Transformers 文件

ERNIE

Hugging Face's logo
加入 Hugging Face 社群

並獲得增強的文件體驗

開始使用

ERNIE

PyTorch

概述

ERNIE 是百度提出的一系列強大的模型,特別是在中文任務上,包括 ERNIE1.0ERNIE2.0ERNIE3.0ERNIE-GramERNIE-health 等。

這些模型由 nghuyong 貢獻,官方程式碼可以在 PaddleNLP (基於 PaddlePaddle) 中找到。

使用示例

ernie-1.0-base-zh 為例

from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-1.0-base-zh")
model = AutoModel.from_pretrained("nghuyong/ernie-1.0-base-zh")

模型檢查點

模型名稱 語言 描述
ernie-1.0-base-zh 中文 層數:12,注意力頭數:12,隱藏層維度:768
ernie-2.0-base-en 英語 層數:12,注意力頭數:12,隱藏層維度:768
ernie-2.0-large-en 英語 層數:24,注意力頭數:16,隱藏層維度:1024
ernie-3.0-base-zh 中文 層數:12,注意力頭數:12,隱藏層維度:768
ernie-3.0-medium-zh 中文 層數:6,注意力頭數:12,隱藏層維度:768
ernie-3.0-mini-zh 中文 層數:6,注意力頭數:12,隱藏層維度:384
ernie-3.0-micro-zh 中文 層數:4,注意力頭數:12,隱藏層維度:384
ernie-3.0-nano-zh 中文 層數:4,注意力頭數:12,隱藏層維度:312
ernie-health-zh 中文 層數:12,注意力頭數:12,隱藏層維度:768
ernie-gram-zh 中文 層數:12,注意力頭數:12,隱藏層維度:768

你可以從 Hugging Face 模型中心找到所有支援的模型:huggingface.co/nghuyong,以及從 Paddle 的官方倉庫中找到模型詳細資訊:PaddleNLPERNIE

資源

ErnieConfig

class transformers.ErnieConfig

< >

( vocab_size = 30522 hidden_size = 768 num_hidden_layers = 12 num_attention_heads = 12 intermediate_size = 3072 hidden_act = 'gelu' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 512 type_vocab_size = 2 task_type_vocab_size = 3 use_task_id = False initializer_range = 0.02 layer_norm_eps = 1e-12 pad_token_id = 0 position_embedding_type = 'absolute' use_cache = True classifier_dropout = None **kwargs )

引數

  • vocab_size (int, 可選, 預設為 30522) — ERNIE 模型的詞彙表大小。定義了在呼叫 ErnieModelTFErnieModel 時,inputs_ids 可以表示的不同詞元的數量。
  • hidden_size (int, 可選, 預設為 768) — 編碼器層和池化層的維度。
  • num_hidden_layers (int, 可選, 預設為 12) — Transformer 編碼器中的隱藏層數量。
  • num_attention_heads (int, 可選, 預設為 12) — Transformer 編碼器中每個注意力層的注意力頭數量。
  • intermediate_size (int, 可選, 預設為 3072) — Transformer 編碼器中“中間層”(通常稱為前饋層)的維度。
  • hidden_act (str or Callable, 可選, 預設為 "gelu") — 編碼器和池化層中的非線性啟用函式(函式或字串)。如果為字串,則支援 "gelu""relu""silu""gelu_new"
  • hidden_dropout_prob (float, 可選, 預設為 0.1) — 嵌入層、編碼器和池化層中所有全連線層的丟棄機率。
  • attention_probs_dropout_prob (float, 可選, 預設為 0.1) — 注意力機率的丟棄率。
  • max_position_embeddings (int, 可選, 預設為 512) — 模型可能使用的最大序列長度。通常將其設定為一個較大的值以備不時之需(例如,512、1024 或 2048)。
  • type_vocab_size (int, 可選, 預設為 2) — 在呼叫 ErnieModelTFErnieModel 時,token_type_ids 的詞彙表大小。
  • task_type_vocab_size (int, 可選, 預設為 3) — ERNIE2.0/ERNIE3.0 模型中 task_type_ids 的詞彙表大小。
  • use_task_id (bool, 可選, 預設為 False) — 模型是否支援 task_type_ids
  • initializer_range (float, 可選, 預設為 0.02) — 用於初始化所有權重矩陣的 truncated_normal_initializer 的標準差。
  • layer_norm_eps (float, 可選, 預設為 1e-12) — 層歸一化層使用的 epsilon 值。
  • pad_token_id (int, 可選, 預設為 0) — 填充詞元 ID。
  • position_embedding_type (str, 可選, 預設為 "absolute") — 位置嵌入的型別。選擇 "absolute""relative_key""relative_key_query"。對於位置嵌入,使用 "absolute"。有關 "relative_key" 的更多資訊,請參閱 《Self-Attention with Relative Position Representations》(Shaw 等人)。有關 "relative_key_query" 的更多資訊,請參閱 《Improve Transformer Models with Better Relative Position Embeddings》(Huang 等人) 中的 *方法 4*。
  • use_cache (bool, 可選, 預設為 True) — 模型是否應返回最後一個鍵/值注意力(並非所有模型都使用)。僅當 config.is_decoder=True 時相關。
  • classifier_dropout (float, 可選) — 分類頭的丟棄率。

這是用於儲存 ErnieModelTFErnieModel 配置的配置類。它用於根據指定的引數例項化 ERNIE 模型,定義模型架構。使用預設值例項化配置將產生與 ERNIE nghuyong/ernie-3.0-base-zh 架構類似的配置。

配置物件繼承自 PretrainedConfig,可用於控制模型輸出。有關更多資訊,請閱讀 PretrainedConfig 的文件。

示例

>>> from transformers import ErnieConfig, ErnieModel

>>> # Initializing a ERNIE nghuyong/ernie-3.0-base-zh style configuration
>>> configuration = ErnieConfig()

>>> # Initializing a model (with random weights) from the nghuyong/ernie-3.0-base-zh style configuration
>>> model = ErnieModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

Ernie 特定輸出

class transformers.models.ernie.modeling_ernie.ErnieForPreTrainingOutput

< >

( loss: typing.Optional[torch.FloatTensor] = None prediction_logits: typing.Optional[torch.FloatTensor] = None seq_relationship_logits: typing.Optional[torch.FloatTensor] = None hidden_states: typing.Optional[tuple[torch.FloatTensor]] = None attentions: typing.Optional[tuple[torch.FloatTensor]] = None )

引數

  • loss (*可選*, 當提供了 labels 時返回,torch.FloatTensor,形狀為 (1,)) — 總損失,是掩碼語言建模損失和下一句預測(分類)損失的和。
  • prediction_logits (torch.FloatTensor,形狀為 (batch_size, sequence_length, config.vocab_size)) — 語言建模頭的預測分數(SoftMax 之前的每個詞彙詞元的分數)。
  • seq_relationship_logits (torch.FloatTensor,形狀為 (batch_size, 2)) — 下一句預測(分類)頭的預測分數(SoftMax 之前的真/假連續性分數)。
  • hidden_states (tuple[torch.FloatTensor], 可選, 當傳遞 output_hidden_states=Trueconfig.output_hidden_states=True 時返回) — torch.FloatTensor 的元組(如果模型有嵌入層,則第一個是嵌入層的輸出,+ 每個層的輸出),形狀為 (batch_size, sequence_length, hidden_size)

    模型在每層輸出處的隱藏狀態以及可選的初始嵌入輸出。

  • attentions (tuple[torch.FloatTensor], 可選, 當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — torch.FloatTensor 的元組(每層一個),形狀為 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 之後的注意力權重,用於計算自注意力頭中的加權平均值。

ErnieForPreTraining 的輸出型別。

ErnieModel

class transformers.ErnieModel

< >

( config add_pooling_layer = True )

引數

  • config (ErnieModel) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。
  • add_pooling_layer (bool, 可選, 預設為 True) — 是否新增一個池化層

該模型既可以作為編碼器(僅使用自注意力機制),也可以作為解碼器。在作為解碼器時,自注意力層之間會新增一個交叉注意力層,遵循 Ashish Vaswani、Noam Shazeer、Niki Parmar、Jakob Uszkoreit、Llion Jones、Aidan N. Gomez、Lukasz Kaiser 和 Illia Polosukhin 在 Attention is all you need 中描述的架構。

要作為解碼器使用,模型初始化時需要將配置的 `is_decoder` 引數設定為 `True`。要在 Seq2Seq 模型中使用,模型初始化時需要同時設定 `is_decoder` 引數和

該模型繼承自 PreTrainedModel。請檢視超類文件以瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪注意力頭等)。

該模型也是一個 PyTorch torch.nn.Module 子類。可以像常規的 PyTorch Module 一樣使用它,並參考 PyTorch 文件瞭解所有與通用用法和行為相關的事項。

forward

< >

( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None task_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None encoder_hidden_states: typing.Optional[torch.Tensor] = None encoder_attention_mask: typing.Optional[torch.Tensor] = None past_key_values: typing.Optional[list[torch.FloatTensor]] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentionstuple(torch.FloatTensor)

引數

  • input_ids (torch.Tensor,形狀為 (batch_size, sequence_length)可選) — 詞彙表中輸入序列詞元的索引。預設情況下將忽略填充。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (torch.Tensor,形狀為 (batch_size, sequence_length)可選) — 用於避免在填充詞元索引上執行注意力的掩碼。掩碼值選自 [0, 1]

    • 1 表示詞元未被掩碼
    • 0 表示詞元被掩碼

    什麼是注意力掩碼?

  • token_type_ids (torch.Tensor,形狀為 (batch_size, sequence_length)可選) — 用於指示輸入的第一和第二部分的段落詞元索引。索引選自 [0, 1]

    • 0 對應於 *A 句子* 的詞元,
    • 1 對應於 *B 句子* 的詞元。

    什麼是詞元型別 ID?

  • task_type_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 任務型別嵌入是一種特殊的嵌入,用於表示不同任務的特徵,例如詞感知預訓練任務、結構感知預訓練任務和語義感知預訓練任務。我們為每個任務分配一個 task_type_id,且 task_type_id 的範圍在 `[0, config.task_type_vocab_size-1]` 之間
  • position_ids (torch.Tensor,形狀為 (batch_size, sequence_length)可選) — 每個輸入序列詞元在位置嵌入中的位置索引。選自範圍 [0, config.n_positions - 1]

    什麼是位置 ID?

  • head_mask (torch.Tensor,形狀為 (num_heads,)(num_layers, num_heads)可選) — 用於置零自注意力模組中選定頭的掩碼。掩碼值選自 [0, 1]

    • 1 表示頭未被掩碼
    • 0 表示頭被掩碼
  • inputs_embeds (torch.Tensor,形狀為 (batch_size, sequence_length, hidden_size)可選) — 可選地,你可以選擇直接傳遞嵌入表示,而不是傳遞 `input_ids`。如果你想更多地控制如何將 `input_ids` 索引轉換為關聯向量,而不是使用模型的內部嵌入查詢矩陣,這會很有用。
  • encoder_hidden_states (torch.Tensor,形狀為 (batch_size, sequence_length, hidden_size)可選) — 編碼器最後一層輸出的隱藏狀態序列。如果模型被配置為解碼器,則用於交叉注意力。
  • encoder_attention_mask (torch.Tensor,形狀為 (batch_size, sequence_length)可選) — 用於避免在編碼器輸入的填充詞元索引上執行注意力的掩碼。如果模型被配置為解碼器,該掩碼用於交叉注意力。掩碼值選自 [0, 1]

    • 1 表示詞元未被掩碼
    • 0 表示詞元被掩碼
  • past_key_values (list[torch.FloatTensor], 可選) — 預先計算的隱藏狀態(自注意力塊和交叉注意力塊中的鍵和值),可用於加速序列解碼。這通常由模型在解碼的先前階段返回的 `past_key_values` 組成,當 `use_cache=True` 或 `config.use_cache=True` 時。

    允許兩種格式:

    • 一個 Cache 例項,請參閱我們的 kv 快取指南
    • 長度為 `config.n_layers` 的 `tuple(tuple(torch.FloatTensor))`,每個元組包含 2 個形狀為 `(batch_size, num_heads, sequence_length, embed_size_per_head)` 的張量。這也被稱為舊版快取格式。

    模型將輸出與輸入相同的快取格式。如果沒有傳遞 `past_key_values`,將返回舊版快取格式。

    如果使用了 `past_key_values`,使用者可以選擇只輸入最後一個 `input_ids`(那些沒有為其提供過去鍵值狀態的詞元),形狀為 `(batch_size, 1)`,而不是所有形狀為 `(batch_size, sequence_length)` 的 `input_ids`。

  • use_cache (bool, 可選) — 如果設定為 True,則返回 `past_key_values` 鍵值狀態,可用於加速解碼(參見 `past_key_values`)。
  • output_attentions (bool, 可選) — 是否返回所有注意力層的注意力張量。有關詳細資訊,請參閱返回張量下的 `attentions`。
  • output_hidden_states (bool, 可選) — 是否返回所有層的隱藏狀態。有關詳細資訊,請參閱返回張量下的 `hidden_states`。
  • return_dict (bool, 可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。

返回

transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentionstuple(torch.FloatTensor)

一個 transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions 或一個 torch.FloatTensor 的元組(如果傳遞 `return_dict=False` 或 `config.return_dict=False`),根據配置 (ErnieConfig) 和輸入包含不同的元素。

  • last_hidden_state (torch.FloatTensor, 形狀為 (batch_size, sequence_length, hidden_size)) — 模型最後一層輸出的隱藏狀態序列。

  • pooler_output (torch.FloatTensor,形狀為 (batch_size, hidden_size)) — 序列的第一個詞元(分類詞元)的最後一層隱藏狀態,經過用於輔助預訓練任務的層進一步處理。例如,對於 BERT 家族模型,這返回經過線性層和 tanh 啟用函式處理後的分類詞元。線性層權重在預訓練期間透過下一句預測(分類)目標進行訓練。

  • hidden_states (tuple(torch.FloatTensor)可選,當傳遞 `output_hidden_states=True` 或 `config.output_hidden_states=True` 時返回) — `torch.FloatTensor` 的元組(一個用於嵌入層的輸出(如果模型有嵌入層),再加上每個層的輸出),形狀為 `(batch_size, sequence_length, hidden_size)`。

    模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。

  • attentions (tuple(torch.FloatTensor)可選,當傳遞 `output_attentions=True` 或 `config.output_attentions=True` 時返回) — `torch.FloatTensor` 的元組(每層一個),形狀為 `(batch_size, num_heads, sequence_length, sequence_length)`。

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

  • cross_attentions (tuple(torch.FloatTensor)可選,當傳遞 `output_attentions=True` 且 `config.add_cross_attention=True` 或 `config.output_attentions=True` 時返回) — `torch.FloatTensor` 的元組(每層一個),形狀為 `(batch_size, num_heads, sequence_length, sequence_length)`。

    解碼器交叉注意力層的注意力權重,在注意力 softmax 之後,用於計算交叉注意力頭中的加權平均。

  • past_key_values (Cache可選,當傳遞 `use_cache=True` 或 `config.use_cache=True` 時返回) — 這是一個 Cache 例項。更多詳情,請參閱我們的 kv 快取指南

    包含預先計算的隱藏狀態(自注意力塊中的鍵和值,如果 `config.is_encoder_decoder=True`,則還包括交叉注意力塊中的鍵和值),可用於(參見 `past_key_values` 輸入)加速序列解碼。

ErnieModel 的 forward 方法重寫了 `__call__` 特殊方法。

儘管前向傳遞的邏輯需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

ErnieForPreTraining

class transformers.ErnieForPreTraining

< >

( config )

引數

  • config (ErnieForPreTraining) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。

Ernie 模型,頂部有兩個頭,用於預訓練:一個“掩碼語言建模”頭和一個“下一句預測(分類)”頭。

該模型繼承自 PreTrainedModel。請檢視超類文件以瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪注意力頭等)。

該模型也是一個 PyTorch torch.nn.Module 子類。可以像常規的 PyTorch Module 一樣使用它,並參考 PyTorch 文件瞭解所有與通用用法和行為相關的事項。

forward

< >

( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None task_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None next_sentence_label: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.models.ernie.modeling_ernie.ErnieForPreTrainingOutputtuple(torch.FloatTensor)

引數

  • input_ids (torch.Tensor,形狀為 (batch_size, sequence_length)可選) — 詞彙表中輸入序列詞元的索引。預設情況下將忽略填充。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (torch.Tensor,形狀為 (batch_size, sequence_length)可選) — 用於避免在填充詞元索引上執行注意力的掩碼。掩碼值選自 [0, 1]

    • 1 表示詞元未被掩碼
    • 0 表示詞元被掩碼

    什麼是注意力掩碼?

  • token_type_ids (torch.Tensor,形狀為 (batch_size, sequence_length)可選) — 用於指示輸入的第一和第二部分的段落詞元索引。索引選自 [0, 1]

    • 0 對應於 *A 句子* 的詞元,
    • 1 對應於 *B 句子* 的詞元。

    什麼是詞元型別 ID?

  • task_type_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 任務型別嵌入是一種特殊的嵌入,用於表示不同任務的特徵,例如詞感知預訓練任務、結構感知預訓練任務和語義感知預訓練任務。我們為每個任務分配一個 task_type_id,且 task_type_id 的範圍在 `[0, config.task_type_vocab_size-1]` 之間
  • position_ids (torch.Tensor,形狀為 (batch_size, sequence_length)可選) — 每個輸入序列詞元在位置嵌入中的位置索引。選自範圍 [0, config.n_positions - 1]

    什麼是位置 ID?

  • head_mask (torch.Tensor,形狀為 (num_heads,)(num_layers, num_heads)可選) — 用於置零自注意力模組中選定頭的掩碼。掩碼值選自 [0, 1]

    • 1 表示頭未被掩碼
    • 0 表示頭被掩碼
  • inputs_embeds (torch.Tensor,形狀為 (batch_size, sequence_length, hidden_size)可選) — 可選地,你可以選擇直接傳遞嵌入表示,而不是傳遞 `input_ids`。如果你想更多地控制如何將 `input_ids` 索引轉換為關聯向量,而不是使用模型的內部嵌入查詢矩陣,這會很有用。
  • labels (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 用於計算掩碼語言建模損失的標籤。索引應在 `[-100, 0, ..., config.vocab_size]` 範圍內(參見 `input_ids` 文件字串)。索引設定為 `-100` 的詞元將被忽略(掩碼),損失僅針對標籤在 `[0, ..., config.vocab_size]` 範圍內的詞元計算。
  • next_sentence_label (torch.LongTensor,形狀為 (batch_size,)可選) — 用於計算下一序列預測(分類)損失的標籤。輸入應為序列對(參見 `input_ids` 文件字串)。索引應在 `[0, 1]` 範圍內:

    • 0 表示序列 B 是序列 A 的延續,
    • 1 表示序列 B 是一個隨機序列。
  • output_attentions (bool, 可選) — 是否返回所有注意力層的注意力張量。有關詳細資訊,請參閱返回張量下的 `attentions`。
  • output_hidden_states (bool, 可選) — 是否返回所有層的隱藏狀態。有關詳細資訊,請參閱返回張量下的 `hidden_states`。
  • return_dict (bool, 可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。

返回

transformers.models.ernie.modeling_ernie.ErnieForPreTrainingOutputtuple(torch.FloatTensor)

一個 transformers.models.ernie.modeling_ernie.ErnieForPreTrainingOutput 或一個 torch.FloatTensor 的元組(如果傳遞 `return_dict=False` 或 `config.return_dict=False`),根據配置 (ErnieConfig) 和輸入包含不同的元素。

  • loss (可選, 當提供 `labels` 時返回, `torch.FloatTensor`,形狀為 `(1,)`) — 總損失,為掩碼語言建模損失和下一序列預測(分類)損失之和。

  • prediction_logits (torch.FloatTensor 形狀為 (batch_size, sequence_length, config.vocab_size)) — 語言建模頭的預測分數(SoftMax 之前的每個詞彙 token 的分數)。

  • seq_relationship_logits (torch.FloatTensor 形狀為 (batch_size, 2)) — 下一序列預測(分類)頭的預測分數(SoftMax 之前的 True/False 延續分數)。

  • hidden_states (tuple[torch.FloatTensor], 可選, 當傳遞 output_hidden_states=Trueconfig.output_hidden_states=True 時返回) — `torch.FloatTensor` 的元組(一個用於嵌入層的輸出(如果模型有嵌入層),再加上每個層的輸出),形狀為 `(batch_size, sequence_length, hidden_size)`。

    模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。

  • attentions (tuple[torch.FloatTensor], 可選, 當傳遞 output_attentions=Trueconfig.output_attentions=True 時返回) — `torch.FloatTensor` 的元組(每層一個),形狀為 `(batch_size, num_heads, sequence_length, sequence_length)`。

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

ErnieForPreTraining 的 forward 方法重寫了 `__call__` 特殊方法。

儘管前向傳遞的邏輯需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> from transformers import AutoTokenizer, ErnieForPreTraining
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-1.0-base-zh")
>>> model = ErnieForPreTraining.from_pretrained("nghuyong/ernie-1.0-base-zh")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> prediction_logits = outputs.prediction_logits
>>> seq_relationship_logits = outputs.seq_relationship_logits

ErnieForCausalLM

class transformers.ErnieForCausalLM

< >

( config )

引數

  • config (ErnieForCausalLM) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。

Ernie 模型,頂部帶有一個用於因果語言模型(CLM)微調的“語言建模”頭。

該模型繼承自 PreTrainedModel。請檢視超類文件以瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪注意力頭等)。

該模型也是一個 PyTorch torch.nn.Module 子類。可以像常規的 PyTorch Module 一樣使用它,並參考 PyTorch 文件瞭解所有與通用用法和行為相關的事項。

forward

< >

( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None task_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None encoder_hidden_states: typing.Optional[torch.Tensor] = None encoder_attention_mask: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None past_key_values: typing.Optional[list[torch.Tensor]] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None **kwargs ) transformers.modeling_outputs.CausalLMOutputWithCrossAttentionstuple(torch.FloatTensor)

引數

  • input_ids (torch.Tensor,形狀為 (batch_size, sequence_length)可選) — 詞彙表中輸入序列詞元的索引。預設情況下,填充將被忽略。

    索引可以使用 AutoTokenizer 獲取。詳情請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (torch.Tensor,形狀為 (batch_size, sequence_length)可選) — 用於避免對填充詞元索引執行注意力操作的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示詞元未被遮蓋
    • 0 表示詞元已被遮蓋

    什麼是注意力掩碼?

  • token_type_ids (torch.Tensor,形狀為 (batch_size, sequence_length)可選) — 片段詞元索引,用於指示輸入的第一部分和第二部分。索引在 [0, 1] 中選擇:

    • 0 對應於*句子 A*的詞元,
    • 1 對應於*句子 B*的詞元。

    什麼是詞元型別 ID?

  • task_type_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 任務型別嵌入是一種特殊的嵌入,用於表示不同任務的特性,例如詞感知預訓練任務、結構感知預訓練任務和語義感知預訓練任務。我們為每個任務分配一個 task_type_id,該 task_type_id 在 `[0, config.task_type_vocab_size-1]` 範圍內。
  • position_ids (torch.Tensor,形狀為 (batch_size, sequence_length)可選) — 每個輸入序列詞元在位置嵌入中的位置索引。在 [0, config.n_positions - 1] 範圍內選擇。

    什麼是位置 ID?

  • head_mask (torch.Tensor,形狀為 (num_heads,)(num_layers, num_heads)可選) — 用於使自注意力模組中選定的頭無效的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示該頭未被遮蓋
    • 0 表示該頭已被遮蓋
  • inputs_embeds (torch.Tensor,形狀為 (batch_size, sequence_length, hidden_size)可選) — 可選地,你可以選擇直接傳遞嵌入表示,而不是傳遞 input_ids。如果你希望比模型內部的嵌入查詢矩陣有更多控制權來將 input_ids 索引轉換為相關向量,這會非常有用。
  • encoder_hidden_states (torch.Tensor,形狀為 (batch_size, sequence_length, hidden_size)可選) — 編碼器最後一層輸出的隱藏狀態序列。如果模型被配置為解碼器,則在交叉注意力中使用。
  • encoder_attention_mask (torch.Tensor,形狀為 (batch_size, sequence_length)可選) — 用於避免對編碼器輸入的填充詞元索引執行注意力操作的掩碼。如果模型被配置為解碼器,則在交叉注意力中使用此掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示詞元未被遮蓋
    • 0 表示詞元已被遮蓋
  • labels (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 用於計算從左到右語言模型損失(下一個詞預測)的標籤。索引應在 [-100, 0, ..., config.vocab_size] 範圍內(請參閱 input_ids 的文件字串)。索引設定為 -100 的詞元將被忽略(遮蓋),損失僅對標籤在 [0, ..., config.vocab_size] 範圍內的詞元進行計算。
  • past_key_values (list[torch.Tensor]可選) — 預先計算的隱藏狀態(自注意力塊和交叉注意力塊中的鍵和值),可用於加速順序解碼。這通常包括在解碼的前一個階段,當 use_cache=Trueconfig.use_cache=True 時由模型返回的 past_key_values

    允許兩種格式:

    • Cache 例項,請參閱我們的 kv 快取指南
    • 長度為 config.n_layerstuple(torch.FloatTensor) 的元組,其中每個元組有 2 個形狀為 (batch_size, num_heads, sequence_length, embed_size_per_head) 的張量。這也稱為舊版快取格式。

    模型將輸出與輸入相同的快取格式。如果未傳遞 past_key_values,將返回舊版快取格式。

    如果使用 past_key_values,使用者可以選擇只輸入最後一個 input_ids(那些沒有為其提供過去鍵值狀態的詞元),形狀為 (batch_size, 1),而不是所有形狀為 (batch_size, sequence_length)input_ids

  • use_cache (bool可選) — 如果設定為 True,則返回 past_key_values 鍵值狀態,可用於加速解碼(請參閱 past_key_values)。
  • output_attentions (bool可選) — 是否返回所有注意力層的注意力張量。有關詳細資訊,請參閱返回張量下的 attentions
  • output_hidden_states (bool可選) — 是否返回所有層的隱藏狀態。有關詳細資訊,請參閱返回張量下的 hidden_states
  • return_dict (bool可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。

返回

transformers.modeling_outputs.CausalLMOutputWithCrossAttentionstuple(torch.FloatTensor)

一個 transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或一個 torch.FloatTensor 的元組(如果傳遞 return_dict=False 或當 config.return_dict=False 時),根據配置(ErnieConfig)和輸入,包含各種元素。

  • loss (torch.FloatTensor 形狀為 (1,)可選,當提供 labels 時返回) — 語言建模損失(用於下一個 token 預測)。

  • logits (形狀為 (batch_size, sequence_length, config.vocab_size)torch.FloatTensor) — 語言建模頭部的預測分數(SoftMax 之前的每個詞彙標記的分數)。

  • hidden_states (tuple(torch.FloatTensor)可選,當傳遞 `output_hidden_states=True` 或 `config.output_hidden_states=True` 時返回) — `torch.FloatTensor` 的元組(一個用於嵌入層的輸出(如果模型有嵌入層),再加上每個層的輸出),形狀為 `(batch_size, sequence_length, hidden_size)`。

    模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。

  • attentions (tuple(torch.FloatTensor)可選,當傳遞 `output_attentions=True` 或 `config.output_attentions=True` 時返回) — `torch.FloatTensor` 的元組(每層一個),形狀為 `(batch_size, num_heads, sequence_length, sequence_length)`。

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

  • cross_attentions (tuple(torch.FloatTensor)可選,當傳遞 output_attentions=True 或當 config.output_attentions=True 時返回) — torch.FloatTensor 的元組(每層一個),形狀為 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 後的交叉注意力權重,用於計算交叉注意力頭中的加權平均。

  • past_key_values (Cache可選,當傳遞 `use_cache=True` 或 `config.use_cache=True` 時返回) — 這是一個 Cache 例項。更多詳情,請參閱我們的 kv 快取指南

    包含預先計算的隱藏狀態(注意力塊中的鍵和值),可用於(參見 past_key_values 輸入)加速順序解碼。

ErnieForCausalLM 的 forward 方法重寫了 __call__ 特殊方法。

儘管前向傳遞的邏輯需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

ErnieForMaskedLM

class transformers.ErnieForMaskedLM

< >

( config )

引數

  • config (ErnieForMaskedLM) — 包含模型所有引數的模型配置類。用配置檔案初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。

帶有`語言建模`頭的 Ernie 模型。

該模型繼承自 PreTrainedModel。請檢視超類文件以瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪注意力頭等)。

該模型也是一個 PyTorch torch.nn.Module 子類。可以像常規的 PyTorch Module 一樣使用它,並參考 PyTorch 文件瞭解所有與通用用法和行為相關的事項。

forward

< >

( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None task_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None encoder_hidden_states: typing.Optional[torch.Tensor] = None encoder_attention_mask: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.MaskedLMOutputtuple(torch.FloatTensor)

引數

  • input_ids (torch.Tensor,形狀為 (batch_size, sequence_length)可選) — 詞彙表中輸入序列詞元的索引。預設情況下,填充將被忽略。

    索引可以使用 AutoTokenizer 獲取。詳情請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (torch.Tensor,形狀為 (batch_size, sequence_length)可選) — 用於避免對填充詞元索引執行注意力操作的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示詞元未被遮蓋
    • 0 表示詞元已被遮蓋

    什麼是注意力掩碼?

  • token_type_ids (torch.Tensor,形狀為 (batch_size, sequence_length)可選) — 片段詞元索引,用於指示輸入的第一部分和第二部分。索引在 [0, 1] 中選擇:

    • 0 對應於*句子 A*的詞元,
    • 1 對應於*句子 B*的詞元。

    什麼是詞元型別 ID?

  • task_type_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 任務型別嵌入是一種特殊的嵌入,用於表示不同任務的特性,例如詞感知預訓練任務、結構感知預訓練任務和語義感知預訓練任務。我們為每個任務分配一個 task_type_id,該 task_type_id 在 `[0, config.task_type_vocab_size-1]` 範圍內。
  • position_ids (torch.Tensor,形狀為 (batch_size, sequence_length)可選) — 每個輸入序列詞元在位置嵌入中的位置索引。在 [0, config.n_positions - 1] 範圍內選擇。

    什麼是位置 ID?

  • head_mask (torch.Tensor,形狀為 (num_heads,)(num_layers, num_heads)可選) — 用於使自注意力模組中選定的頭無效的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示該頭未被遮蓋
    • 0 表示該頭已被遮蓋
  • inputs_embeds (torch.Tensor,形狀為 (batch_size, sequence_length, hidden_size)可選) — 可選地,你可以選擇直接傳遞嵌入表示,而不是傳遞 input_ids。如果你希望比模型內部的嵌入查詢矩陣有更多控制權來將 input_ids 索引轉換為相關向量,這會非常有用。
  • encoder_hidden_states (torch.Tensor,形狀為 (batch_size, sequence_length, hidden_size)可選) — 編碼器最後一層輸出的隱藏狀態序列。如果模型被配置為解碼器,則在交叉注意力中使用。
  • encoder_attention_mask (torch.Tensor,形狀為 (batch_size, sequence_length)可選) — 用於避免對編碼器輸入的填充詞元索引執行注意力操作的掩碼。如果模型被配置為解碼器,則在交叉注意力中使用此掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示詞元未被遮蓋
    • 0 表示詞元已被遮蓋
  • labels (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 用於計算掩碼語言模型損失的標籤。索引應在 [-100, 0, ..., config.vocab_size] 範圍內(請參閱 input_ids 的文件字串)。索引設定為 -100 的詞元將被忽略(遮蓋),損失僅對標籤在 [0, ..., config.vocab_size] 範圍內的詞元進行計算。
  • output_attentions (bool可選) — 是否返回所有注意力層的注意力張量。有關詳細資訊,請參閱返回張量下的 attentions
  • output_hidden_states (bool可選) — 是否返回所有層的隱藏狀態。有關詳細資訊,請參閱返回張量下的 hidden_states
  • return_dict (bool可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。

返回

transformers.modeling_outputs.MaskedLMOutputtuple(torch.FloatTensor)

一個 transformers.modeling_outputs.MaskedLMOutput 或一個 torch.FloatTensor 的元組(如果傳遞 return_dict=False 或當 config.return_dict=False 時),根據配置(ErnieConfig)和輸入,包含各種元素。

  • loss (形狀為 (1,)torch.FloatTensor可選,當提供 labels 時返回) — 掩碼語言建模 (MLM) 損失。

  • logits (形狀為 (batch_size, sequence_length, config.vocab_size)torch.FloatTensor) — 語言建模頭部的預測分數(SoftMax 之前的每個詞彙標記的分數)。

  • hidden_states (tuple(torch.FloatTensor)可選,當傳遞 `output_hidden_states=True` 或 `config.output_hidden_states=True` 時返回) — `torch.FloatTensor` 的元組(一個用於嵌入層的輸出(如果模型有嵌入層),再加上每個層的輸出),形狀為 `(batch_size, sequence_length, hidden_size)`。

    模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。

  • attentions (tuple(torch.FloatTensor)可選,當傳遞 `output_attentions=True` 或 `config.output_attentions=True` 時返回) — `torch.FloatTensor` 的元組(每層一個),形狀為 `(batch_size, num_heads, sequence_length, sequence_length)`。

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

ErnieForMaskedLM 的 forward 方法重寫了 __call__ 特殊方法。

儘管前向傳遞的邏輯需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> from transformers import AutoTokenizer, ErnieForMaskedLM
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-3.0-base-zh")
>>> model = ErnieForMaskedLM.from_pretrained("nghuyong/ernie-3.0-base-zh")

>>> inputs = tokenizer("The capital of France is <mask>.", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> # retrieve index of <mask>
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]

>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
>>> tokenizer.decode(predicted_token_id)
...

>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
>>> # mask labels of non-<mask> tokens
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)

>>> outputs = model(**inputs, labels=labels)
>>> round(outputs.loss.item(), 2)
...

ErnieForNextSentencePrediction

class transformers.ErnieForNextSentencePrediction

< >

( config )

引數

帶有`下一句預測(分類)`頭的 Ernie 模型。

該模型繼承自 PreTrainedModel。請檢視超類文件以瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪注意力頭等)。

該模型也是一個 PyTorch torch.nn.Module 子類。可以像常規的 PyTorch Module 一樣使用它,並參考 PyTorch 文件瞭解所有與通用用法和行為相關的事項。

forward

< >

( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None task_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None **kwargs ) transformers.modeling_outputs.NextSentencePredictorOutputtuple(torch.FloatTensor)

引數

  • input_ids (torch.Tensor,形狀為 (batch_size, sequence_length)可選) — 詞彙表中輸入序列詞元的索引。預設情況下,填充將被忽略。

    索引可以使用 AutoTokenizer 獲取。詳情請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (torch.Tensor,形狀為 (batch_size, sequence_length)可選) — 用於避免對填充詞元索引執行注意力操作的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示詞元未被遮蓋
    • 0 表示詞元已被遮蓋

    什麼是注意力掩碼?

  • token_type_ids (torch.Tensor,形狀為 (batch_size, sequence_length)可選) — 片段詞元索引,用於指示輸入的第一部分和第二部分。索引在 [0, 1] 中選擇:

    • 0 對應於*句子 A*的詞元,
    • 1 對應於*句子 B*的詞元。

    什麼是詞元型別 ID?

  • task_type_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 任務型別嵌入是一種特殊的嵌入,用於表示不同任務的特性,例如詞感知預訓練任務、結構感知預訓練任務和語義感知預訓練任務。我們為每個任務分配一個 task_type_id,該 task_type_id 在 `[0, config.task_type_vocab_size-1]` 範圍內。
  • position_ids (torch.Tensor,形狀為 (batch_size, sequence_length)可選) — 每個輸入序列詞元在位置嵌入中的位置索引。在 [0, config.n_positions - 1] 範圍內選擇。

    什麼是位置 ID?

  • head_mask (torch.Tensor,形狀為 (num_heads,)(num_layers, num_heads)可選) — 用於使自注意力模組中選定的頭無效的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示該頭未被遮蓋
    • 0 表示該頭已被遮蓋
  • inputs_embeds (torch.Tensor,形狀為 (batch_size, sequence_length, hidden_size)可選) — 可選地,你可以選擇直接傳遞嵌入式表示,而不是傳遞 input_ids。如果你想比模型內部的嵌入查詢矩陣更好地控制如何將 input_ids 索引轉換為相關聯的向量,這會很有用。
  • labels (torch.LongTensor,形狀為 (batch_size,)可選) — 用於計算下一句預測(分類)損失的標籤。輸入應該是一個句子對(請參閱 input_ids 文件字串)。索引應在 [0, 1] 範圍內:

    • 0 表示序列 B 是序列 A 的延續,
    • 1 表示序列 B 是一個隨機序列。
  • output_attentions (bool, 可選) — 是否返回所有注意力層的注意力張量。更多細節請參見返回張量下的 attentions
  • output_hidden_states (bool, 可選) — 是否返回所有層的隱藏狀態。更多細節請參見返回張量下的 hidden_states
  • return_dict (bool, 可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。

返回

transformers.modeling_outputs.NextSentencePredictorOutputtuple(torch.FloatTensor)

一個 transformers.modeling_outputs.NextSentencePredictorOutput 或一個 torch.FloatTensor 的元組(如果傳遞了 return_dict=False 或當 config.return_dict=False 時),根據配置(ErnieConfig)和輸入,包含各種元素。

  • loss (torch.FloatTensor,形狀為 (1,)可選,當提供 next_sentence_label 時返回) — 下一個序列預測(分類)損失。

  • logits (torch.FloatTensor,形狀為 (batch_size, 2)) — 下一個序列預測(分類)頭的預測分數(SoftMax 之前的真/假延續分數)。

  • hidden_states (tuple(torch.FloatTensor)可選,當傳遞 `output_hidden_states=True` 或 `config.output_hidden_states=True` 時返回) — `torch.FloatTensor` 的元組(一個用於嵌入層的輸出(如果模型有嵌入層),再加上每個層的輸出),形狀為 `(batch_size, sequence_length, hidden_size)`。

    模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。

  • attentions (tuple(torch.FloatTensor)可選,當傳遞 `output_attentions=True` 或 `config.output_attentions=True` 時返回) — `torch.FloatTensor` 的元組(每層一個),形狀為 `(batch_size, num_heads, sequence_length, sequence_length)`。

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

ErnieForNextSentencePrediction 的前向方法,重寫了 __call__ 特殊方法。

儘管前向傳遞的邏輯需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> from transformers import AutoTokenizer, ErnieForNextSentencePrediction
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-1.0-base-zh")
>>> model = ErnieForNextSentencePrediction.from_pretrained("nghuyong/ernie-1.0-base-zh")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt")

>>> outputs = model(**encoding, labels=torch.LongTensor([1]))
>>> logits = outputs.logits
>>> assert logits[0, 0] < logits[0, 1]  # next sentence was random

ErnieForSequenceClassification

class transformers.ErnieForSequenceClassification

< >

( config )

引數

  • config (ErnieForSequenceClassification) — 包含模型所有引數的模型配置類。使用配置檔案初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。

Ernie 模型,在其頂部帶有一個序列分類/迴歸頭(一個在池化輸出之上的線性層),例如用於 GLUE 任務。

該模型繼承自 PreTrainedModel。請檢視超類文件以瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪注意力頭等)。

該模型也是一個 PyTorch torch.nn.Module 子類。可以像常規的 PyTorch Module 一樣使用它,並參考 PyTorch 文件瞭解所有與通用用法和行為相關的事項。

forward

< >

( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None task_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.SequenceClassifierOutputtuple(torch.FloatTensor)

引數

  • input_ids (torch.Tensor,形狀為 (batch_size, sequence_length)可選) — 詞彙表中輸入序列標記的索引。預設情況下,填充將被忽略。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (torch.Tensor,形狀為 (batch_size, sequence_length)可選) — 用於避免對填充標記索引執行注意力的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示標記未被掩碼
    • 0 表示標記被掩碼

    什麼是注意力掩碼?

  • token_type_ids (torch.Tensor,形狀為 (batch_size, sequence_length)可選) — 段標記索引,用於指示輸入的第一和第二部分。索引在 [0, 1] 中選擇:

    • 0 對應於 *A 句子* 標記,
    • 1 對應於 *B 句子* 標記。

    什麼是標記型別 ID?

  • task_type_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 任務型別嵌入是一種特殊的嵌入,用於表示不同任務的特性,例如詞感知預訓練任務、結構感知預訓練任務和語義感知預訓練任務。我們為每個任務分配一個 task_type_idtask_type_id 在 `[0, config.task_type_vocab_size-1]` 範圍內。
  • position_ids (torch.Tensor,形狀為 (batch_size, sequence_length)可選) — 每個輸入序列標記在位置嵌入中的位置索引。在 [0, config.n_positions - 1] 範圍內選擇。

    什麼是位置 ID?

  • head_mask (torch.Tensor,形狀為 (num_heads,)(num_layers, num_heads)可選) — 用於使自注意力模組中選定的頭無效的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示頭未被掩碼
    • 0 表示頭被掩碼
  • inputs_embeds (torch.Tensor,形狀為 (batch_size, sequence_length, hidden_size)可選) — 可選地,你可以選擇直接傳遞嵌入式表示,而不是傳遞 input_ids。如果你想比模型內部的嵌入查詢矩陣更好地控制如何將 input_ids 索引轉換為相關聯的向量,這會很有用。
  • labels (torch.LongTensor,形狀為 (batch_size,)可選) — 用於計算序列分類/迴歸損失的標籤。索引應在 [0, ..., config.num_labels - 1] 範圍內。如果 config.num_labels == 1,則計算迴歸損失(均方損失),如果 config.num_labels > 1,則計算分類損失(交叉熵)。
  • output_attentions (bool, 可選) — 是否返回所有注意力層的注意力張量。更多細節請參見返回張量下的 attentions
  • output_hidden_states (bool, 可選) — 是否返回所有層的隱藏狀態。更多細節請參見返回張量下的 hidden_states
  • return_dict (bool, 可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。

返回

transformers.modeling_outputs.SequenceClassifierOutputtuple(torch.FloatTensor)

一個 transformers.modeling_outputs.SequenceClassifierOutput 或一個 torch.FloatTensor 的元組(如果傳遞了 return_dict=False 或當 config.return_dict=False 時),根據配置(ErnieConfig)和輸入,包含各種元素。

  • loss (形狀為 (1,)torch.FloatTensor可選,當提供 labels 時返回) — 分類損失(如果 config.num_labels==1,則為迴歸損失)。

  • logits (形狀為 (batch_size, config.num_labels)torch.FloatTensor) — 分類(如果 config.num_labels==1,則為迴歸)分數(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor)可選,當傳遞 `output_hidden_states=True` 或 `config.output_hidden_states=True` 時返回) — `torch.FloatTensor` 的元組(一個用於嵌入層的輸出(如果模型有嵌入層),再加上每個層的輸出),形狀為 `(batch_size, sequence_length, hidden_size)`。

    模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。

  • attentions (tuple(torch.FloatTensor)可選,當傳遞 `output_attentions=True` 或 `config.output_attentions=True` 時返回) — `torch.FloatTensor` 的元組(每層一個),形狀為 `(batch_size, num_heads, sequence_length, sequence_length)`。

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

ErnieForSequenceClassification 的前向方法,重寫了 __call__ 特殊方法。

儘管前向傳遞的邏輯需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

單標籤分類示例

>>> import torch
>>> from transformers import AutoTokenizer, ErnieForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-3.0-base-zh")
>>> model = ErnieForSequenceClassification.from_pretrained("nghuyong/ernie-3.0-base-zh")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_id = logits.argmax().item()
>>> model.config.id2label[predicted_class_id]
...

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = ErnieForSequenceClassification.from_pretrained("nghuyong/ernie-3.0-base-zh", num_labels=num_labels)

>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...

多標籤分類示例

>>> import torch
>>> from transformers import AutoTokenizer, ErnieForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-3.0-base-zh")
>>> model = ErnieForSequenceClassification.from_pretrained("nghuyong/ernie-3.0-base-zh", problem_type="multi_label_classification")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = ErnieForSequenceClassification.from_pretrained(
...     "nghuyong/ernie-3.0-base-zh", num_labels=num_labels, problem_type="multi_label_classification"
... )

>>> labels = torch.sum(
...     torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss

ErnieForMultipleChoice

class transformers.ErnieForMultipleChoice

< >

( config )

引數

  • config (ErnieForMultipleChoice) — 包含模型所有引數的模型配置類。使用配置檔案初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。

Ernie 模型在其頂部帶有一個多項選擇分類頭(一個在池化輸出之上的線性層和一個 softmax),例如用於 RocStories/SWAG 任務。

該模型繼承自 PreTrainedModel。請檢視超類文件以瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪注意力頭等)。

該模型也是一個 PyTorch torch.nn.Module 子類。可以像常規的 PyTorch Module 一樣使用它,並參考 PyTorch 文件瞭解所有與通用用法和行為相關的事項。

forward

< >

( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None task_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.MultipleChoiceModelOutputtuple(torch.FloatTensor)

引數

  • input_ids (torch.LongTensor,形狀為 (batch_size, num_choices, sequence_length)) — 詞彙表中輸入序列標記的索引。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (torch.Tensor,形狀為 (batch_size, sequence_length)可選) — 用於避免對填充標記索引執行注意力的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示標記未被掩碼
    • 0 表示標記被掩碼

    什麼是注意力掩碼?

  • token_type_ids (torch.LongTensor,形狀為 (batch_size, num_choices, sequence_length)可選) — 段標記索引,用於指示輸入的第一和第二部分。索引在 [0, 1] 中選擇:

    • 0 對應於 *A 句子* 標記,
    • 1 對應於 *B 句子* 標記。

    什麼是標記型別 ID?

  • task_type_ids (torch.LongTensor,形狀為 (batch_size, num_choices, sequence_length)可選) — 任務型別嵌入是一種特殊的嵌入,用於表示不同任務的特性,例如詞感知預訓練任務、結構感知預訓練任務和語義感知預訓練任務。我們為每個任務分配一個 task_type_idtask_type_id 在 `[0, config.task_type_vocab_size-1]` 範圍內。
  • position_ids (torch.LongTensor,形狀為 (batch_size, num_choices, sequence_length)可選) — 每個輸入序列標記在位置嵌入中的位置索引。在 [0, config.max_position_embeddings - 1] 範圍內選擇。

    什麼是位置 ID?

  • head_mask (torch.Tensor,形狀為 (num_heads,)(num_layers, num_heads)可選) — 用於使自注意力模組中選定的頭無效的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示頭未被掩碼
    • 0 表示頭被掩碼
  • inputs_embeds (torch.FloatTensor,形狀為 (batch_size, num_choices, sequence_length, hidden_size)可選) — 可選地,你可以選擇直接傳遞嵌入式表示,而不是傳遞 input_ids。如果你想比模型內部的嵌入查詢矩陣更好地控制如何將 input_ids 索引轉換為相關聯的向量,這會很有用。
  • labels (torch.LongTensor,形狀為 (batch_size,)可選) — 用於計算多項選擇分類損失的標籤。索引應在 [0, ..., num_choices-1] 範圍內,其中 num_choices 是輸入張量第二維的大小。(見上面的 input_ids
  • output_attentions (bool, 可選) — 是否返回所有注意力層的注意力張量。更多細節請參見返回張量下的 attentions
  • output_hidden_states (bool, 可選) — 是否返回所有層的隱藏狀態。更多細節請參見返回張量下的 hidden_states
  • return_dict (bool, 可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。

返回

transformers.modeling_outputs.MultipleChoiceModelOutputtuple(torch.FloatTensor)

一個 transformers.modeling_outputs.MultipleChoiceModelOutput 或一個 torch.FloatTensor 的元組(如果傳遞了 return_dict=False 或當 config.return_dict=False 時),根據配置(ErnieConfig)和輸入,包含各種元素。

  • loss (形狀為 (1,)torch.FloatTensor可選,當提供 labels 時返回) — 分類損失。

  • logits (形狀為 (batch_size, num_choices)torch.FloatTensor) — num_choices 是輸入張量的第二維大小。(請參閱上面的 input_ids)。

    分類分數(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor)可選,當傳遞 `output_hidden_states=True` 或 `config.output_hidden_states=True` 時返回) — `torch.FloatTensor` 的元組(一個用於嵌入層的輸出(如果模型有嵌入層),再加上每個層的輸出),形狀為 `(batch_size, sequence_length, hidden_size)`。

    模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。

  • attentions (tuple(torch.FloatTensor)可選,當傳遞 `output_attentions=True` 或 `config.output_attentions=True` 時返回) — `torch.FloatTensor` 的元組(每層一個),形狀為 `(batch_size, num_heads, sequence_length, sequence_length)`。

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

ErnieForMultipleChoice 的前向方法,重寫了 __call__ 特殊方法。

儘管前向傳遞的邏輯需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> from transformers import AutoTokenizer, ErnieForMultipleChoice
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-3.0-base-zh")
>>> model = ErnieForMultipleChoice.from_pretrained("nghuyong/ernie-3.0-base-zh")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0)  # choice0 is correct (according to Wikipedia ;)), batch size 1

>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels)  # batch size is 1

>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits

ErnieForTokenClassification

class transformers.ErnieForTokenClassification

< >

( config )

引數

  • config (ErnieForTokenClassification) — 包含模型所有引數的模型配置類。使用配置檔案初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。

Ernie 模型在其頂部帶有一個標記分類頭(一個在隱藏狀態輸出之上的線性層),例如用於命名實體識別(NER)任務。

該模型繼承自 PreTrainedModel。請檢視超類文件以瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪注意力頭等)。

該模型也是一個 PyTorch torch.nn.Module 子類。可以像常規的 PyTorch Module 一樣使用它,並參考 PyTorch 文件瞭解所有與通用用法和行為相關的事項。

forward

< >

( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None task_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

引數

  • input_ids (torch.Tensor,形狀為 (batch_size, sequence_length)可選) — 詞彙表中輸入序列標記的索引。預設情況下,填充將被忽略。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (torch.Tensor,形狀為 (batch_size, sequence_length)可選) — 用於避免對填充標記索引執行注意力的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示標記未被掩碼
    • 0 表示標記被掩碼

    什麼是注意力掩碼?

  • token_type_ids (torch.Tensor,形狀為 (batch_size, sequence_length)可選) — 段標記索引,用於指示輸入的第一和第二部分。索引在 [0, 1] 中選擇:

    • 0 對應於 *A 句子* 標記,
    • 1 對應於 *B 句子* 標記。

    什麼是標記型別 ID?

  • task_type_ids (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 任務型別嵌入是一種特殊的嵌入,用於表示不同任務的特性,例如詞感知預訓練任務、結構感知預訓練任務和語義感知預訓練任務。我們為每個任務分配一個 task_type_idtask_type_id 在 `[0, config.task_type_vocab_size-1]` 範圍內。
  • position_ids (torch.Tensor,形狀為 (batch_size, sequence_length)可選) — 每個輸入序列標記在位置嵌入中的位置索引。在 [0, config.n_positions - 1] 範圍內選擇。

    什麼是位置 ID?

  • head_mask (torch.Tensor,形狀為 (num_heads,)(num_layers, num_heads)可選) — 用於使自注意力模組中選定的頭無效的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示頭未被掩碼
    • 0 表示頭被掩碼
  • inputs_embeds (torch.Tensor,形狀為 (batch_size, sequence_length, hidden_size)可選) — 可選地,你可以選擇直接傳遞嵌入式表示,而不是傳遞 input_ids。如果你想比模型內部的嵌入查詢矩陣更好地控制如何將 input_ids 索引轉換為相關聯的向量,這會很有用。
  • labels (torch.LongTensor,形狀為 (batch_size, sequence_length)可選) — 用於計算標記分類損失的標籤。索引應在 [0, ..., config.num_labels - 1] 範圍內。
  • output_attentions (bool, 可選) — 是否返回所有注意力層的注意力張量。更多細節請參閱返回張量下的 attentions
  • output_hidden_states (bool, 可選) — 是否返回所有層的隱藏狀態。更多細節請參閱返回張量下的 hidden_states
  • return_dict (bool, 可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。

返回

transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

一個 transformers.modeling_outputs.TokenClassifierOutput 或一個 torch.FloatTensor 元組(如果傳遞了 return_dict=False 或當 config.return_dict=False 時),根據配置(ErnieConfig)和輸入,包含各種元素。

  • loss (形狀為 (1,)torch.FloatTensor可選,當提供 labels 時返回) — 分類損失。

  • logits (形狀為 (batch_size, sequence_length, config.num_labels)torch.FloatTensor) — 分類分數(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor)可選,當傳遞 `output_hidden_states=True` 或 `config.output_hidden_states=True` 時返回) — `torch.FloatTensor` 的元組(一個用於嵌入層的輸出(如果模型有嵌入層),再加上每個層的輸出),形狀為 `(batch_size, sequence_length, hidden_size)`。

    模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。

  • attentions (tuple(torch.FloatTensor)可選,當傳遞 `output_attentions=True` 或 `config.output_attentions=True` 時返回) — `torch.FloatTensor` 的元組(每層一個),形狀為 `(batch_size, num_heads, sequence_length, sequence_length)`。

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

ErnieForTokenClassification 的 forward 方法,重寫了 __call__ 特殊方法。

儘管前向傳遞的邏輯需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> from transformers import AutoTokenizer, ErnieForTokenClassification
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-3.0-base-zh")
>>> model = ErnieForTokenClassification.from_pretrained("nghuyong/ernie-3.0-base-zh")

>>> inputs = tokenizer(
...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_token_class_ids = logits.argmax(-1)

>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> predicted_tokens_classes
...

>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...

ErnieForQuestionAnswering

class transformers.ErnieForQuestionAnswering

< >

( config )

引數

  • config (ErnieForQuestionAnswering) — 包含模型所有引數的模型配置類。使用配置檔案進行初始化不會載入與模型相關的權重,只會載入配置。請檢視 from_pretrained() 方法來載入模型權重。

Ernie Transformer 模型,在其頂部有一個用於抽取式問答任務(如 SQuAD)的片段分類頭(在隱藏狀態輸出之上有一個線性層,用於計算 `span start logits` 和 `span end logits`)。

該模型繼承自 PreTrainedModel。請檢視超類文件以瞭解該庫為其所有模型實現的通用方法(例如下載或儲存、調整輸入嵌入大小、修剪注意力頭等)。

該模型也是一個 PyTorch torch.nn.Module 子類。可以像常規的 PyTorch Module 一樣使用它,並參考 PyTorch 文件瞭解所有與通用用法和行為相關的事項。

forward

< >

( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None task_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None start_positions: typing.Optional[torch.Tensor] = None end_positions: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.QuestionAnsweringModelOutputtuple(torch.FloatTensor)

引數

  • input_ids (torch.Tensor,形狀為 (batch_size, sequence_length), 可選) — 詞彙表中輸入序列標記的索引。預設情況下,填充將被忽略。

    可以使用 AutoTokenizer 獲取索引。有關詳細資訊,請參閱 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什麼是輸入 ID?

  • attention_mask (torch.Tensor,形狀為 (batch_size, sequence_length), 可選) — 用於避免對填充標記索引執行注意力的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示標記未被遮蔽
    • 0 表示標記被遮蔽

    什麼是注意力掩碼?

  • token_type_ids (torch.Tensor,形狀為 (batch_size, sequence_length), 可選) — 段標記索引,用於指示輸入的第一部分和第二部分。索引在 [0, 1] 中選擇:

    • 0 對應於 *A 句子* 標記,
    • 1 對應於 *B 句子* 標記。

    什麼是標記型別 ID?

  • task_type_ids (torch.LongTensor,形狀為 (batch_size, sequence_length), 可選) — 任務型別嵌入是一種特殊的嵌入,用於表示不同任務的特徵,例如詞感知預訓練任務、結構感知預訓練任務和語義感知預訓練任務。我們為每個任務分配一個 `task_type_id`,`task_type_id` 的範圍在 `[0, config.task_type_vocab_size-1]` 內。
  • position_ids (torch.Tensor,形狀為 (batch_size, sequence_length), 可選) — 每個輸入序列標記在位置嵌入中的位置索引。選擇範圍為 [0, config.n_positions - 1]

    什麼是位置 ID?

  • head_mask (torch.Tensor,形狀為 (num_heads,)(num_layers, num_heads), 可選) — 用於使自注意力模組的選定頭無效的掩碼。掩碼值在 [0, 1] 中選擇:

    • 1 表示頭未被遮蔽
    • 0 表示頭被遮蔽
  • inputs_embeds (torch.Tensor,形狀為 (batch_size, sequence_length, hidden_size), 可選) — 可選地,你可以選擇直接傳遞嵌入表示而不是 `input_ids`。如果你希望對如何將 `input_ids` 索引轉換為相關向量有更多控制,而不是使用模型的內部嵌入查詢矩陣,這將非常有用。
  • start_positions (torch.Tensor,形狀為 (batch_size,), 可選) — 標記的片段開始位置(索引)的標籤,用於計算標記分類損失。位置被限制在序列長度(sequence_length)內。序列之外的位置在計算損失時不被考慮。
  • end_positions (torch.Tensor,形狀為 (batch_size,), 可選) — 標記的片段結束位置(索引)的標籤,用於計算標記分類損失。位置被限制在序列長度(sequence_length)內。序列之外的位置在計算損失時不被考慮。
  • output_attentions (bool, 可選) — 是否返回所有注意力層的注意力張量。更多細節請參閱返回張量下的 attentions
  • output_hidden_states (bool, 可選) — 是否返回所有層的隱藏狀態。更多細節請參閱返回張量下的 hidden_states
  • return_dict (bool, 可選) — 是否返回一個 ModelOutput 而不是一個普通的元組。

返回

transformers.modeling_outputs.QuestionAnsweringModelOutputtuple(torch.FloatTensor)

一個 transformers.modeling_outputs.QuestionAnsweringModelOutput 或一個 torch.FloatTensor 元組(如果傳遞了 return_dict=False 或當 config.return_dict=False 時),根據配置(ErnieConfig)和輸入,包含各種元素。

  • loss (torch.FloatTensor of shape (1,), 可選, 當提供 labels 時返回) — 總範圍提取損失是起始位置和結束位置的交叉熵之和。

  • start_logits (torch.FloatTensor of shape (batch_size, sequence_length)) — 範圍起始分數(SoftMax 之前)。

  • end_logits (torch.FloatTensor of shape (batch_size, sequence_length)) — 範圍結束分數(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor)可選,當傳遞 `output_hidden_states=True` 或 `config.output_hidden_states=True` 時返回) — `torch.FloatTensor` 的元組(一個用於嵌入層的輸出(如果模型有嵌入層),再加上每個層的輸出),形狀為 `(batch_size, sequence_length, hidden_size)`。

    模型在每個層輸出的隱藏狀態以及可選的初始嵌入輸出。

  • attentions (tuple(torch.FloatTensor)可選,當傳遞 `output_attentions=True` 或 `config.output_attentions=True` 時返回) — `torch.FloatTensor` 的元組(每層一個),形狀為 `(batch_size, num_heads, sequence_length, sequence_length)`。

    注意力 softmax 後的注意力權重,用於計算自注意力頭中的加權平均值。

ErnieForQuestionAnswering 的 forward 方法,重寫了 __call__ 特殊方法。

儘管前向傳遞的邏輯需要在此函式內定義,但之後應呼叫 `Module` 例項而不是此函式,因為前者會處理執行前處理和後處理步驟,而後者會靜默地忽略它們。

示例

>>> from transformers import AutoTokenizer, ErnieForQuestionAnswering
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-3.0-base-zh")
>>> model = ErnieForQuestionAnswering.from_pretrained("nghuyong/ernie-3.0-base-zh")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()

>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> tokenizer.decode(predict_answer_tokens, skip_special_tokens=True)
...

>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])

>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss
>>> round(loss.item(), 2)
...
< > 在 GitHub 上更新

© . This site is unofficial and not affiliated with Hugging Face, Inc.