Transformers 文件
Phi
並獲得增強的文件體驗
開始使用
Phi
Phi 是一個擁有 13 億引數的 transformer 模型,專為 Python 程式碼生成進行了最佳化。它專注於使用“教科書質量”的程式碼示例、練習和合成 Python 問題的訓練資料,而不是擴充套件模型規模或計算量。
你可以在 Phi-1 集合中找到所有原始的 Phi checkpoints。
點選右側邊欄中的 Phi 模型,檢視更多關於如何將 Phi 應用於不同語言任務的示例。
下面的示例演示瞭如何使用 Pipeline、AutoModel 以及從命令列生成文字。
import torch
from transformers import pipeline
pipeline = pipeline(task="text-generation", model="microsoft/phi-1.5", device=0, torch_dtype=torch.bfloat16)
pipeline("pipeline('''def print_prime(n): """ Print all primes between 1 and n"""''')")
量化透過以較低精度表示權重來減少大型模型的記憶體負擔。有關更多可用量化後端,請參閱量化概述。
以下示例使用 bitsandbytes 將權重僅量化為 4 位。
import torch
from transformers import BitsAndBytesConfig, AutoTokenizer, AutoModelForCausalLM
bnb_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True)
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-1")
model = AutoModelForCausalLM.from_pretrained("microsoft/phi-1", torch_dtype=torch.float16, device_map="auto", attn_implementation="sdpa", quantization_config=bnb_config)
input_ids = tokenizer('''def print_prime(n):
"""
Print all primes between 1 and n
"""''', return_tensors="pt").to("cuda")
output = model.generate(**input_ids, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))
注意
如果你使用的 Transformers 版本低於 4.37.0.dev,請在 from_pretrained() 中設定 `trust_remote_code=True`。否則,請確保將 Transformers 更新到最新的穩定版本。
import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-1") model = AutoModelForCausalLM.from_pretrained( "microsoft/phi-1", torch_dtype=torch.float16, device_map="auto", trust_remote_code=True, attn_implementation="sdpa") input_ids = tokenizer('''def print_prime(n): """ Print all primes between 1 and n """''', return_tensors="pt").to("cuda") output = model.generate(**input_ids, cache_implementation="static") print(tokenizer.decode(output[0], skip_special_tokens=True))
PhiConfig
class transformers.PhiConfig
< 源 >( vocab_size = 51200 hidden_size = 2048 intermediate_size = 8192 num_hidden_layers = 24 num_attention_heads = 32 num_key_value_heads = None resid_pdrop = 0.0 embd_pdrop = 0.0 attention_dropout = 0.0 hidden_act = 'gelu_new' max_position_embeddings = 2048 initializer_range = 0.02 layer_norm_eps = 1e-05 use_cache = True tie_word_embeddings = False rope_theta = 10000.0 rope_scaling = None partial_rotary_factor = 0.5 qk_layernorm = False bos_token_id = 1 eos_token_id = 2 **kwargs )
引數
- vocab_size (
int
, 可選, 預設為 51200) — Phi 模型的詞彙表大小。定義了在呼叫 PhiModel 時,`inputs_ids` 可以表示的不同標記的數量。 - hidden_size (
int
, 可選, 預設為 2048) — 隱藏表示的維度。 - intermediate_size (
int
, 可選, 預設為 8192) — MLP 表示的維度。 - num_hidden_layers (
int
, 可選, 預設為 24) — Transformer 解碼器中的隱藏層數量。 - num_attention_heads (
int
, 可選, 預設為 32) — Transformer 解碼器中每個注意力層的注意力頭數量。 - num_key_value_heads (
int
, 可選) — 這是用於實現分組查詢注意力(Grouped Query Attention)的鍵值頭(key_value heads)數量。如果 `num_key_value_heads=num_attention_heads`,模型將使用多頭注意力(Multi Head Attention,MHA);如果 `num_key_value_heads=1`,模型將使用多查詢注意力(Multi Query Attention,MQA);否則,將使用 GQA。當將一個多頭檢查點轉換為 GQA 檢查點時,每個分組的鍵和值頭應透過對該組內所有原始頭進行均值池化來構建。更多詳情,請查閱這篇論文。如果未指定,將預設為 `num_attention_heads`。 - resid_pdrop (
float
, 可選, 預設為 0.0) — mlp 輸出的 dropout 機率。 - embd_pdrop (
int
, 可選, 預設為 0.0) — 嵌入層的 dropout 率。 - attention_dropout (
float
, 可選, 預設為 0.0) — 計算注意力分數後的 dropout 率。 - hidden_act (
str
或function
, 可選, 預設為"gelu_new"
) — 解碼器中的非線性啟用函式(函式或字串)。 - max_position_embeddings (
int
, 可選, 預設為 2048) — 此模型可能使用的最大序列長度。Phi-1 和 Phi-1.5 支援最多 2048 個標記。 - initializer_range (
float
, 可選, 預設為 0.02) — 用於初始化所有權重矩陣的 truncated_normal_initializer 的標準差。 - layer_norm_eps (
float
, 可選, 預設為 1e-05) — rms 歸一化層使用的 epsilon。 - use_cache (
bool
, 可選, 預設為True
) — 模型是否應返回最後一個鍵/值注意力(並非所有模型都使用)。僅當 `config.is_decoder=True` 時相關。是否繫結詞嵌入權重。 - tie_word_embeddings (
bool
, 可選, 預設為False
) — 是否繫結詞嵌入權重 - rope_theta (
float
, 可選, 預設為 10000.0) — RoPE 嵌入的基礎週期。 - rope_scaling (
Dict
, 可選) — 包含 RoPE 嵌入縮放配置的字典。注意:如果你應用了新的 rope 型別並且希望模型能在更長的 `max_position_embeddings` 上工作,我們建議你相應地更新這個值。預期內容:`rope_type` (str
):要使用的 RoPE 的子變體。可以是 ['default', 'linear', 'dynamic', 'yarn', 'longrope', 'llama3'] 中的一個,其中 'default' 是原始的 RoPE 實現。`factor` (float
, 可選):除了 'default' 之外的所有 rope 型別都使用。應用於 RoPE 嵌入的縮放因子。在大多數縮放型別中,x 的 `factor` 將使模型能夠處理長度為 x * 原始最大預訓練長度的序列。`original_max_position_embeddings` (int
, *可選*):用於 'dynamic'、'longrope' 和 'llama3'。預訓練期間使用的原始最大位置嵌入。`attention_factor` (float
, *可選*):用於 'yarn' 和 'longrope'。應用於注意力計算的縮放因子。如果未指定,它將預設為實現推薦的值,使用 `factor` 欄位推斷建議值。`beta_fast` (float
, *可選*):僅用於 'yarn'。用於線上性斜坡函式中設定外推(僅)邊界的引數。如果未指定,預設為 32。`beta_slow` (float
, *可選*):僅用於 'yarn'。用於線上性斜坡函式中設定插值(僅)邊界的引數。如果未指定,預設為 1。`short_factor` (list[float]
, *可選*):僅用於 'longrope'。應用於短上下文(< `original_max_position_embeddings`)的縮放因子。必須是一個數字列表,其長度與隱藏大小除以注意力頭數再除以 2 相同。`long_factor` (list[float]
, *可選*):僅用於 'longrope'。應用於長上下文(> `original_max_position_embeddings`)的縮放因子。必須是一個數字列表,其長度與隱藏大小除以注意力頭數再除以 2 相同。`low_freq_factor` (float
, *可選*):僅用於 'llama3'。應用於 RoPE 低頻分量的縮放因子。`high_freq_factor` (float
, *可選*):僅用於 'llama3'。應用於 RoPE 高頻分量的縮放因子。 - partial_rotary_factor (
float
, 可選, 預設為 0.5) — 將應用旋轉嵌入的查詢和鍵的百分比。 - qk_layernorm (
bool
, 可選, 預設為False
) — 是否在投影隱藏狀態後對查詢(Queries)和鍵(Keys)進行歸一化。 - bos_token_id (
int
, 可選, 預設為 1) — 表示序列開始的標記 ID。 - eos_token_id (
int
, 可選, 預設為 2) — 表示序列結束標記的 ID。
這是一個配置類,用於儲存 PhiModel 的配置。它用於根據指定的引數例項化一個 Phi 模型,定義模型架構。使用預設值例項化配置將產生一個與 Phi microsoft/phi-1 相似的配置。
配置物件繼承自 PretrainedConfig,可用於控制模型輸出。請閱讀 PretrainedConfig 的文件以獲取更多資訊。
示例
>>> from transformers import PhiModel, PhiConfig
>>> # Initializing a Phi-1 style configuration
>>> configuration = PhiConfig.from_pretrained("microsoft/phi-1")
>>> # Initializing a model from the configuration
>>> model = PhiModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
PhiModel
class transformers.PhiModel
< 原始碼 >( config: PhiConfig )
引數
- config (PhiConfig) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化不會載入與模型相關的權重,只會載入配置。請查閱 from_pretrained() 方法來載入模型權重。
基礎的 Phi 模型,輸出原始的隱藏狀態,頂部沒有任何特定的頭(head)。
該模型繼承自 PreTrainedModel。請查閱超類文件以瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭等)。
該模型也是 PyTorch 的 torch.nn.Module 子類。可以像常規 PyTorch 模組一樣使用它,並參考 PyTorch 文件瞭解所有與通用用法和行為相關的事項。
forward
< 原始碼 >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None **flash_attn_kwargs: typing_extensions.Unpack[transformers.modeling_flash_attention_utils.FlashAttentionKwargs] ) → transformers.modeling_outputs.BaseModelOutputWithPast 或 tuple(torch.FloatTensor)
引數
- input_ids (形狀為
(batch_size, sequence_length)
的torch.LongTensor
, 可選) — 詞彙表中輸入序列標記的索引。預設情況下將忽略填充。可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (形狀為
(batch_size, sequence_length)
的torch.Tensor
, 可選) — 用於避免對填充標記索引執行注意力計算的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示標記未被掩碼,
- 0 表示標記被掩碼。
- position_ids (形狀為
(batch_size, sequence_length)
的torch.LongTensor
, 可選) — 位置嵌入中每個輸入序列標記的位置索引。在[0, config.n_positions - 1]
範圍內選擇。 - past_key_values (
~cache_utils.Cache
, 可選) — 預先計算的隱藏狀態(自注意力塊和交叉注意力塊中的鍵和值),可用於加速序列解碼。這通常是在解碼的先前階段,當use_cache=True
或config.use_cache=True
時,由模型返回的past_key_values
。允許兩種格式:
- Cache 例項,請參閱我們的 kv 快取指南;
- 長度為
config.n_layers
的tuple(torch.FloatTensor)
的元組,每個元組包含 2 個形狀為(batch_size, num_heads, sequence_length, embed_size_per_head)
的張量。這也被稱為舊版快取格式。
模型將輸出與輸入相同的快取格式。如果沒有傳遞
past_key_values
,將返回舊版快取格式。如果使用
past_key_values
,使用者可以選擇只輸入最後一個input_ids
(那些沒有為其提供過去鍵值狀態的 ID),形狀為(batch_size, 1)
,而不是所有形狀為(batch_size, sequence_length)
的input_ids
。 - inputs_embeds (形狀為
(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
, 可選) — 或者,你可以選擇直接傳遞嵌入表示,而不是傳遞input_ids
。如果你想比模型內部的嵌入查詢矩陣更多地控制如何將input_ids
索引轉換為關聯向量,這會很有用。 - use_cache (
bool
, 可選) — 如果設定為True
,則返回past_key_values
鍵值狀態,可用於加速解碼(參見past_key_values
)。 - output_attentions (
bool
, 可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的attentions
。 - output_hidden_states (
bool
, 可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的hidden_states
。 - cache_position (形狀為
(sequence_length)
的torch.LongTensor
, 可選) — 描繪輸入序列標記在序列中位置的索引。與position_ids
相反,此張量不受填充影響。它用於在正確的位置更新快取並推斷完整的序列長度。
返回
transformers.modeling_outputs.BaseModelOutputWithPast 或 tuple(torch.FloatTensor)
transformers.modeling_outputs.BaseModelOutputWithPast 或一個 `torch.FloatTensor` 的元組(如果傳遞了 `return_dict=False` 或 `config.return_dict=False`),包含各種元素,具體取決於配置(PhiConfig)和輸入。
-
last_hidden_state (
torch.FloatTensor
, 形狀為(batch_size, sequence_length, hidden_size)
) — 模型最後一層輸出的隱藏狀態序列。如果使用了
past_key_values
,則只輸出形狀為(batch_size, 1, hidden_size)
的序列的最後一個隱藏狀態。 -
past_key_values (
Cache
, 可選, 當傳遞use_cache=True
或config.use_cache=True
時返回) — 這是一個 Cache 例項。有關更多詳細資訊,請參閱我們的 kv 快取指南。包含預計算的隱藏狀態(自注意力塊中的鍵和值,以及如果 `config.is_encoder_decoder=True`,則在交叉注意力塊中),可用於(參見 `past_key_values` 輸入)加速序列解碼。
-
hidden_states (
tuple(torch.FloatTensor)
, 可選, 當傳遞output_hidden_states=True
或config.output_hidden_states=True
時返回) —torch.FloatTensor
的元組(如果模型有嵌入層,則一個是嵌入層的輸出,加上每個層的輸出),形狀為(batch_size, sequence_length, hidden_size)
。模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。
-
attentions (
tuple(torch.FloatTensor)
, 可選, 當傳遞output_attentions=True
或config.output_attentions=True
時返回) —torch.FloatTensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
PhiModel 的 forward 方法,覆蓋了 `__call__` 特殊方法。
儘管前向傳遞的流程需要在此函式內定義,但之後應該呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。
PhiForCausalLM
class transformers.PhiForCausalLM
< 原始碼 >( config )
引數
- config (PhiForCausalLM) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化不會載入與模型相關的權重,只會載入配置。請查閱 from_pretrained() 方法來載入模型權重。
用於因果語言建模的 Phi 模型。
該模型繼承自 PreTrainedModel。請查閱超類文件以瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭等)。
該模型也是 PyTorch 的 torch.nn.Module 子類。可以像常規 PyTorch 模組一樣使用它,並參考 PyTorch 文件瞭解所有與通用用法和行為相關的事項。
forward
< 原始碼 >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None logits_to_keep: typing.Union[int, torch.Tensor] = 0 **kwargs: typing_extensions.Unpack[transformers.models.phi.modeling_phi.KwargsForCausalLM] ) → transformers.modeling_outputs.CausalLMOutputWithPast 或 tuple(torch.FloatTensor)
引數
- input_ids (形狀為
(batch_size, sequence_length)
的torch.LongTensor
, 可選) — 詞彙表中輸入序列標記的索引。預設情況下將忽略填充。可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (形狀為
(batch_size, sequence_length)
的torch.Tensor
, 可選) — 用於避免對填充標記索引執行注意力計算的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示標記未被掩碼,
- 0 表示標記被掩碼。
- position_ids (形狀為
(batch_size, sequence_length)
的torch.LongTensor
, 可選) — 位置嵌入中每個輸入序列標記的位置索引。在[0, config.n_positions - 1]
範圍內選擇。 - past_key_values (
~cache_utils.Cache
, 可選) — 預先計算的隱藏狀態(自注意力塊和交叉注意力塊中的鍵和值),可用於加速序列解碼。這通常是在解碼的先前階段,當use_cache=True
或config.use_cache=True
時,由模型返回的past_key_values
。允許兩種格式:
- Cache 例項,請參閱我們的 kv 快取指南;
- 長度為
config.n_layers
的tuple(torch.FloatTensor)
的元組,每個元組包含 2 個形狀為(batch_size, num_heads, sequence_length, embed_size_per_head)
的張量。這也被稱為舊版快取格式。
模型將輸出與輸入相同的快取格式。如果沒有傳遞
past_key_values
,將返回舊版快取格式。如果使用
past_key_values
,使用者可以選擇只輸入最後一個input_ids
(那些沒有為其提供過去鍵值狀態的 ID),形狀為(batch_size, 1)
,而不是所有形狀為(batch_size, sequence_length)
的input_ids
。 - inputs_embeds (形狀為
(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
, 可選) — 或者,你可以選擇直接傳遞嵌入表示,而不是傳遞input_ids
。如果你想比模型內部的嵌入查詢矩陣更多地控制如何將input_ids
索引轉換為關聯向量,這會很有用。 - labels (形狀為
(batch_size, sequence_length)
的torch.LongTensor
, 可選) — 用於計算掩碼語言建模損失的標籤。索引應在[0, ..., config.vocab_size]
或 -100 之間(參見input_ids
文件字串)。索引設定為-100
的標記將被忽略(掩碼),損失僅針對標籤在[0, ..., config.vocab_size]
之間的標記計算。 - use_cache (
bool
, 可選) — 如果設定為True
,則返回past_key_values
鍵值狀態,可用於加速解碼(參見past_key_values
)。 - output_attentions (
bool
, 可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的attentions
。 - output_hidden_states (
bool
, 可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的hidden_states
。 - cache_position (形狀為
(sequence_length)
的torch.LongTensor
, 可選) — 描繪輸入序列標記在序列中位置的索引。與position_ids
相反,此張量不受填充影響。它用於在正確的位置更新快取並推斷完整的序列長度。 - logits_to_keep (
Union[int, torch.Tensor]
, 預設為0
) — 如果是int
,則為最後的logits_to_keep
個標記計算 logits。如果是0
,則為所有input_ids
計算 logits(特殊情況)。生成時只需要最後一個標記的 logits,只為該標記計算可以節省記憶體,這對於長序列或大詞彙表來說非常重要。如果是torch.Tensor
,則必須是一維的,對應於序列長度維度中要保留的索引。這在使用打包張量格式(批處理和序列長度使用單一維度)時很有用。
返回
transformers.modeling_outputs.CausalLMOutputWithPast 或 tuple(torch.FloatTensor)
transformers.modeling_outputs.CausalLMOutputWithPast 或一個 `torch.FloatTensor` 的元組(如果傳遞了 `return_dict=False` 或 `config.return_dict=False`),包含各種元素,具體取決於配置(PhiConfig)和輸入。
-
loss (
torch.FloatTensor
形狀為(1,)
,可選,當提供labels
時返回) — 語言建模損失(用於下一個 token 預測)。 -
logits (形狀為
(batch_size, sequence_length, config.vocab_size)
的torch.FloatTensor
) — 語言建模頭部的預測分數(SoftMax 之前的每個詞彙標記的分數)。 -
past_key_values (
Cache
, 可選, 當傳遞use_cache=True
或config.use_cache=True
時返回) — 這是一個 Cache 例項。有關更多詳細資訊,請參閱我們的 kv 快取指南。包含預計算的隱藏狀態(自注意力塊中的鍵和值),可用於(參見
past_key_values
輸入)加速順序解碼。 -
hidden_states (
tuple(torch.FloatTensor)
, 可選, 當傳遞output_hidden_states=True
或config.output_hidden_states=True
時返回) —torch.FloatTensor
的元組(如果模型有嵌入層,則一個是嵌入層的輸出,加上每個層的輸出),形狀為(batch_size, sequence_length, hidden_size)
。模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。
-
attentions (
tuple(torch.FloatTensor)
, 可選, 當傳遞output_attentions=True
或config.output_attentions=True
時返回) —torch.FloatTensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
PhiForCausalLM 的 forward 方法,覆蓋了 `__call__` 特殊方法。
儘管前向傳遞的流程需要在此函式內定義,但之後應該呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。
示例
>>> from transformers import AutoTokenizer, PhiForCausalLM
>>> model = PhiForCausalLM.from_pretrained("meta-phi/Phi-2-7b-hf")
>>> tokenizer = AutoTokenizer.from_pretrained("meta-phi/Phi-2-7b-hf")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
生成
< 原始碼 >( inputs: typing.Optional[torch.Tensor] = None generation_config: typing.Optional[transformers.generation.configuration_utils.GenerationConfig] = None logits_processor: typing.Optional[transformers.generation.logits_process.LogitsProcessorList] = None stopping_criteria: typing.Optional[transformers.generation.stopping_criteria.StoppingCriteriaList] = None prefix_allowed_tokens_fn: typing.Optional[typing.Callable[[int, torch.Tensor], list[int]]] = None synced_gpus: typing.Optional[bool] = None assistant_model: typing.Optional[ForwardRef('PreTrainedModel')] = None streamer: typing.Optional[ForwardRef('BaseStreamer')] = None negative_prompt_ids: typing.Optional[torch.Tensor] = None negative_prompt_attention_mask: typing.Optional[torch.Tensor] = None use_model_defaults: typing.Optional[bool] = None custom_generate: typing.Optional[str] = None **kwargs ) → ModelOutput 或 torch.LongTensor
引數
- inputs (形狀因模態而異的
torch.Tensor
, 可選) — 用作生成提示的序列或作為編碼器的模型輸入。如果為None
,該方法會用bos_token_id
和批大小為 1 進行初始化。對於僅解碼器模型,inputs
應為input_ids
格式。對於編碼器-解碼器模型,inputs 可以是input_ids
、input_values
、input_features
或pixel_values
中的任何一種。 - generation_config (GenerationConfig, 可選) — 用作生成呼叫的基礎引數化的生成配置。傳遞給 `generate` 的 `**kwargs` 中與 `generation_config` 屬性匹配的引數將覆蓋它們。如果未提供 `generation_config`,則將使用預設配置,其載入優先順序如下:1) 從 `generation_config.json` 模型檔案(如果存在);2) 從模型配置。請注意,未指定的引數將繼承 GenerationConfig 的預設值,應查閱其文件以引數化生成。
- logits_processor (
LogitsProcessorList
, 可選) — 自定義 logits 處理器,補充由引數和生成配置構建的預設 logits 處理器。如果傳遞的 logit 處理器已經透過引數或生成配置建立,則會丟擲錯誤。此功能適用於高階使用者。 - stopping_criteria (
StoppingCriteriaList
, 可選) — 自定義停止標準,補充由引數和生成配置構建的預設停止標準。如果傳遞的停止標準已經透過引數或生成配置建立,則會丟擲錯誤。如果您的停止標準依賴於scores
輸入,請確保向generate
傳遞return_dict_in_generate=True, output_scores=True
。此功能適用於高階使用者。 - prefix_allowed_tokens_fn (
Callable[[int, torch.Tensor], list[int]]
, 可選) — 如果提供,此函式會在每一步將波束搜尋限制為僅允許的標記。如果未提供,則不應用任何約束。此函式接受 2 個引數:批次 ID `batch_id` 和 `input_ids`。它必須返回一個列表,其中包含根據批次 ID `batch_id` 和先前生成的標記 `inputs_ids` 條件下的下一代步驟允許的標記。此引數對於根據字首進行約束生成非常有用,如 Autoregressive Entity Retrieval 中所述。 - synced_gpus (
bool
, 可選) — 是否繼續執行 while 迴圈直到達到 max_length。除非被覆蓋,否則在使用具有多個 GPU 的 `FullyShardedDataParallel` 或 DeepSpeed ZeRO Stage 3 時,此標誌將設定為True
,以避免在一個 GPU 完成生成而其他 GPU 未完成時發生死鎖。否則,預設為False
。 - assistant_model (
PreTrainedModel
, 可選) — 可用於加速生成的輔助模型。輔助模型必須具有完全相同的分詞器。當使用輔助模型預測候選標記比使用您呼叫 generate 的模型執行生成快得多時,可以實現加速。因此,輔助模型應該小得多。 - streamer (
BaseStreamer
, 可選) — 用於流式傳輸生成序列的 Streamer 物件。生成的標記透過streamer.put(token_ids)
傳遞,streamer 負責任何進一步的處理。 - negative_prompt_ids (形狀為
(batch_size, sequence_length)
的torch.LongTensor
, 可選) — 某些處理器(如 CFG)所需的負面提示。批次大小必須與輸入批次大小匹配。這是一個實驗性功能,未來版本中可能會有破壞性的 API 更改。 - negative_prompt_attention_mask (形狀為
(batch_size, sequence_length)
的torch.LongTensor
, 可選) —negative_prompt_ids
的注意力掩碼。 - use_model_defaults (
bool
, 可選) — 當為True
時,generation_config
中未設定的引數將設定為特定於模型的預設生成配置(`model.generation_config`),而不是全域性預設值(`GenerationConfig()`)。如果未設定,從 `v4.50` 開始儲存的模型將認為此標誌為True
。 - custom_generate (
str
, 可選) — 包含 huggingface.co 倉庫名稱的字串。如果提供,將執行該倉庫的 `custom_generate/generate.py` 檔案中定義的自定義 `generate` 函式,而不是標準的 `generate` 方法。請注意,生成邏輯完全在該倉庫中定義,返回型別可能與標準的 `generate` 方法不同。 - kwargs (
dict[str, Any]
, 可選) —generation_config
的臨時引數化和/或將轉發到模型forward
函式的附加模型特定 kwargs。如果模型是編碼器-解碼器模型,則編碼器特定的 kwargs 不應有字首,解碼器特定的 kwargs 應以 *decoder_* 為字首。
返回
ModelOutput 或 torch.LongTensor
一個 ModelOutput(如果 return_dict_in_generate=True
或 config.return_dict_in_generate=True
)或一個 torch.LongTensor
。
如果模型不是編碼器-解碼器模型(model.config.is_encoder_decoder=False
),則可能的 ModelOutput 型別為
如果模型是編碼器-解碼器模型(model.config.is_encoder_decoder=True
),則可能的 ModelOutput 型別為
為具有語言建模頭的模型生成詞元 ID 序列。
大多數生成控制引數都在 `generation_config` 中設定,如果未傳遞,則將設定為模型的預設生成配置。您可以透過將相應引數傳遞給 generate() 來覆蓋任何 `generation_config`,例如 `.generate(inputs, num_beams=4, do_sample=True)`。
有關生成策略和程式碼示例的概述,請查閱以下指南。
PhiForSequenceClassification
class transformers.PhiForSequenceClassification
< 原始碼 >( config )
引數
- config (PhiForSequenceClassification) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。
Phi 模型 transformer,頂部帶有一個序列分類頭(線性層)。
PhiForSequenceClassification 使用最後一個 token 來進行分類,與其他因果模型(例如 GPT-2)一樣。
由於它對最後一個 token 進行分類,因此需要知道最後一個 token 的位置。如果在配置中定義了 pad_token_id
,它會找到每行中不是填充 token 的最後一個 token。如果沒有定義 pad_token_id
,它會簡單地取批次中每行的最後一個值。由於當傳遞 inputs_embeds
而不是 input_ids
時,它無法猜測填充 token,因此它會做同樣的操作(取批次中每行的最後一個值)。
該模型繼承自 PreTrainedModel。請查閱超類文件以瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭等)。
該模型也是 PyTorch 的 torch.nn.Module 子類。可以像常規 PyTorch 模組一樣使用它,並參考 PyTorch 文件瞭解所有與通用用法和行為相關的事項。
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None ) → transformers.modeling_outputs.SequenceClassifierOutputWithPast
或 tuple(torch.FloatTensor)
引數
- input_ids (
torch.LongTensor
,形狀為(batch_size, sequence_length)
, 可選) — 詞彙表中輸入序列 token 的索引。預設情況下,填充將被忽略。可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形狀為(batch_size, sequence_length)
, 可選) — 用於避免在填充 token 索引上執行注意力的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示 token 未被遮蓋,
- 0 表示 token 被遮蓋。
- position_ids (
torch.LongTensor
,形狀為(batch_size, sequence_length)
, 可選) — 位置嵌入中每個輸入序列 token 的位置索引。在[0, config.n_positions - 1]
範圍內選擇。 - past_key_values (
~cache_utils.Cache
, 可選) — 預計算的隱藏狀態(自注意力和交叉注意力塊中的鍵和值),可用於加速序列解碼。這通常包括模型在先前解碼階段返回的past_key_values
,當use_cache=True
或config.use_cache=True
時。允許兩種格式:
- Cache 例項,請參閱我們的 kv 快取指南;
- 長度為
config.n_layers
的tuple(torch.FloatTensor)
元組,每個元組包含 2 個形狀為(batch_size, num_heads, sequence_length, embed_size_per_head)
的張量。這也稱為舊版快取格式。
模型將輸出與輸入相同的快取格式。如果沒有傳遞
past_key_values
,將返回舊版快取格式。如果使用
past_key_values
,使用者可以選擇只輸入最後一個input_ids
(那些沒有為其提供過去鍵值狀態的 ID),形狀為(batch_size, 1)
,而不是所有形狀為(batch_size, sequence_length)
的input_ids
。 - inputs_embeds (
torch.FloatTensor
,形狀為(batch_size, sequence_length, hidden_size)
, 可選) — 可選地,您可以選擇直接傳遞嵌入表示,而不是傳遞input_ids
。如果您希望比模型內部的嵌入查詢矩陣更能控制如何將input_ids
索引轉換為關聯向量,這很有用。 - labels (
torch.LongTensor
,形狀為(batch_size,)
, 可選) — 用於計算序列分類/迴歸損失的標籤。索引應在[0, ..., config.num_labels - 1]
範圍內。如果config.num_labels == 1
,則計算迴歸損失(均方損失),如果config.num_labels > 1
,則計算分類損失(交叉熵)。 - use_cache (
bool
, 可選) — 如果設定為True
,則返回past_key_values
鍵值狀態,可用於加速解碼(請參閱past_key_values
)。 - output_attentions (
bool
, 可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的attentions
。 - output_hidden_states (
bool
, 可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的hidden_states
。
返回
transformers.modeling_outputs.SequenceClassifierOutputWithPast
或 tuple(torch.FloatTensor)
一個 transformers.modeling_outputs.SequenceClassifierOutputWithPast
或一個 torch.FloatTensor
元組(如果傳遞了 return_dict=False
或當 config.return_dict=False
時),根據配置(PhiConfig)和輸入,包含各種元素。
-
loss (形狀為
(1,)
的torch.FloatTensor
,可選,當提供labels
時返回) — 分類損失(如果 config.num_labels==1,則為迴歸損失)。 -
logits (形狀為
(batch_size, config.num_labels)
的torch.FloatTensor
) — 分類(如果 config.num_labels==1,則為迴歸)分數(SoftMax 之前)。 -
past_key_values (
Cache
, 可選, 當傳遞use_cache=True
或config.use_cache=True
時返回) — 這是一個 Cache 例項。有關更多詳細資訊,請參閱我們的 kv 快取指南。包含預計算的隱藏狀態(自注意力塊中的鍵和值),可用於(參見
past_key_values
輸入)加速順序解碼。 -
hidden_states (
tuple(torch.FloatTensor)
, 可選, 當傳遞output_hidden_states=True
或config.output_hidden_states=True
時返回) —torch.FloatTensor
的元組(如果模型有嵌入層,則一個是嵌入層的輸出,加上每個層的輸出),形狀為(batch_size, sequence_length, hidden_size)
。模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。
-
attentions (
tuple(torch.FloatTensor)
, 可選, 當傳遞output_attentions=True
或config.output_attentions=True
時返回) —torch.FloatTensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
PhiForSequenceClassification 的前向方法,覆蓋了 __call__
特殊方法。
儘管前向傳遞的流程需要在此函式內定義,但之後應該呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。
單標籤分類示例
>>> import torch
>>> from transformers import AutoTokenizer, PhiForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-1")
>>> model = PhiForSequenceClassification.from_pretrained("microsoft/phi-1")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_id = logits.argmax().item()
>>> model.config.id2label[predicted_class_id]
...
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = PhiForSequenceClassification.from_pretrained("microsoft/phi-1", num_labels=num_labels)
>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...
多標籤分類示例
>>> import torch
>>> from transformers import AutoTokenizer, PhiForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-1")
>>> model = PhiForSequenceClassification.from_pretrained("microsoft/phi-1", problem_type="multi_label_classification")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = PhiForSequenceClassification.from_pretrained(
... "microsoft/phi-1", num_labels=num_labels, problem_type="multi_label_classification"
... )
>>> labels = torch.sum(
... torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss
PhiForTokenClassification
class transformers.PhiForTokenClassification
< source >( config )
引數
- config (PhiForTokenClassification) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。
Phi transformer,頂部帶有一個 token 分類頭(一個線性層,位於隱藏狀態輸出之上),例如用於命名實體識別 (NER) 任務。
該模型繼承自 PreTrainedModel。請查閱超類文件以瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪頭等)。
該模型也是 PyTorch 的 torch.nn.Module 子類。可以像常規 PyTorch 模組一樣使用它,並參考 PyTorch 文件瞭解所有與通用用法和行為相關的事項。
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None ) → transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
引數
- input_ids (
torch.LongTensor
,形狀為(batch_size, sequence_length)
, 可選) — 詞彙表中輸入序列 token 的索引。預設情況下,填充將被忽略。可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形狀為(batch_size, sequence_length)
, 可選) — 用於避免在填充 token 索引上執行注意力的掩碼。掩碼值在[0, 1]
中選擇:- 1 表示 token 未被遮蓋,
- 0 表示 token 被遮蓋。
- position_ids (
torch.LongTensor
,形狀為(batch_size, sequence_length)
, 可選) — 位置嵌入中每個輸入序列 token 的位置索引。在[0, config.n_positions - 1]
範圍內選擇。 - past_key_values (
~cache_utils.Cache
, 可選) — 預計算的隱藏狀態(自注意力和交叉注意力塊中的鍵和值),可用於加速序列解碼。這通常包括模型在先前解碼階段返回的past_key_values
,當use_cache=True
或config.use_cache=True
時。允許兩種格式:
- Cache 例項,請參閱我們的 kv 快取指南;
- 長度為
config.n_layers
的tuple(torch.FloatTensor)
元組,每個元組包含 2 個形狀為(batch_size, num_heads, sequence_length, embed_size_per_head)
的張量。這也稱為舊版快取格式。
模型將輸出與輸入相同的快取格式。如果沒有傳遞
past_key_values
,將返回舊版快取格式。如果使用
past_key_values
,使用者可以選擇只輸入最後一個input_ids
(那些沒有為其提供過去鍵值狀態的 ID),形狀為(batch_size, 1)
,而不是所有形狀為(batch_size, sequence_length)
的input_ids
。 - inputs_embeds (
torch.FloatTensor
,形狀為(batch_size, sequence_length, hidden_size)
, 可選) — 可選地,您可以選擇直接傳遞嵌入表示,而不是傳遞input_ids
。如果您希望比模型內部的嵌入查詢矩陣更能控制如何將input_ids
索引轉換為關聯向量,這很有用。 - labels (
torch.LongTensor
,形狀為(batch_size,)
, 可選) — 用於計算序列分類/迴歸損失的標籤。索引應在[0, ..., config.num_labels - 1]
範圍內。如果config.num_labels == 1
,則計算迴歸損失(均方損失),如果config.num_labels > 1
,則計算分類損失(交叉熵)。 - use_cache (
bool
, 可選) — 如果設定為True
,則返回past_key_values
鍵值狀態,可用於加速解碼(請參閱past_key_values
)。 - output_attentions (
bool
, 可選) — 是否返回所有注意力層的注意力張量。有關更多詳細資訊,請參閱返回張量下的attentions
。 - output_hidden_states (
bool
, 可選) — 是否返回所有層的隱藏狀態。有關更多詳細資訊,請參閱返回張量下的hidden_states
。
返回
transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
一個 transformers.modeling_outputs.TokenClassifierOutput 或一個 torch.FloatTensor
元組(如果傳遞了 return_dict=False
或當 config.return_dict=False
時),根據配置(PhiConfig)和輸入,包含各種元素。
-
loss (形狀為
(1,)
的torch.FloatTensor
,可選,當提供labels
時返回) — 分類損失。 -
logits (形狀為
(batch_size, sequence_length, config.num_labels)
的torch.FloatTensor
) — 分類分數(SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
, 可選, 當傳遞output_hidden_states=True
或config.output_hidden_states=True
時返回) —torch.FloatTensor
的元組(如果模型有嵌入層,則一個是嵌入層的輸出,加上每個層的輸出),形狀為(batch_size, sequence_length, hidden_size)
。模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。
-
attentions (
tuple(torch.FloatTensor)
, 可選, 當傳遞output_attentions=True
或config.output_attentions=True
時返回) —torch.FloatTensor
的元組(每層一個),形狀為(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。
PhiForTokenClassification 的前向方法,覆蓋了 __call__
特殊方法。
儘管前向傳遞的流程需要在此函式內定義,但之後應該呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。
示例
>>> from transformers import AutoTokenizer, PhiForTokenClassification
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-1")
>>> model = PhiForTokenClassification.from_pretrained("microsoft/phi-1")
>>> inputs = tokenizer(
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_token_class_ids = logits.argmax(-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> predicted_tokens_classes
...
>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...