmax(logits, axis=-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t] for t in predicted_token_class_ids[0].numpy().tolist()]
>>> predicted_tokens_classes
['O', 'ORG', 'ORG', 'O', 'O', 'O', 'O', 'O', 'LOC', 'O', 'LOC', 'LOC']
TFCamembertForQuestionAnswering
class transformers.TFCamembertForQuestionAnswering
< source >( config *inputs **kwargs )
引數
- config (CamembertConfig) — 包含模型所有引數的模型配置類。使用配置檔案初始化不會載入與模型關聯的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。
CamemBERT 模型,頂部帶有一個 span 分類頭,用於抽取式問答任務,如 SQuAD(在隱藏狀態輸出之上加一個線性層,用於計算 span start logits
和 span end logits
)。
該模型繼承自 TFPreTrainedModel。請檢視超類的文件,瞭解庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭等)。
該模型也是一個 keras.Model 子類。可以像常規的 TF 2.0 Keras 模型一樣使用它,並參考 TF 2.0 文件瞭解所有與常規用法和行為相關的事項。
transformers
中的 TensorFlow 模型和層接受兩種輸入格式
- 所有輸入作為關鍵字引數(如 PyTorch 模型),或
- 所有輸入作為第一個位置引數中的列表、元組或字典。
支援第二種格式的原因是,Keras 方法在將輸入傳遞給模型和層時更喜歡這種格式。由於這種支援,當使用像 model.fit()
這樣的方法時,事情應該對你“正常工作”——只需以 model.fit()
支援的任何格式傳遞你的輸入和標籤!然而,如果你想在 Keras 方法(如 fit()
和 predict()
)之外使用第二種格式,例如在使用 Keras Functional
API 建立自己的層或模型時,有三種可能性可以用來將所有輸入張量收集到第一個位置引數中
- 只有一個
input_ids
的單個張量,沒有其他:model(input_ids)
- 長度可變的列表,包含一個或多個輸入張量,按文件字串中給出的順序:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一個字典,其中包含一個或多個與文件字串中給出的輸入名稱關聯的輸入張量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
請注意,當使用子類化建立模型和層時,您無需擔心任何這些問題,因為您可以像呼叫任何其他 Python 函式一樣傳遞輸入!
呼叫
< source >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None start_positions: np.ndarray | tf.Tensor | None = None end_positions: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput 或 tuple(tf.Tensor)
引數
- input_ids (
Numpy array
或tf.Tensor
,形狀為(batch_size, sequence_length)
) — 詞彙表中輸入序列 token 的索引。索引可以使用 AutoTokenizer 獲取。詳情請參閱 PreTrainedTokenizer.call() 和 PreTrainedTokenizer.encode()。
- attention_mask (
Numpy array
或tf.Tensor
,形狀為(batch_size, sequence_length)
,可選) — 用於避免對填充 token 索引進行注意力計算的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示 token 未被遮蔽,
- 0 表示 token 被遮蔽。
- token_type_ids (
Numpy array
或tf.Tensor
,形狀為(batch_size, sequence_length)
,可選) — 用於指示輸入的第一部分和第二部分的段 token 索引。索引在[0, 1]
中選擇:- 0 對應於 *A 句子* 的 token,
- 1 對應於 *B 句子* 的 token。
- position_ids (
Numpy array
或tf.Tensor
,形狀為(batch_size, sequence_length)
,可選) — 每個輸入序列 token 在位置嵌入中的位置索引。在[0, config.max_position_embeddings - 1]
範圍內選擇。 - head_mask (
Numpy array
或tf.Tensor
,形狀為(num_heads,)
或(num_layers, num_heads)
,可選) — 用於使自注意力模組中選定的頭無效的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示頭 未被遮蔽,
- 0 表示頭 被遮蔽。
- inputs_embeds (
tf.Tensor
,形狀為(batch_size, sequence_length, hidden_size)
,可選) — 可以選擇直接傳遞嵌入表示,而不是傳遞input_ids
。如果你希望比模型內部的嵌入查詢矩陣更能控制如何將input_ids
索引轉換為相關向量,這將非常有用。 - output_attentions (
bool
, 可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回的張量下的attentions
。此引數只能在 Eager 模式下使用,在圖模式下將使用配置中的值。 - output_hidden_states (
bool
, 可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回的張量下的hidden_states
。此引數只能在 Eager 模式下使用,在圖模式下將使用配置中的值。 - return_dict (
bool
, 可選) — 是否返回 ModelOutput 而不是普通的元組。此引數可在 Eager 模式下使用,在圖模式下該值將始終設定為 True。 - training (
bool
, 可選, 預設為False
) — 是否在訓練模式下使用模型(一些模組如 dropout 模組在訓練和評估之間有不同的行為)。 - start_positions (
tf.Tensor
,形狀為(batch_size,)
,可選) — 用於計算 token 分類損失的標記 span 起始位置(索引)的標籤。位置被限制在序列長度(sequence_length
)內。序列之外的位置在計算損失時不予考慮。 - end_positions (
tf.Tensor
,形狀為(batch_size,)
,可選) — 用於計算 token 分類損失的標記 span 結束位置(索引)的標籤。位置被限制在序列長度(sequence_length
)內。序列之外的位置在計算損失時不予考慮。
返回
transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput 或 tuple(tf.Tensor)
一個 transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput 或一個 tf.Tensor
元組(如果傳遞了 return_dict=False
或當 config.return_dict=False
時),包含根據配置 (CamembertConfig) 和輸入而異的各種元素。
-
loss (
tf.Tensor
,形狀為(batch_size, )
,可選,當提供了start_positions
和end_positions
時返回) — 總的 span 抽取損失是起始位置和結束位置交叉熵的和。 -
start_logits (形狀為
(batch_size, sequence_length)
的tf.Tensor
) — 跨度起始分數(SoftMax 之前)。 -
end_logits (形狀為
(batch_size, sequence_length)
的tf.Tensor
) — 跨度結束分數(SoftMax 之前)。 -
hidden_states (
tuple(tf.Tensor)
,可選,當傳遞output_hidden_states=True
或config.output_hidden_states=True
時返回) —tf.Tensor
的元組(一個用於嵌入的輸出 + 一個用於每層的輸出),形狀為(batch_size, sequence_length, hidden_size)
。模型在每個層輸出的隱藏狀態加上初始嵌入輸出。
-
attentions (
tuple(tf.Tensor)
,可選,當傳遞output_attentions=True
或config.output_attentions=True
時返回) —tf.Tensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
TFCamembertForQuestionAnswering 的前向方法會覆蓋 __call__
特殊方法。
儘管前向傳遞的流程需要在此函式內定義,但之後應呼叫 Module
例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。
示例
>>> from transformers import AutoTokenizer, TFCamembertForQuestionAnswering
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("ydshieh/roberta-base-squad2")
>>> model = TFCamembertForQuestionAnswering.from_pretrained("ydshieh/roberta-base-squad2")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="tf")
>>> outputs = model(**inputs)
>>> answer_start_index = int(tf.math.argmax(outputs.start_logits, axis=-1)[0])
>>> answer_end_index = int(tf.math.argmax(outputs.end_logits, axis=-1)[0])
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> tokenizer.decode(predict_answer_tokens)
' puppet'